Series Foreword

Theoretical computer science has now undergone several decades of development. The
“classical” topics of automata theory, formal languages, and computational complexity
have become firmly established, and their importance to other theoretical work and to
practice is widely recongnized. Stimulated by technology advances, theoreticians have
been rapidly expanding the areas under study, and the time delay between theoretical
progress and its practical impact has been decreasing dramatically. Much publicity has
been given recently to breakthroughs in cryptography and linear programming, and steady
progress is being made on programming language semantics, computational geometry,
and efficient data structures. Newer, more speculative, areas of study include relational
databases, VLSI theory, and parallel and distributed computation. As this list of topics
continues expanding, it is becoming more and more difficult to stay abreast of the progress
that is being made and increasingly important that the most significant work be distilled
and communicated in a manner that will facilitate further research and application of this
work. By publishing comprehensive books and specialized monographs on the theoretical
aspects of computer science, the series on Foundations of Computing provides a forum in
which important research topics can be presented in their entirety and placed in perspective
for researchers, students, and practitioners alike.

Michael R. Garey
Albert R. Meyer

Preface

This book presents a framework for the analysis of syntactic, operational and semantic
properties of programming languages. The framework is based on a mathematical sys-
tem called typed lambda calculus. The main features of lambda calculus are a notation
for functions and other computable values, together with an equational logic and rules for
evaluating expressions. The book is organized around a sequence of lambda calculi with
progressively more complicated type systems. These are used to analyze and discuss rele-
vant programming language concepts. The emphasis is on sequential languages, although
many of the techniques and concepts also apply to concurrent programming languages.

The simplest system in the book is an equational system sometimes called universal al-
gebra. This logic without function variables may be used to axiomatize and analyze many
of the data types commonly used in programming. The next system is a lambda calculus
with function types and, optionally, cartesian products and disjoint unions. When enriched
with recursive definitions, this language provides a useful framework for studying opera-
tional and semantic properties of functional programs. When combined with algebraic data
types, this system is adequate to define many conventional programming languages. In par-
ticular, with types for memory locations and stores, we may study traditional axiomatic,
operational and denotational semantics of imperative programs. More advanced technical
machinery, such as the method of logical relations, category theory, and the semantics of
recursively defined types are covered in the middle chapters. The last three chapters of the
book study polymorphic types, along with declaration forms for abstract data types and
program modules, systems of subtyping, and type inference.

Prerequisites and Relation to Other Topics

The book is written for upper-level undergraduates or beginning graduate students special-
izing in theoretical computer science, software systems, or mathematics. It is also suitable
for advanced study or technical reference. While the only true prerequisite is the proverbial
“appropriate level of mathematical maturity,” most students will find some prior experi-
ence with formal logic, computability or complexity theory, and programming languages
helpful. In general, students familiar with these topics at the level of a general introductory
course such as [AU92] or above should proceed with confidence and with their sleeves
rolled up. To give the prospective reader or instructor more information, the primary con-
nections with related topics are summarized below.

Mathematical Logic

The systems of lambda calculus used in this book share many features with traditional
mathematical logic. Each has a syntax, a proof system, and a model theory. For this
reason, general ideas from logic such as the definition of well-formed formulas, soundness

Xvi Preface

and completeness of proof systems, and interpretation of expressions in mathematical
structures are used. These are introduced briefly as needed. First-order logic itself is used
only in the sections on proving properties of programs; here an intuitive understanding of
the meaning of formulas is assumed.

Computability and Complexity Theory

The basic distinction between computable and non-computable functions is used in the
study of PCF (Chapter 2). The text defines and uses the class of partial recursive functions
and refers to Turing machines in the exercises of two sections. A few additional concepts
from recursion theory are assumed in constructing semantic models using Godel number-
ing of recursive functions (Chapter 4). All of these would be familiar from any course that
covers universal Turing machines or undecidable properties of computable functions. A
certain amount of basic recursion theory is developed in the text using PCF, including a
simple exercise showing that the halting problem for PCF programs is not programmable
in PCF.

Programming

Although no specific programming experience is required, students with some exposure to
a programming language with higher-order functions, such as Lisp, Scheme or ML, will
find it easier to relate this theory to practice. To give a general feel for the expressiveness
of typed lambda calculus, Chapter 2 contains a series of programming examples and
techniques. This provides a self-contained overview of some relevant programming issues.

Category Theory

Category theory appears only in more advanced sections of the book. While all the neces-
sary definitions are presented and illustrated by example, a non-mathematical reader with
no prior exposure to category theory may wish to consult additional sources. If a more
leisurely or comprehensive introduction is needed, the reader is referred to an elementary
introduction tailored to computer scientists, e.g., [BW90, Pie91].

Sample Course Outlines

Three sample course outlines are given in Tables 1 through 3. The first is an introductory
course that has been taught several times as Stanford CS 258. The listed prerequisites for
this course, which covers the core topics in Chapters 2-6, are a one-quarter course in au-
tomata and computability theory and a one-quarter course that includes mathematical logic
but does not cover soundness, completeness or model-theoretic constructions in depth. CS
258 has been completed successfully by undergraduates, M.S. students specializing in sys-
tems or theory, and beginning Ph.D. students. While the Stanford course is taught in 10

Preface Xvii

Table 1
Introductory Course Outline

Sample Introductory Course

1. Functional programming and typed lambda calculus (Chapter 2)
(a) Boolean, natural number, pairing and function expressions; definition of recursive functions using
fixed-point operator (Section 2.2)
(b) Comparison of axiomatic, operational and denotational semantics (Section 2.3)
(c) Properties of reduction; deterministic symbolic interpreters (Section 2.4)
(d) Programming techniques, expressive power, limitations (Section 2.5)

2. Universal algebra and algebraic data types (Chapter 3)
(a) Algebraic terms, equations and algebras (Sections 3.1-3)
(b) Equational proof system, soundness and completeness (Section 3.4)
(c) Homomorphisms and initiality (Section 3.5)
(d) Aspects of algebraic theory of data types (Section 3.6)

3. Semantics of typed lambda calculus and recursion (Parts of Chapters 4 and 5)
(a) Presentation of context-sensitive syntax by typing rules (Sections 4.3.1, 4.3.2, 4.3.5)
(b) General models, summary of soundness and completeness (Sections 4.5.1-4)
(c) Domain-theoretic models of typed lambda calculus with fixed-point operators (Sections 5.1 and 5.2;
Sections 5.3 and 5.4 time permitting)

4. Imperative programs (Chapter 6)
(a) Syntax of while programs; L-values and R-values (Section 6.2)
(b) Structured operational semantics (Section 6.3)
(c) Denotational semantics using typed lambda calculus with location and store types, fixed-point operator
(Section 6.4)
(d) Partial correctness assertions. Soundness, relative completeness and example proofs (Section 6.5)

weeks, it is easy to expand the course to a 15-week semester. Some options for expansion
are: (i) cover the topics listed at a more leisurely pace, (ii) include the section on algebraic
rewrite systems, (iii) prove soundness, completeness and other properties of typed lambda
calculus, or (iv) survey selected topics from Chapters 9-11. It is also possible to drop im-
perative programs (Chapter 6) in favor of one or more of these options. While the chapter
on algebra (Chapter 3) is not strictly required for later topics, universal algebra provides
a useful opportunity to introduce or review logical concepts in a relatively simple mathe-
matical setting. This aspect of the chapter may be redundant if students have taken a more
rigorous undergraduate course on mathematical logic.

The second course, in Table 2, is a more mathematical course on typed lambda calculus
and semantic techniques, with more technical detail and less programming motivation. The
third course, in Table 3, covers type systems, beginning with typed lambda calculus and
proceeding with polymorphism, subtyping and type inference. These three overlapping
courses cover most of the book.

xviii Preface

Table 2
Mathematical course on typed lambda calculus

Course on semantics and typed lambda calculus

1. Syntax and proof systems of typed lambda calculus
(a) Context-sensitive syntax and typing algorithm (Sections 4.1—3)
(b) Equational proof system and reduction (Section 4.4)
(c) Recursion using fixed-point operators (Skim 2.2.2—4, cover 2.2.5)
(d) Recursive types and explicit lifting (Section 2.6)

2. Model theory of typed lambda calculus
(a) General definitions, soundness and completeness (Sections 4.4.1, 4.5.1-6)
(b) Domains (Sections 5.1, 5.2)
(c) Modest sets (Sections 5.5, 5.6)

3. Logical relations
(a) Definition and basic lemmas (Sections 8.1, 8.2)
(b) Proof-theoretic results: completeness, normalization and confluence (Section 8.3)
(c) Completeness theorems for set-theoretic hierarchy, modest sets and domains (Section 8.4)

4. Category theory and recursive types
(a) Categories, functors and natural transformations (Sections 7.1, 7.2.1-2)
(b) Cartesian closed categories and typed lambda calculus (Section 7.2.3-6)
(c) Anexample of a category that is not well-pointed: Kripke lambda models (Section 7.3)
(d) Domain models of recursive types (Section 7.4)

Acknowledgments and Disclaimers

Many people have read drafts and provided useful comments and suggestions. I would like
to thank M. Abadi, S. Abramsky, V. Breazu-Tannen, K. Bruce, L. Cardelli, R. Casley, P.-
L. Curien, P. Gardner, D. Gifford, D. Gries, C. Gunter, R. Harper, S. Hayashi, F. Henglein,
B. Howard, P. Kanellakis, A. Kfoury, P. Lescanne, H. Mairson, I. Mason, A. Meyer, E.
Moggi, N. Marti-Oliet, A. Pitts, J. Riecke, K. Ross, D. Sanella, P. Scott, D. Tranah, T.
Uribe and the students of Stanford CS 258 and CS 358. Special thanks to teaching assis-
tants My Hoang, Brian Howard and Ramesh Viswanathan for their help with homework
exercises and sample solutions, a few of which made their way into examples in the text.
Almost all of this book is based on previously published research, some by the author.
When specific results are taken from the literature, an effort has been made to cite original
sources as well as relevant survey articles and books. However, as with any project of this
size, there are likely to be some errors and omissions. In addition, while an effort has been

Preface Xix

Table 3
Course on type theory

Course on type theory

1.

Simply-typed lambda calculus
(a) Context-sensitive syntax and typing algorithm (Sections 4.1-3)
(b) Equational proof system and reduction (Section 4.4.1, 4.4.2)

. Polymorphism

(a) Introduction to polymorphic types (Section 9.1)

(b) Predicative polymorphism (Section 9.2)

(c) Properties of impredicative polymorphism (Section 9.3.1-4)
(d) Data abstraction and existential types (Section 9.4)

(e) General products, sums and program modules (Section 9.5)

. Subtyping

(a) Basic syntactic issues, equational reasoning, containment and conversion interpretations of subtyping
(Sections 10.1-10.4)

(b) Records, recursive types, records-as-objects (Section 10.5)

(c) Polymorphism with subtype constraints (Section 10.6)

. Type inference

(a) Type inference and erasure functions (Section 11.1)
(b) Type inference for simply-type lambda calculus using unification (Section 11.2)
(¢) ML-style polymorphic declarations (Section 11.3)

made to circulate and teach any original material or alternate proofs developed for this
book, there are undoubtably some remaining errors.

John C. Mitchell
Stanford, CA

Foundations for Programming Languages

1 Introduction

1.1 Model Programming Languages

The mathematical analysis of programming languages begins with the formulation of
“model” programming languages. For example, if we want to analyze procedure call
mechanisms, we might begin by identifying a simple programming language whose main
constructs are procedure declarations and calls. We may then analyze this simplified pro-
gramming language without worrying about irrelevant details of a larger programming
language. This process is not only useful in analyzing an existing programming language,
but also in designing a new one. Since practical programming languages are typically large
and very complex, programming language design involves careful and separate consid-
eration of various sublanguages. Of course, it is important to keep in mind that a small
language with only a few constructs may give false impressions. We might conclude that
a programming language is much simpler than it really is, or we might rely on proper-
ties that are immediately destroyed when important features are added. Therefore, good
taste and careful judgment are required. In developing a programming language theory,
or applying theoretical analysis to practical situations, we must always keep in mind
the nature of our simplifying assumptions and how they may affect the conclusions we
reach.

In this book, we will will study programming language concepts using the framework of
typed lambda calculus. The idea that lambda calculus is the basic mechanism underlying
function definition and naming conventions in programming languages is an old one. It is
described in an early paper of Landin [Lan66], for example, which suggests that whatever
the next 700 programming languages turn out to be, they will surely be variants and
extensions of lambda calculus. By adding to basic typed lambda calculus in various ways,
we may devise model languages with a variety of historical, contemporary, or forward-
looking features. An advantage of sticking to typed lambda calculus is that there is a
certain degree of “modularity” to our theory. Although there are exceptions, many of the
extensions to typed lambda calculus may be combined without unexpected synergistic
effects. For example, after exploring polymorphism and records separately, we can easily
formulate a language with polymorphism and records and identify many of its properties.

The main goal in our investigation of programming language concepts and features
is to see beyond the surface syntax and understand the meanings of program phrases
(expressions, commands, declarations, etc.) at an appropriate level of detail. Since it is
impossible to select a single “appropriate level of detail” that is appropriate for all forms
of programming and program analysis, we concentrate on general techniques that may be
used in a variety of ways to abstract away from some properties of programs and focus on
others.

2 Introduction

The first chapter beyond this introduction is concerned with the syntax, operational se-
mantics and programming capabilities of a simple, illustrative language for Programming
Computable Functions, called PCF. This language is based on typed lambda calculus, with
natural numbers and booleans (truth values) as basic types. PCF allows us to form pairs of
values, and define recursive functions. Later in the book, we study the pure typed lambda
calculus separately, as well as additional data types for PCF such as stacks and trees. Since
the type system of PCF is not as flexible as we might want, we will consider systems
with polymorphic functions and data type declarations. This brings us to languages that
resemble and extend ML [GMW?79, Mil85a] and Miranda [Tur85]. In a later chapter, we
consider more flexible type systems based on subtyping, concluding with a chapter on type
inference. Throughout, we rely on the basic mechanisms of lambda abstraction (for defin-
ing functions) and function application.

Organization of This Book

Each chapter of this book begins with a brief introductory section. Each introductory
section contains a list of the main topics of that chapter. To give an example, and to warn
the reader of what is ahead, here is a list of the main topics covered in this chapter:

* Overview of lambda notation and the system of lambda calculus.
* Brief discussion of types and type systems.

* List of standard mathematical notation used in this book.

» Background discussion on set theory.

 Background discussion on syntax and semantics, including a brief overview of grammars
and parsing.

» Background discussion on induction, covering induction on the natural numbers, struc-
tural induction on expressions, structural induction on proofs, and well-founded induction.

In discussing induction on proofs, we also review basic terminology and properties of for-
mal proof systems.

Each of the background sections is intended to be used as reference for later chapters of
the book.

Like most lists in later chapters, the topics listed here correspond closely to the sub-
sections of the chapter that are listed in the Contents. Therefore, if you wish to find the
reference section on standard mathematical notation, for example, you may turn to the
Contents and look for the subsection entitled, “Notation and Mathematical Conventions.”
(You will find that this is Section 1.5.)

1.2 Lambda Notation 3

1.2 Lambda Notation

Lambda calculus has proven useful in describing, analyzing and implementing program-
ming languages. With a little practice, the reader may become familiar enough with the
notation to see C, Pascal or Ada program phrases as syntactic variants of lambda expres-
sions. This will make the theory described in this book more useful, and also make it
much easier to understand a variety of programming languages. The language PCF will
use lambda notation directly, as do the programming languages Lisp [Ste84] and Scheme
[AS85, SS75]. However, the reader familiar with Lisp should be warned that PCF does
not have the complete “look and feel” of a Lisp-like language. There are no lists or atoms,
there is a relatively rigid compile-time typing discipline, and the order of evaluation is
different.

The primary features of lambda notation are lambda abstraction, which we use to write
function expressions, and application, which allows us to make use of the functions we
define. Expressions written in lambda notation are called lambda expressions or lambda
terms. Lambda notation is used in both typed and untyped systems of lambda calculus.
A comprehensive treatment of untyped lambda calculus may be found in [Bar84]. Some
comments on the relationship between typed and untyped languages appear in Section 1.4.

In typed lambda calculus, the domain of a function is specified by giving a type to the
formal parameter. If M is some expression that is well formed under the assumption that
the variable x has type o, then Ax:o. M defines the function mapping any x in o to the
value given by M. A simple example is the lambda expression

AXx:nat.x

for the identity function on natural numbers. The notation “x: nar” specifies that the do-
main of this function is nat, the type of natural numbers. Since the function value at x: nat
is x, the range is also nat. For each form of typed lambda calculus, there are precise rules
saying which expressions are well formed under assumptions about the types of variables.
These rules also tell us how to determine the range of Ax:o. M from the form of the
function body M. Intuitively, in writing Ax:o. M, we cannot apply any operations to x
inside M that do not make sense for all values of type o. For example, the expression
Ax:nat.x + true is not well formed, since it does not make sense to add true to a natural
number.

One way to understand lambda terms is by comparison with alternative notations. An-
other way to describe the function taking any x:nat to itself is by writing x: nat > x.
Perhaps a more familiar way of defining the identity function in programming languages
is by writing something like

4 Introduction

Id(x:nat) = x.

However, this notation forces us to make up a name for every function we write, while
lambda notation gives us a succinct way of defining functions directly. Some other exam-
ples of lambda expressions are

Ax:nat.x + 1
which defines the successor function on natural numbers, and the constant function
Ax:nat.5

which returns the natural number 5, regardless of the value of its argument.

An important aspect of lambda abstraction is that A is a binding operator. This means
that in a lambda term Ax:o. M, the variable x serves only as a “placeholder,” like the
variable x in the integral

/ fx)dx.

Justas [f(x)dx and [f(y)dy are different ways of writing the same integral, Ax: o. x
and Ay: g. y are different ways of writing the same function. Therefore, we can rename -
bound variables without changing the meaning of any expression, as long as any new name
we choose does not conflict with other variables already in use (see Exercise 1.2.3). Terms
that differ only in the names of bound variables are called «-equivalent; we sometimes
write M =, N if M and N are a-equivalent. When a variable x occurs in an expression
M, we say an occurrence of x is bound if it is inside a subexpression of the form Ax:o. N,
and free otherwise. We write FV (M) for the set of free variables of M. An expression is
closed if it has no free variables.

In lambda notation, we write function application just by putting a function expression
next to one or more arguments. This lets us use parentheses to specify association of
operations. For example, we apply the natural-number identity function to the number 3
by writing

(Ax:nat.x) 3.

The value of this application is the identity function applied to the number 3, which is just
3, of course. This gives us the equation

(Ax:nat.x)3 =3.

There are several methods for calculating the values of lambda expressions, or proving
equations between lambda expressions, as we shall see in the next section.

1.3 Equations, Reduction, and Semantics 5

Some notational conventions make it easier to write and read lambda expressions. Un-
fortunately, the conventions of lambda calculus seem slightly awkward at first, and take a
little practice to get used to. The first convention is that application associates to the left,
so that M N P should be read as (M N) P. In words, we can read M N P as the expression,
“apply the function M to argument N, and then apply the resulting function to argument
P For this to make sense, M must be a function which, given one argument, returns a
function. The second notational convention is that the scope of each lambda is interpreted
as being as large as possible. In other words, an expression Ax:o.... may be parenthe-
sized by inserting a left parenthesis after the type o, and the matching right parenthesis
as far to the right as will produce a syntactically well-formed expression. For example,
we read Ax:o0. MN as Ax:o.(MN), rather than (Ax:o. M)N. Similarly, Ax:o.Ay: . MN
is short-hand for the parenthesized expression Ax:o.(Ay: t.(M N)). The two conventions
work well together. For example, a multi-argument function application may be written

(Ax:0.Ay:T.AZ:p. M) N P Q.

According to the two conventions, this expression is fully parenthesized as
((Ax:o.(Ay:t.(Az:p. M))) N) P) Q

so that the i-th argument corresponds to the i-th formal parameter.

Exercise 1.2.1 Using the symbol * for natural-number multiplication, write a lambda

expression for the function mapping x: nat — x°.

Exercise 1.2.2 Insert parentheses into the expression (Ax: nat. Ay: nat. x + y) 32 so that
it is fully parenthesized. What would you expect the value of this expression to be? Given
the type information about x and y, could you meaningfully insert parentheses in some
other way?

Exercise 1.2.3 'We may rename the bound variable x in Ax: nat. Ay:nat. x + y to z with-
out changing the function defined by this term. Explain why renaming x to y changes the
meaning of the term and is therefore not a legal renaming of a bound variable. Can we
rename x to y in Ax:nat. x + y?

1.3 Equations, Reduction, and Semantics

Historically, lambda notation developed as part of what is called lambda calculus, a system
for reasoning about lambda expressions. In addition to syntax, there are three main parts of
the formal system. In contemporary programming language terminology, these are called

6 Introduction

axiomatic semantics, operational semantics, and denotational semantics. A logician might
call the first two “proof systems” and the third a “model theory.” The axiomatic semantics
is a formal system for deriving equations between expressions. The operational semantics
is based on a directed form of equational reasoning called reduction. In computer science
terminology, reduction may be regarded as a form of symbolic evaluation. The denota-
tional semantics, or model theory, is similar in spirit to the model theories of other logical
systems, such as equational logic or first-order logic: a model consists of a family of sets,
one for each type, with the property that each well-typed expression may be interpreted as
a specific element of the appropriate set.

1.3.1 Axiomatic Semantics

In the equational axiom system, we have an axiom for renaming bound variables, and an
axiom relating function application to substitution. To write these axioms, we will use
the notation [N /x]M for the result of substituting expression N for variable x in M. One
subtle aspect of substitution is that free variables should not become bound. The simplest
way to substitute N for x in M systematically is to first rename all bound variables in M
so that they are different from all free variables in N. Then we can replace all occurrences
of x with N. (A more detailed definition is given in Section 2.2.3.) Using substitution, the
axiom for renaming bound variables is written

Ax:o.M =\y:o.[y/x]M, ynotfreein M (o)

For example, we have Ax:o.x = Ay: 0. Y.

Since the lambda term Ax:o. M defines the function with value M on argument x, we
can compute the value at argument N by substituting N for x. For example, the result of
applying function Ax: nat. x + 5 to argument 3 is

(Ax:nat.x +5)3=[3/x](x +5)=3+5.
More generally, we have the equational axiom
(Ax:o. M) N =[N/xIM, (Beq

called S8-equivalence. Essentially, S-equivalence says that we can evaluate a function ap-
plication by substituting the actual argument for the formal parameter within the function
body. In addition to these axioms, and a few others, the equational proof system includes
rules like symmetry, transitivity, and a congruence rule that says, “equal functions applied
to equal arguments yield equal results.” The latter rule may be written out formally as

My=M;, Ni=N,
M{N1 = M2N,

1.3 Equations, Reduction, and Semantics 7

although to be completely precise, we must also specify types to make sure every-
thing makes sense. As with other logical proof systems, the equational proof rules of
typed lambda calculus allow us to derive logical consequences of any set of equational
hypotheses.

1.3.2 Operational Semantics

The reduction rules for lambda expressions give us a directed form of equational reason-
ing. Intuitively, the basic reduction rules describe single computation steps that can be
repeated to evaluate an expression symbolically (or compute indefinitely if the expression
does not have a simplest form). This symbolic “evaluation procedure,” or “interpreter,”
is what gives lambda calculus its computational character. Although B-equivalence is an
equation, we often tend to read it as a simplification rule, from left to right. For example,
the equation (Ax: nat. x +5) 3 = 3 + 5 suggests that we can simplify the function applica-
tion to 3 + 5. Using properties of addition, we may then simplify this to 8. Since reduction
is asymmetric, an arrow — is commonly used for one-step reduction, and a double-headed
arrow —> for zero or more reduction steps.
The central reduction rule is a directed version of (8)., called B-reduction, written

(Ax:0.M)N & [N/xIM. (B)red

Since we may need to rename bound variables when performing a substitution, reduc-
tion is only defined up to «-equivalence. More precisely, the definition of substitution,
[N/xIM, allows bound variables to be renamed, in order to avoid conflicts. As a result,
the term obtained by B-reduction may depend on arbitrary choices of new bound vari-
ables; it is not uniquely determined. However, any two terms we might produce will differ
only in the names of bound variables, and therefore be a-equivalent. An important point
is that B-reduction often produces an expression that is much longer than the one we be-
gin with, even though it might seem “simpler” in some intuitive sense. The reason is that
when x occurs several times within M, the expression [N /x]M may be much longer than
(Ax:0. M) N. Both a-conversion and renaming bound variables in substitution are part of
providing static scope, as illustrated in Exercise 2.2.13.

The entire reduction system combines (8),.4 and other basic one-step reductions with
rules that allow us to evaluate parts of a term, and repeat reduction steps. More precisely,
we write M —> N if we can produce N from M by repeatedly applying single-step reduc-
tions to subexpressions. For example,

(Ax:0. M)((Ay: 1. N) P) =>> (Ax:0. M)([P/yIN) = [({P/yIN)/xIM.

Since there may be several ways to begin reducing an expression, —> might be viewed

8 Introduction

as a “nondeterministic” model of execution. Another way to reduce the term above is to
begin with the left-most lambda:

Axio. M)((Ay:T.N) P) = [((Ay: 1. N) P)/xIM — [([P/yIN)/xIM.

However, choosing a different place to begin does not keep us from reaching the same final
result. As we shall see, this is true in general about many forms of lambda calculus.

Two notable properties of reduction on pure typed lambda terms are the Church-Rosser
property, and the strong normalization property. These are also called confluence and ter-
mination, respectively. The Church-Rosser property is that if M —> N and M —> N/,
then there exists an expression P such that N —> P and N’ —> P. It follows from conflu-
ence that an equation between lambda expressions is provable (using the equational proof
system) iff both expressions may be reduced to a common form. Confluence may also be
used to show that certain terms cannot be proved equal, establishing the consistency of the
equational proof system. The strong normalization property states that no matter how we
try to reduce a typed lambda expression, we cannot go on applying single-step reductions
indefinitely. We eventually produce a normal form, an expression that cannot be simplified
further. In PCF, we will add recursion to typed lambda calculus. This makes it possible to
write nonterminating algorithms, and destroys strong normalization. However, PCF reduc-
tion remains confluent.

1.3.3 Denotational Semantics

In the denotational semantics of typed lambda calculus, each type expression is associated
with a set, called the set of values of this type. A term of type o is interpreted as an element
of the set of values of type o, according to a definition by induction on the structure of
terms. The set of values of type o — 7 is a set of functions (or isomorphic to this), so that a
typed lambda term Ax: o. M is interpreted as a mathematical function. While the semantics
of pure typed lambda calculus is relatively simple, the semantics of its extensions may be
considerably more complex. Some features that provide a challenge are recursive function
definitions, which are computationally important but difficult to accommodate in classical
set theory, recursive definition of types, and polymorphic functions, which are functions
that may be applied to arguments of many types.

For the reader familiar with untyped lambda calculus, it is worth mentioning that un-
typed lambda calculus may be derived from typed lambda calculus in a meaningful way.
In fact, one of the most natural ways to think about the semantics of untyped lambda calcu-
lus begins with the semantics of typed lambda calculus. For this reason, we consider typed
lambda calculus the more basic system, and a more appropriate place to begin our study.

1.4 Types and Type Systems 9

Exercise 1.3.1 Use (B),q twice to simplify the lambda expression (Af: nat ~ nat. f5)
(Ax: nat. x + x) to the sum of two natural numbers.

Exercise 1.3.2 For the purpose of this exercise and the next, the length of a typed lambda
term is the number of symbols we use to write the term down, counting parentheses
but not counting “:” or the type expressions inside the term. For example, the length of
Ax:ia.\y:b.yis 7. Find a pure typed lambda expression (without extra functions such as
+) of the form

(Af:(@a—>a)—> (@—a).rxia—>a M)Af:a—>a.rx:a. f(fx))
whose length at least doubles as the result of one or more S-reductions.

Exercise 1.3.3 Generalize the construction of Exercise 1.3.2 to show that as a result
of performing one or more S-reductions, a pure typed lambda term of length O(n) may
produce a term whose length is greater than f(n) = 22 , where f(n) is computed by
exponentiating n times.

1.4 Types and Type Systems

In the general literature on computer science and mathematical logic, the word “type” is
used in a variety of contexts and with a variety of meanings. In this book, fype is a basic
term whose meaning is determined by the precise definition of a type system. In any type
system, types provide a division or classification of some universe of possible values: a
type is a collection of values that share some property. Therefore, it always makes sense to
ask what the elements of a type are. However, the kind of values that may have types, and
the kinds of distinctions we make in typing, may vary from system to system.

Throughout this book, we will distinguish between types, which are collections, and
values, which are members of types. In some systems, there may be types with types as
members. Types with types as members are usually called something else, such as uni-
verses, orders or kinds, to avoid the impression of circularity. An exception is a language
with a “type of all types,” which is circular in the sense that the type of all types is a
member of itself. However, since a type of all types introduces several anomalies (dis-
cussed in Chapter 9), none of the systems we consider in depth will have a type of all
types.

In most programming languages, types are “checked” in some way, either during pro-
gram compilation, or during execution. In compile-time type checking, we attempt to
guarantee that each program phrase (expressions, declarations, etc.) defines an element of

10 Introduction

a type that is either specified explicitly as part of the program text, or determined implic-
itly by the way the program phrase is used. Programs that fail to type check are rejected by
the compiler. Some advantages of compile-time type checking are

* Early detection of errors. An error such as adding an integer to a string that might occur
only for certain input to the program can be detected by a compile-time type checker
before the program is executed.

* Documentation. When programmers specify the types of identifiers and expressions, this
tells something about the expected value at run-time. This can be valuable information
when the reader is trying to figure out how the program works.

* Guarantee validity of optimizations. A simple example might be accessing a data struc-
ture such as an array whose layout (and therefore indexing function) depends on the type
of data it contains. If the type and therefore size of the data is known at compile-time, a
more efficient access function can be compiled. This arises in the compilation of Pascal
records, C structs or C objects, where the offset of each field or member is determined
statically using the type of the record or object.

Run-time type checking similarly tries to prevent execution of erroneous operations, but
postpones the test until the program is executed. For example, although Lisp programs
are not type-checked prior to compilation, run-time tests are used to make sure that list
operations are only applied to lists; anyone who has tried to debug a nontrivial Lisp
program has seen the error stating that you cannot apply car to an atom. Run-time type
checking is more “accurate,” in the sense that since the exact values of operands are known
at run-time, only errors that actually occur in execution are detected. A simple example
illustrating the difference is the expression

if B then 3 else 4+ “polyglot”

which does not contain a run-time error if the expression B has value true. However, most
compile-time type checkers would reject this expression. Since the value of an arbitrary
expression cannot be determined at compile-time, compile-time type checking is “conser-
vative.” Most compile-time tests are based on simple algorithms that reject all programs
with run-time type errors, but also reject some programs that would not contain run-time
errors. This is an inevitable consequence of basic recursion theory: predicting run-time
type errors is an undecidable property of programs.

We will focus on languages that may be called statically-typed. These are languages in
which each program phrase must have a type and, except for extreme cases, the type can
be determined efficiently from the syntactic form of the expression. Beginning with the
precise presentation of syntax in Chapter 4, the languages we will discuss are defined by

1.5 Notation and Mathematical Conventions 11

typing rules. Each well-formed phrase will have a type that may be determined by making
a single pass over the phrase, reading the types of identifiers that are not declared locally
from some kind of symbol table. One reason to focus on statically-typed languages is that
we do not have to consider “run-time” error tests or the problems associated with certain
kinds of programming errors. By only considering well-typed programs, we simplify our
theory and focus on correct rather than incorrect programs. Another reason to consider
typed languages is that types generally allow us to reason about the values of expressions
in a way that would not be possible in an “untyped” (or run-time-typed) language. This is
illustrated by the method of logical relations, presented in Chapter 8.

An important aspect of adopting a typed theory of programming languages is that un-
typed languages arise naturally as a special case. The main idea behind studying untyped
languages in a typed framework is that we could use a type untyped for all the untyped ex-
pressions of a language. A specific example can be given using the syntax of the program-
ming language ML (Mil85a), MTH90, MT91, Ull94]. If we have an untyped language
with integers, booleans pairs and functions, we can represent the associated “untyped value
space” using the following ML datatype:

datatype untyped = N of int | B of bool | P of untyped+untyped
| F of untyped — untyped

Intuitively, the type untyped is the union of the integers, booleans and all pairs and func-
tions definable over these types. This ML datatype is an example of a recursively-defined
type. Recursive types are considered in Sections 2.6.3 and 7.4. Example 4.4.6 discusses a
related approach to untyped lambda calculus in a typed lambda calculus framework.

A final reason for including types in our theory of programming languages is the role of
types in many approaches to modular software design. Since pragmatic issues in software
design are not specifically considered in this book, the reader may wish to consult [Boo91,
LG86, Mey88], for example, for a broader perspective. Since types appear in a variety of
programming languages, for all of the reasons mentioned above, it is important to have a
theoretical framework for typed languages.

1.5 Notation and Mathematical Conventions

The remainder of this chapter presents background information that may be useful for
various parts of the book. While some may want to work through these sections before
proceeding, many readers will prefer to skim the material to see what is here and use these
sections later for reference, as needed.

12 Introduction

In this brief section, we list some of the notational conventions associated with math-
ematical topics that are not covered explicitly in the book. Other symbols are defined as
they are introduced. The point of definition of each symbol may be found in the index.

Equality Relations

Several forms of equality and equality-like relations are used. We use the standard equality
symbol = to assert that two expressions have equal value. This is consistent with standard
mathematical usage, such as 3 +4 =5 + 2. An exception is that we also use = in the
declaration form let x = M in N, which is an expression of some of the languages
studied in the book. However, it should be easy to distinguish these two uses by context.
When symbols such as M and N stand for expressions of some language, we use M = N
to mean that they are syntactically identical. In other words, the symbols “M” and “N”
stand for the same expression. The notions of free and bound variables are discussed in
Section 1.2. We consider two expressions that differ only in the names of bound variables
syntactically equal, e.g., Ax: int. Ay: int. x = Ay: int. Ax: int. y. However, the names of free
variables do matter, so Ax:int. fx % Ax:int. gx.

The main equality symbols and their meaning are listed below.

Two expressions have the same value.

Two expressions are syntactically equal, except possibly for the names of bound
variables, as discussed above.

We write M % N to indicate that a symbol or expression M is defined to be equal
to N.

::= Symbol used in grammars to indicate possible forms of expressions.

= Isomorphism of structures (sets, algebras, etc.).

Logical Symbols

v Universal quantifier. The formula Vx. ¢ may be read, “ for all x, ¢ is true.”

3 Existential quantifier. The formula 3x. ¢ may be read, there exists x such that ¢
is true.”

A Conjunction. The formula ¢ A ¥ may be read, “¢ and v.”

v Disjunction. The formula ¢ V ¥ may be read, “¢ or ¥.”
= Negation. The formula —¢ may be read, “not ¢.”

D Implication. The formula ¢ D ¥ may be read, “¢ implies ¥.” (We do not use —
for implication since — is used in type expressions and for reduction (evaluation)
of expressions.)

iff If and only if.

1.6 Set-theoretic Background 13

Like A, discussed in Section 1.2, the quantifiers V and 3 are binding operators. Since
a bound variable is just a place-holder, formulas Vx.¢ and Vy.[y/x]¢ are considered
syntactically equal, provided y does not already occur free in ¢ and the substitution [y/x]¢
is carried out with renaming of bound variables in ¢ to avoid capture, as summarized
in Section 1.3 and explained in more detail in Section 2.2.3. Similarly, we have Ix.¢ =

y.[y/x]¢.

Set Operations
Although some aspects of set theory are summarized in Section 1.6, the primary symbols
are listed here for reference.

€ Element of.

U Union.

N Intersection.

C Subset.

x Cartesian product.

1.6 Set-theoretic Background

1.6.1 Fundamentals

In some ways, set theory is the “machine language” of mathematics. Most of the time, we
work with higher-level notions that are definable in set theory, without worrying about ex-
actly how these concepts would be expressed in pure set theory. This subsection illustrates
some of the main ideas of “elementary” set theory, without going into the foundational is-
sues in depth. The main emphasis is on the spirit of the system and how it is used; this
is not a comprehensive presentation of any particular axiomatic set theory. A good general
reference on set theory, at an accessible level of detail but covering far more than is needed
for this book, is [Hal60].

Intuitively, a set is a collection of elements, possibly empty. This is formalized in set
theory by giving specific methods for defining and reasoning about sets. The main ideas
are largely straightforward, except that we must be careful about the way we define sets.
For example, we might think that for any property P, there is a set S with

xeS iff P(x).
However, this cannot be true for “x ¢ §,” since this would give us a set S with

xeS iff x¢S.

14 Introduction

This “definition” implies that any x is in S iff x is not in S, which cannot be satisfied
by any reasonable collection. This example, which is called Russell’s paradox after the
philosopher and mathematician Bertrand Russell [Rus03], shows that we cannot make
arbitrary set definitions and hope to have a reasonable mathematical theory. (There are
other paradoxes, but Russell’s paradox is the easiest to describe.) After the discovery of
this paradox in the early 1900’s, several satisfactory set theories were developed. The main
idea in modern set theory is to begin with some simple, non-problematic sets and give
operations for constructing additional ones.

The most basic principle about sets is that two sets are equal iff they have the same
elements. This may be written more precisely as

A=B iff Vx (xeAiffxe B),

which may be read, “sets A and B are equal iff, for all x, x is in A iff x is in B.” This state-
ment is called the axiom of extension. Since this is an obvious property of collections, the
point of this axiom about sets is just to make explicit that sets are collections, determined
by their elements.

A useful operation on sets is to form their cartesian product. If A and B are sets, then
A x B is the set of ordered pairs

(a,bye Ax B iff aeAandb € B.

More precisely, x € A x B iff x has the form of an ordered pair, x = {(a, b), witha € A and
b € B. In the remainder of this book, we will consider forming a pair {a, b) from elements
a and b a basic operation. However, to give some feel for the way many operations are
defined in set theory, we will show how cartesian products may be defined using other set
constructions.

A basic axiom of set theory is that there exists an empty set, 3, with no elements. This
may be stated formally by writing

Vx. x &0.

In words, “for every x, x is not an element of #.” In most versions of set theory, we build
all other sets out of the empty set. This results in a set-theoretic universe where everything
is a set. However, it is also possible to develop set theory with what are traditionally
called urelements. These are basic values that may be elements of sets, but are not sets
themselves. The difference between set theory with urelements, and set theory without,
will have no bearing on the topics covered in this book.

A simple operation is to form, for any mathematical object x, the singleton set {x} with

yel{x} iff y=x.

1.6 Set-theoretic Background 15

In other words, x is the only element of {x}. Another basic operation is set union, AU B,
with

xeAUB iff x€eAorxeB

for any sets A and B. Using singletons and union, we can form a set with any two elements
by writing

{a,b} & {a} U {b}.

It is not hard to see, using the properties of singleton and union given above, that this
definition has the property

x€fa,b} ff x=aorx=»hb.

Although the general definition form {x | P(x)} can be problematic, as we saw above with
Russell’s paradox, we can always write

(xeAd| P(0)}

for the set of all elements of A that satisfy the property P. A special case is the intersection
of two sets,

ANB & {xe A | xe€ B}
Returning to ordered pairs, we can define the ordered pair (a, b) by
(a,b) & {{a}, {a, b}}.

Before proceeding, it is worthwhile to pause and consider the sense of making this defini-
tion. If we were to define pairing as a basic notion, without reducing it to some construc-
tion on sets, two operations would be important. The first is that we need a way of forming
the ordered pair {(a, b) from a and b, and the other is that we need to be able to extract the
components a and b from the pair (a, b). We show that our representation of ordered pairs
is reasonable by showing that these essential operations are definable as set operations. If
we define (a, b) as above, then we can form the ordered pair from a and b by taking the
unions of singleton sets:

{{a}, {a, b}} = {{a}} U {{a} U {b}}.

Conversely, we can determine the first and second components of the pair uniquely. Specif-
ically, if we write f5¢ p for the first component, we can characterize fst by

fstp=a iff {a}ep.

16 Introduction

Similarly, we can characterize the second component, snd p, by
sndp=>b iff {(fstp),b}ep.

Now that we have seen that our representation of ordered pairs by sets is reasonable, we
may try to define cartesian product by

Ax BZ2{{a,b) | ac Aandb e B}.

However, this uses the set definition form that led to Russell’s paradox. For this reason,
we still do not have a correct set-theoretic definition. To use the definition form {x €
C | P(x)}, we must find a set C that contains A x B as a subset. For this, we need the
“powerset” constructor.

An important construction of set theory is called the powerset. The powerset, P(A), of
a set A is the set of all sets drawn from the elements of A. Another way of saying this is to
define the subset relation by

ACB iff Vx.(x € Aimplies x € B)
and write
AeP(B) iff ACB.

The powerset operation may be used to build bigger and bigger sets. For example, begin-
ning with only the empty set, we may define the sequence of sets

@, P@), P(P®), P(P(P@)), -..

The powerset P(9) of the empty set is the singleton {#} whose only element is the empty
set. The kth element in this sequence may be written P*(@), where the superscript k
indicates that P is applied a total of k times. If k > 0, then P* (@) has 2~! elements (see
Exercise 1.6.1).

Returning to cartesian products, let A and B be sets witha € A and b € B. The singleton
{a} and the set {a, b} with two elements are both in the powerset P(A U B). Therefore, the
ordered pair {{a}, {a, b}} is in P(P(A U B)), the powerset of the powerset. This finally
gives us a way of defining the cartesian product using only set-theoretic operations that do
not lead to paradoxes:

Ax B & {(a,b)e P(P(AUB)) | ac Aandb € B}.

In addition to ordered pairs, it is also possible to define ordered triples, or k-tuples for any
positive integer k. If Ay, ..., Ay are sets, then the cartesian product A; x ... x Ay is the
collection of all k-tuples (ay, . .., ax), witha; € A; for 1 <i <k. The k-tuple {ay, ..., a)
may be defined as the set

1.6 Set-theoretic Background 17

(al’ s ,(lk) déf {<1va1)v (2’ (12), ceey (kv ak)}

with basic operations on tuples as defined for ordered pairs. Exercise 1.6.2 shows that k-
tuples can also be represented by nested pairs.

The final axiom of set theory that we will consider here is that there exists an infinite set.
Without this assumption (i.e., using only the empty set and the operations described so far),
we would only be able to define and reason about finite sets. The “infinity” axiom allows
us to define the set of natural numbers (non-negative integers), for example. In defining
the natural numbers in pure set theory, we represent natural numbers by sets in much the
same way as we represented ordered pairs by sets. Specifically the natural number 0 is
represented by the empty set and the natural number n 4 1 by the set of all natural numbers
< n. However, it will not be necessary to go into this construction in any detail.

Exercise 1.6.1 This exercise asks about the size of the powerset of a finite set.

(a) Show that if a set A has n elements, we can associate a sequence of n bits with each
subset of A. Use this to show that if A has »n elements, then P(A) has 2" elements.

(b) Consider the sequence of sets P%(%), PY®), P2(®), ..., where the superscript k in
Pk(@) indicates that P is applied a total of k times. Show by induction on k that if k > 0,
then PX (%) has 2%~ ! elements.

Exercise 1.6.2 1In addition to defining k-ary cartesian products directly, as above, we
can also represent k-ary cartesian products as repeated binary products. Specifically, if
Ay, ..., Ay are sets, then we can use A] X (A2 X ... X (Ag_1 X Ag)...) as the represen-
tation of the k-ary cartesian product. Show how this works by showing that A x (A2 x
oo X (Ag—1 X Ag)...) is isomorphic to A1 X Ay x ... X Ag_y x Ax. More specifically,
show that there are functions

f o A x(Ar X ... X (Apo1 X Ap)..) > AL X Ay x ..o X Ay X Ag
g AIXAyX ... XA X Ar—> A x (A2 x ... x (Agy X Ag)..)

so that both function compositions f o g and g o f are the identity. (The composition f o g
is the function A with A(x) = f(g(x)). This is discussed more generally for relations on
Section 1.6.2 and in Exercise 1.6.6.)

1.6.2 Relations and Functions

Intuitively, a relation between elements of some set A and elements of a set B is a “binary
property” R such that R(a, b) is either true or false for each a € A and b € B. The common
representation of relations as sets uses subsets of the cartesian product. Formally, a relation
R between sets A and B is a subset R C A x B of their cartesian product. If an ordered

18 Introduction

pair {a, b) is in the subset R, then we consider the relation true of @ and b. If {a, b) is notin
the subset R, then we consider the relation false of a and b. It is common to write R(a, b)
instead of (a, b) € R.

In addition to binary relations, it is possible to define k-ary relations, for any positive
integer k. If Ay, ..., Ay are sets, then a relation over Ay, ..., A is a subset of the cartesian
product Ay X ... x Ag. In the special case k = 1, we have unary relations, or subsets,
which are also called predicates.

Some important kinds of relations are equivalence relations and various kinds of order-
ings. Arelation RS A x A'is

Reflexive if R(a, a), foralla € A,
Symmetric if R(a, b) implies R(b, a), foralla, b € A,
Transitive if R(a, b) and R(b, ¢) imply R(a,c), forall a, b, c € A.

An equivalence relation is a relation that is reflexive, symmetric and transitive. One ex-
ample of an equivalence relation is equality, i.e., the relation R with R(a, b) iff a = b.
Another example, on the natural numbers, is the relation R € A x A with R(a, b) iff a
and b are both odd or both even. A relation R C A x A is

Antisymmetric if R(a, b) and R(b, a) thena =b, foralla, b € A.

A partial order is a relation R € A x A that is reflexive, antisymmetric and transi-
tive. An example on the natural numbers is the usual ordering relation R € N x N with
R(a, b) iff a < b. Some other partial orders are discussed in Section 5.2.2. The usual <
relation on numbers is called a fotal order since it also satisfies the property

Total order: For all a, b € A, either R(a, b) or R(b, a).

This is not generally true for partial orders. For example, the prefix order on strings
described in Exercise 5.2.4 is not a total order.

The set-theoretic representation of a function uses a special kind of relation. Before
defining this, let us recall the intuitive notion of function. Informally, a function from set
Ato B is some way of associating an element b of B with each element a of A. This could
take the form of an algorithm for computing b from a, or the function might be given by
some condition that could not be carried out by a computer.

In set theory, a function is identified with its graph, the set of pairs (a, b) such that the
value of the function on a is b. The graph of a function from A to B is a relation that
associates exactly one element of B with each element of A. More precisely, a function
f:A— Bfromset Ato Bisarelation f C A x B satisfying the following properties:

1.6 Set-theoretic Background 19

() VacA.dbeB.(ab)ef
(ii) YacA.¥Yb,b' € B.if (a,b)c fand{(a,b')c fthenb=1Db'

Condition (i) says that the function is defined on every a € A: for every a in A, there
exists some b in B that is the value of f on a. Condition (if) says that the function value
is unique for each a € A. The standard notation is to write f(a) for the unique b € B
with (a,b) € f. If f: A — B, then we say A is the domain of f and B is the range or
codomain.

Partial functions are important in computation since an algorithm for computing an
element of set B, for each a € A, might turn out not to halt for some a € A. We think
of such a rule as defining a partial function, which is like a function, but not necessarily
defined on all a € A. More precisely, a partial function f : A — B from set A to B is a
relation f € A x B satisfying the property (ii) above, but not necessarily (i). Trivially,
every total function from A to B is also a partial one. Exercises 1.6.4 and 1.6.5 show how
to regard partial functions as total functions by changing either the domain or range. Note
that we use an arrow — with a “partial” arrowhead to indicate that a function may be
partial. If f : A — B is a partial function and a € A, we write f (a) for the unique element
of b with (a, b) € f, if there is one. If not, then we consider f(a) undefined, and say that
the partial function f is undefined on a, or that a is outside the domain of definition of f.

Example 1.6.3 The recursive function expression
f(x:int) = if x =0 then 0 else x + f(x —2)

defines a partial function on the integers. If we think of executing a function defined in this
way on any number n, the result will be the sum of the even numbers up to n if n is even
and not negative. Otherwise, the computation should continue indefinitely in principle,
although most computers will terminate when the run-time stack is full or the smallest
representable negative integer is reached. If we ignore this problem with “overflow,” then
the partial function defined by this expression is the following set of ordered pairs

f=1{xy eintxint | x=2n>0andy=) 2i}

0<i<n
It is easy to check that this relation satisfies condition (ii) above, but not condition (i) for
odd numbers. -

Although we represent functions as sets of ordered pairs, we generally do not apply set-
theoretic operations like union or intersection to functions. An exception is the use of the
subset ordering on partial functions in Section 5.2.1.

20 Introduction

A useful operation on relations and functions is composition. Since functions and partial
functions are special cases of relations, it is simplest to define this operation on relations
first, and then see that the composition of two functions is always a function, and similarly
for partial functions. If we have two relations R C A x B and § € B x C, then we define
their composition So R € A x C by

SoR ¢ {{a,c)e AxC | Ibe B.{a,b) € Rand (b, c) € S}

In the case that these relations are functions f: A — B and S: B — C, this definition gives
us

gof ={ac)eAxC|c=g(f(a))

and similarly for partial functions as verified in Exercise 1.6.6.
Some standard properties of functions are that a partial or total function f: A — B is
one-to-one, sometimes written /-1, if

f(x)= f(y) implies x =y
and onto if
VYbe B.da GAf(a):b

In words, a function is one-to-one if it maps distinct elements of its domain to distinct
elements of its codomain and onto if every element in its codomain is the value of the
function on some argument. These concepts generalize to relations in the obvious way,
as noted in Exercise 1.6.6. Sometimes injective is used as a synonym for one-to-one and
surjective as a synonym for onto. A function that is both injective and surjective is called
bijective.

Exercise 1.6.4 Show that a relation f C A x B is a partial function f: A — Biff fisa
total function f : A’ — B on some subset of A’ C A.

Exercise 1.6.5 Let A and B be sets and assume oo is not an element of B. Show that
there is a one-to-one correspondence between partial functions A — B and total functions
A — (B U {o0}).

Exercise 1.6.6 Prove the following facts about composition of relations R € A x B and
SCBxC:

(a) If R and § are partial functions, then S o R is a partial function. Similarly for total
functions.

(b) If R and § are one-to-one relations, then S o R is one-to-one. Similarly for onto.
(Begin by generalizing the definitions of one-to-one and onto from functions to relations.

1.7 Syntax and Semantics 21

The idea remains that a relation is one-to-one if it relates distinct elements of its “domain”
to distinct elements of its “codomain” and onto if every element in its “codomain” is
related to some element of the “domain.”)

(c) For any additional relation T € C x D, we have T o (So R) = (T o S) o R. This is
called associativity of composition for relations (or functions).

1.7 Syntax and Semantics

1.7.1 Object Language and Meta-language

One fundamental idea in this book is the mathematical interpretation of syntactic expres-
sions. This is actually a familiar concept, from all of our basic math courses. When we
write an expression 3 + 5 — 7, we use symbols 3,5,7,4+ and — to denote a mathematical
entity, the number 1. What makes it confusing to talk (or write!) about the interpretation
of syntax is that everything we write is actually syntactic. When we study a programming
language, we need to distinguish the language we study from the language we use to de-
scribe this language and its meaning. The language we study is traditionally called the
object language, since this is the object of our attention, while the second language is
called the meta-language, because it transcends the object language in some way. With
this distinction in mind, we can describe the relation between the expression 3 4+ 5 — 7 and
the number it identifies more precisely. Specifically, in our meta-language for discussing
arithmetic expressions, let us use an underlined number, such as 1, to mean “the mathe-
matical entity called the natural number 1. Then we can say that the meaning of the object
language expression 3 + 5 — 7 is the natural number 1. In this sentence, the symbol 1 is a
symbol of the meta-language, while the expression 3 + 5 — 7 is written using symbols of
the object language.

1.7.2 Grammars

Grammars provide a convenient method for defining infinite sets of expressions. In addi-
tion, the structure imposed by a grammar gives us a systematic way of defining properties
of expressions, such as their semantic interpretation. This section summarizes basic prop-
erties of grammars, with parsing discussed briefly in the next section. In simple terms, the
main point of these sections is to show how we can use ambiguous grammars, without get-
ting bogged down in lots of details about parsing and ambiguity. The method we use, often
referred to by the phrase abstract syntax, takes parse trees, rather than strings, as the true
expressions of a language. We illustrate this use of grammars in Section 1.7.4 by giving
the semantics of a simple expression language.

22 Introduction

Consider the simple language of numeric expressions given by the grammar

e .:=nlet+ele—e
n ::=d|nd
d :=0]1[2]...]19

where e is what is called the start symbol, the symbol we begin with if we want to derive
a well-formed expression from the rules of a grammar. The way a start symbol is used is
that we begin with e, and continue to replace a symbol that occurs on the leftof a ::=

with one of the strings between vertical bars on the right until none of the nonterminals e,
n or d are left. (The symbols that appear in expressions are called terminals.) For example,
here are two derivations of well-formed expressions:

e = n — nd — dd — 2d — 25
e > et+e > et+te—e > ... > n+n—n — ... = 10+15-12

It is often convenient to represent a derivation by a tree. This tree, called the parse tree of
a derivation, or derivation tree, is constructed using the start symbol as the root of the tree.
If a step in the derivation is to replace s by x; ... x,, then the children of s in the tree will
be nodes labeled xi, ..., x,. The parse tree for 10 4+ 15 — 12 has some useful structure.
Specifically, since the first step yields e + e, the parse tree has the form

e/ j— \e
1|0 e/ l \e
| |

15 12

where we have contracted the subtrees for each two-digit number to a single node. What is
useful to note about this tree is that it is different from

7N,
e/l\e 1’2
]

10 15

which is another parse tree for the same expression. An important fact about parse trees is
that each corresponds to a unique parenthesization of the expression. Specifically, the first

1.7 Syntax and Semantics 23

tree above corresponds to 10 + (15 — 12) while the second corresponds to (10 + 15) — 12.
It is an accident that these expressions have the same numeric value. In general, the
value of an expression may depend on how it is parsed or parenthesized, as illustrated by
1-1-1.

A grammar is said to be ambiguous if there is some expression with more than one parse
tree. If every expression has exactly one parse tree, the grammar is unambiguous.

Exercise 1.7.1 Draw the parse tree for the derivation of 25 given in this section. Is there
another derivation for 25? Is there another parse tree?

1.7.3 Lexical Analysis and Parsing

Most compilers are structured into a series of distinct phases. In a standard compiler, the
first two phases are lexical analysis and parsing:

(program text) — | lexical analyzer | —> | parser |—> . .. rest of compiler . . .

Lexical analysis typically separates input characters into tokens and identifies the key-
words of the language (also called “reserved words”). Parsing determines whether the
program satisfies the conditions imposed by the context-free grammar of the language. In
the process, a syntactically correct program is converted from a linear sequence of sym-
bols to a tree representation. Although it is possible for the resulting tree to be the actual
parse tree of the input program, this is not necessary. What we generally want is a parse
tree for some related program, in a grammar that may be simpler. For example, if the input
program contains parentheses, these need not occur in the parser output, since parenthe-
sization is determined by the tree structure. Therefore, for the purposes of this book, we
will consider a parser to be an algorithm that takes a string generated by one grammar as
input and produces, as output, a parse tree for a possibly different grammar.

In programming language theory, we prefer to work with parsed expressions, instead of
text strings. The reason is that parsing resolves ambiguities that are routine and syntactic
and have nothing to do with more fundamental properties of programs. Just as compilers
are structured so that program analysis and code generation phases take parsed programs
as input, our mathematical treatment of programs works best if we assume programs are
already parsed.

The traditional terminology of the field is that programs are written according to a
concrete syntax, which specifies how expressions may (or must) be parenthesized, the
spelling of keywords, and so on. The output of parsing may be a parse tree for an abstract
syntax, which may be a grammar that does not include such things as parenthesization,
since this has been resolved by the parser. The parse tree for an expression, written in

24 Introduction

the abstract syntax, is called an abstract syntax tree. In programming language theory,
we write expressions in the usual way, but read these strings of symbols as if they are
shorthand for some abstract syntax tree.

Example 1.7.2 There are several reasonable ways to write arithmetic expressions. One
common variation is the position of the operand in an expression. In prefix expressions,
the operand comes first, while postfix expressions have the operand last, and infix in the
middle. These three choices are illustrated in the following three grammars.

p:i=0|1|4+pp|—pp (prefix expressions)
s 1:= 01]|ss+|ss— (postfix expressions)
i =011 E+D|E—1) (infix expressions)

Regardless of which we choose as concrete syntax, we can parse expressions to the ab-
stract syntax

e :=0|1l|let+ele—e

More precisely, given any prefix, postfix or infix expression, we can write a unique parse
tree in the fourth grammar that faithfully captures the syntactic structure and meaning of
the expression. For example, the expressions + — 111, 111 — 4 and (1 — 1) 4 1 are all
faithfully represented by the parse tree

7N,
SN
T

1 1

This would be the abstract syntax tree for each of these expressions.

Note that in prefix and postfix notation, parentheses are unnecessary. For example, the
prefix expression + — +0111 can only be parenthesized as +(—(+01)1)1 and the postfix
expression 010 4+ 4 can only be parenthesized as 0(10+)+. However, parentheses are
needed in the concrete syntax of infix expressions, since 1 — 1 4 1 can be parenthesized as
d-D+1lorl—=(141). .

The useful syntactic conventions of precedence and right- or left-associativity are illus-
trated briefly by example in the following exercise. For more information, the reader may
consult a compiler text such as [ASU86].

1.7 Syntax and Semantics 25

Exercise 1.7.3 A programming language designer might decide that expressions should
include addition, subtraction, and multiplication and write the following abstract syntax:

e :=0|1letele—elexe

(a) Explain why this is a perfectly reasonable abstract syntax for an expression language
but not (by itself) a good concrete syntax.

We can make parsing “unambiguous” by adopting parsing conventions. Specifically, a
plausible concrete syntax might be

e :=0|1|(e+e)|(e—e)|(exe)|ete|le—e|exe

combined with two parsing conventions that take effect when an expression is not fully
parenthesized. The first convention is that * has a higher precedence than + and —, which
have equal precedence. An unparenthesized expression e op; e op; e is parsed as if paren-
theses are inserted around the operator of higher precedence. The second convention is that
when identical operators, or operators of equal precedence, appear contiguously, the oper-
ations are associated to the left. This parses e op e op e as if it were (e op e) op e. Write
abstract syntax trees for the following expressions.

(b) 1—1x1.

() 1—-1+1.

(d) 1 =1+ 1—1+41if we give + higher precedence than —.
1.7.4 Example Mathematical Interpretation

We may interpret the expressions given in Section 1.7.2 as natural numbers using induction
on the structure of parse trees. More specifically, we define a function £ from parse trees to
natural numbers, defining the function on a compound expression by referring to its value
on simpler expressions. An historical convention is to write [[e] for any parse tree of the
expression e. When we write [[e; + e2]], for example, we mean a parse tree of the form

/N

el + e

with [e;] and [[e2]] as immediate subtrees.
Using this notation, we may define the meaning E[[e] of an expression e, according to
its parse tree [[e]), as follows:

26 Introduction

E01 =0
EMN =1
&9l =9
Elnd] =&[n] =10+ £ld]

Eller + ex]l = Eller] + Ellez]
Eller — el =Eller]l — Ellez]

In words, the value associated with a parse tree of the form [[e; + e3]], for example, is
the sum of the values given to the subtrees [[e;]] and [e;]l. Since these parse trees are
shorter than the parse tree [[e; + e2]] we may assume inductively that the function & is
already defined on [[e;]] and [e>]. This is the sense in which the definition of £ is “by
induction on the structure of (parse trees of) expressions.” For those uncomfortable or
unfamiliar with this form of induction, a summary of various forms of induction is given
in Section 1.8. On the right of the equal signs, numbers and arithmetic operations *, +
and — are meant to mean the actual natural numbers O, ..., 10 and the standard integer
operations of multiplication, addition and subtraction. In contrast, the symbols + and — in
double square brackets on the left of the equal signs are symbols of the object language,
the language of arithmetic expressions.

The main property to observe about this definition is that the meaning of a term depends
on how it is parsed. If we take the example 6 — 3 — 2, then we have two possibilities for
[6 — 3 — 2]. Both have the form [[e; — e2], but in one we have e; = 6 and in the other
e1 = 6 — 3. Using the first tree, we may work out the meaning of the term as

E6—-3-21=E&M61—E€03 —21
=6— (¢I31 - £€12D
=6—1

I
[t

In general, we will define the syntax of terms using ambiguous grammars, but use paren-
theses or syntactic conventions such as precedence or association to the left to identify the
intended parsing of each expression we write. In this view, using our example grammar
without parentheses, the parentheses in (1 — 1) 4 1 are not symbols of the object language,
but additional symbols that indicate a specific abstract syntax tree. This abstract syntax tree
represents the parenthesization of this expression by its tree structure.

1.8 Induction 27

1.8 Induction

This book contains many proofs by induction. The most common forms are induction on
the structure of expressions and induction on the length or structure of proofs. This section
explains these forms of induction and puts them in perspective by presenting some other
forms of induction, beginning with induction on the natural numbers. In the process of
covering induction on proofs, we also review some basic terminology and properties of
formal proof systems. While some readers may choose to review induction on natural
numbers and expressions immediately, the later topics in this section are more likely to
be useful as reference for later parts of the book.

There are many books with additional discussion of induction at approximately this
level, such as [AU92, Win93, MW90]. More thorough mathematical treatments of induc-
tive proofs and inductive definitions may be found in [Acz77, Mos74].

1.8.1 Induction on the Natural Numbers

A simple and intuitive way to think of induction on the natural numbers is that it is a
method for writing down an infinite proof in a finite way. Suppose we have a property
P that we would like to prove for every natural number. For example, P (n) might be the
simple property “n is either odd or even.” One way to prove P(n) for every #, if we had
an infinite amount of time and an infinite sheet of paper to write on, would be to write out
the proof of P(0), then write out the proof of P(1), then write out the proof of P(2), and
so on. This is not really feasible, but if it were, the result should certainly be considered
a proof. The value of induction is that it provides a simple way of demonstrating that if
we had infinite time and space, we could write down a proof of P(n) for every natural
number 7.
The most common form of induction on the natural numbers is this:

Natural Number Induction, Form 1: To prove that P(n) is true for every natural number
n, it is sufficient to prove P (0) and to prove that for any natural number m, if P (m) is true
then P(m + 1) must also be true.

The proof of P(0) is called the base case and the proof that P(m) implies P(m + 1)
is called the induction step. When we assume P (m) in order to prove P(m + 1) in the
induction step, this assumption is called the induction hypothesis. Sometimes natural-
number induction is presented using a template like this:

Goal: Prove P(n) for every natural number n.

Base case: Prove P(0).

28 Introduction

Induction step: Prove that for any natural number m, if P(m) then P(m + 1).

It is easy to argue that if we can prove the base case and the induction step, then we could
in principle write out the proof of P(n) for every natural number n. We would begin by
writing the base case at the top of our infinite sheet of paper. Then, since P(0) implies
P (1), we can use the fact that we have already proved P(0) to prove P(1). Now we have
a proof of P(0) and a proof of P(1). Repeating this idea, we can use the proof of P(1) to
write out a proof of P(2), then the proof of P(2) to write out a proof of P(3), and so on
indefinitely, eventually proving P(n) for each n. Since the base case and the induction step
are all that we needed to construct this “infinite proof,” the base case and induction step for
P certainly must imply P(n) for every natural number n. In other words, induction is an
intuitively sound (correct) proof method for establishing facts about the natural numbers.
It is not clear that every “infinite proof” can be captured by an inductive argument, but the
reader should be ready to believe that when we have a proof by induction, the conclusion
must be true. We give a very simple example to illustrate the method.

Example 1.8.1 There is a story claiming that as a young child, the mathematician Gauss
derived the formula

Z":izn(n;l)

i=1

for the sum of the first n integers greater than 0. Gauss apparently figured this out when
his teacher gave him the tedious chore of adding up the first hundred numbers, presumably
in an attempt to keep him quiet. If we let sum(n) =Y ;_, i be the sum of the first n
numbers, then we can easily prove by induction that for every natural number n, sum(n) =
n(n 4 1)/2. For clarity, we use the template above.

Goal: Prove sum(n) = n(n 4 1)/2 for every natural number n.
Base case: We must prove sum(0) = 0(0 + 1)/2. This is an easy calculation.

Induction step: 'We must show that for any natural number n, if sum(n) =n(n + 1) /2 then
sum(n + 1) = (n + 1)(n + 2) /2. We therefore assume that sum(n) = n(n + 1)/2 for some
(arbitrary) natural number, n, and show that this holds for the next natural number, n + 1.
Since the sum of the first n 4+ 1 numbers is just the sum of the first n, plus n + 1, we have
sum(n + 1) = sum(n) + (n + 1). We may now apply the induction hypothesis, namely,
sum(n) =n(n + 1)/2. This gives us

sum(n + 1) =summn) +(n+1)=nn+1)/24+ (n+ 1),

which completes the proof since it is an easy calculation to show that n(n + 1)/2 + (n +
D=0+ 1n+2)/2 n

1.8 Induction 29

There is an equivalent form of natural number induction that has a stronger-looking
induction hypothesis. This may also be understood by thinking about infinite proofs. If
we have written proofs of P(0), P(1), ..., P(n) and our next task is to write out the proof
for n + 1, then we should be able to use all of the facts P(0), P(1), ..., P(n), not just
P (n). This leads to a second form that may be easier to use in some cases.

Natural Number Induction, Form 2: To prove that P (n) is true for every natural number
n, it is sufficient to prove that for any natural number m, if P (i) is true for all i < m, then
P (m) must also be true.

In this form of induction, there is no base case, only an induction step. In the induction
step, we assume that P (i) is true for all i < m, which is again called the induction hy-
pothesis, and show that P(m) is true. In practice, we often treat the special case m =0
separately since there are no natural numbers less than 0. The second form of natural-
number induction is sometimes called strong induction or complete induction, but from
a logical point of view there is nothing stronger or more complete about it than the first
form.

Example 1.8.2 The second form of natural-number induction is more convenient for
proving that every natural number greater than 1 is the product of primes. The reason
is that when we factor a number n > 1 that is not prime, we generally get numbers that
are less than n — 1. Therefore, it is useful to have an induction hypothesis that covers all
numbers less than n. (We say a natural number is composite if it is the product of two
natural numbers greater than 1, and prime otherwise.)

Let P be the property

P(n) & if n > 1 then there exist prime numbers py, ..., px Withn = py... px.

Using the second form of induction, it suffices to show, for arbitrary m, if P(i) for all
i < m then P(m). Let m be any natural number. If m < 1, or m is prime, then it is easy to
conclude P(m). In the remaining case, m must be the product of two numbers, m = mmo,
with both m; and m; greater than 1. The induction hypothesis is that P (i) is true for all
i <m. Since my, my < m, it follows immediately from the induction hypothesis that m
and m; are both products of primes. Therefore m must also be a product of primes. Thus,
by the second form of induction, we may conclude that every number greater than 1 is
the product of primes. The reader may enjoy trying to prove this using the first form of
induction. .

It is worth taking the time to show that even though the second form of induction may
look more powerful, the first form of natural number induction implies the second. Let
us assume that the first form of induction holds for every property of the natural numbers

30 Introduction

and that, for some property P, we can prove that if P (i) is true for all i < m then P(m).
We will show Vn. P(n) using only the first form of induction. The trick is to let Q be the

property
O(m) & foralli <m, P(i).

By the first form of induction, we can show Yn. Q(n) by showing the base case, Q(0),
and the induction step, Vm. (Q(m) D Q(m + 1)). Since there are no natural numbers less
than 0, the base case is true, regardless of the property P. Therefore, we need only show
the induction step, Q(m) O Q(m + 1) for every m. By definition of Q, Q(m) means for
alli <m, P(i) and Q(m + 1) means for all i <m + 1, P(i). However, the only number
covered by Q(m + 1) that is not already covered by Q(m) is P(m). Consequently, all we
need to show is that if P (i) for all i < m, then P (m). But this was our original assumption
about the property P. Therefore, the first form of induction implies the second. It is left to
the reader, as Exercise 1.8.4, to show the converse.

Natural-number induction can also be used to prove properties of elements of other sets,
using functions into the natural numbers. For example, we may establish some property
of trees using natural-number induction on the size or height of trees. This is illustrated in
Example 1.8.3 below. In more general terms, we can apply natural-number induction to a
set A using any function f: A — A. (Of course, one function from A to A/ might make
it possible to prove the property we are interested in while another function might not.)
Using a function f: A — N, we can convert a property P of elements of A into a property
on the natural numbers by defining

Q) € Yae A.if f(a) = n then P(a)

If we want to prove P(a) for every a € A, then since f maps every element of A to some
natural number, it suffices to prove Q(n) for every natural number n. If we use the first
form of natural-number induction, then in the base case we must prove P (a) for all @ with
f(a) = 0. In the induction step, we assume P (a) for all a with f(a) = n and prove P (a)
for all a with f(a) = n + 1. This general idea is used in Exercise 1.8.5.

Example 1.8.3 We illustrate natural-number induction on the height of trees. For the
purposes of this example, a binary tree is either empty, a leaf or an “internal node” with
two subtrees. Some examples are shown in Figure 1.1. The first, (a), is a single leaf, the
second, (b), an internal node with two subtrees and the third, (c¢), consists of an internal
node with two subtrees, one of them empty. The height of a tree is the length of the longest
path from an internal node downward to a leaf. The tree (@) in Figure 1.1 has height 0, tree
(b) height 1, and tree (¢) height 2. Note that this definition gives both an empty tree and a
single leaf height 0.

1.8 Induction 31

[]

(a) (b) (©

Figure 1.1
Binary trees.

We will prove that the number of leaves of any binary tree is at most one plus the number
of internal nodes, using natural-number induction on the height of trees. More specifically,
we define the property P of binary trees by

P(t) ¥ tree r has at most one more leaf than internal nodes.

Using the function height : Trees — N/, we formulate the following property Q of natural
numbers:

Q(n) & Vitreest, if height(t) = n then P(¢).

We will prove Vn. Q(n) using the second form of natural-number induction since the two
subtrees of an internal node may have different heights.

Let n be any natural number. We assume that for any i < » and any tree ¢, if height(t) =
i then P(z). We must show that for all trees 7, if height(¢t) = n then P(z).

We first consider the special case # = 0. Since there is no natural number i < 0, we must
prove directly that if height(¢t) = O then P(t). However, this is easy to do. There are two
trees with height 0, the empty tree and a single leaf. In each case, the number of leaves is
clearly no greater than 1. This completes the proof for the special case n = 0.

If n > 0, then any tree ¢ of height # must consist of an internal node with two subtrees, |
and 1. Since the heights of | and #, are both less than n, we may assume P(t;) and P(z;).
The number of leaves of ¢ is the sum of the leaves of the two subtrees, while the number
of internal nodes is one greater than the sum of the internal nodes. Writing leaves(s) for
the number of leaves of tree s and nodes(s) for the number of internal nodes, we therefore
have

leaves(t) = leaves(t)) + leaves(tp) < nodes(t;) + 1 + nodes(t2) + 1 = nodes(t) + 1.

This completes the proof that the number of leaves of any binary tree is at most one plus
the number of internal nodes. [

32 Introduction

Exercise 1.8.4 Prove that the second form of natural-number induction implies the first.
More specifically, assume that for some property P, we know that for all m, if P(m) then
P(m + 1). Use the second form of natural-number induction to prove that P (n) is true for
every natural number 7.

Exercise 1.8.5 We can prove P (n) for all of the positive and negative integers (including
0) using a form of “integer” induction. Specifically, we show P(0) as the base case and,
as the induction step, show that P(n) implies both P(n — 1) and P(n + 1). Explain intu-
itively why this makes sense and prove that this principle follows from either the first or
the second form of natural-number induction given in this section.

1.8.2 Induction on Expressions and Proofs

As illustrated in Example 1.8.3, we can use natural-number induction to prove proper-
ties of trees (or other objects), as long as we have a way of associating a natural number
with each tree. We can also formulate independent induction principles for trees and cer-
tain other mathematical objects. The important property, as characterized mathematically
in Section 1.8.3, is that we must be able to arrange the objects in some order such that
each object occurs at most a finite number of steps above some minimal object. Intuitively,
this kind of ordering would allow us to write out a form of infinite proof, eventually cov-
ering each object we are interested in. For the examples we consider, our direct induction
principles can be derived from natural-number induction. Or, conversely, we can consider
natural-number induction a special case of the more general principle.

Induction on Expressions
As illustrated in Section 1.7, we often define sets of expressions using grammars. Let us
use the grammar

e :=0|1|v]et+el|lexe

as an example, where we assume that there is an infinite set V of variable symbols, and v
in this grammar means that any element of V is an expression. The expressions generated
by this grammar are precisely the strings that have a derivation or, equivalently, a parse
tree, as explained in Section 1.7.2. Some examplesare 0 + 1 *x + yand x +x + x + y,
assuming x, y € V. Since every expression has a parse tree, we can prove facts about
expressions using induction on the height of parse trees, following the pattern illustrated
in Example 1.8.3. More specifically, if P is a property of expressions, we can define a
property Q of natural numbers by

Q(n) & Vitreest. if height(t) = n and ¢ is a parse tree of e then P(e)

1.8 Induction 33

Notice that this is a sensible property of natural numbers even when some expressions
may have more than one parse tree. An alternative that often leads to cleaner proofs is to
use a separate form of induction for expressions. We will explain this form of induction by
considering the essential steps of an inductive proof using the natural numbers.

Suppose we begin with a property P on trees and define an associated property Q on
the natural numbers as above. If we use natural-number induction to prove Vn. Q(n),
then we will have to prove P directly for parse trees of height zero. For parse trees of
height at least one, we can assume P for any expression with a shorter parse tree. For our
example grammar, this means that for 0, 1 or a variable v, we must prove P directly. For a
compound expression of the form (e; + e2) or (e * e2), we could assume that P holds for
subexpressions e; and e;. Stating this generally for any grammar, we have the following
form of induction on the structure of expressions:

Structural Induction, Form 1: To prove that P (e) is true for every expression e generated
by some grammar, it is sufficient to prove P(e) for every atomic expression and, for any
compound expression e with immediate subexpressions ey, ..., ek, prove that if P(e;) for
i=1,...,k, then P(e).

For the example grammar above, this gives us the following template:
Goal: Prove P(e) for every expression e.
Base cases: Prove P(0), P(1) and P (v) for any variable v.

Induction steps: Prove that for any expressions e; and ez, if P(e;) and P(ez) then P(e; +
e7) and P(ey * e2).

We have three base cases since there are three forms of atomic expressions without subex-
pressions, and two induction steps since there are two compound expression forms.

Example 1.8.6 We illustrate structural induction on expressions by proving that every
expression given by the grammar above defines a multi-variate function bounded by a
certain form of polynomial. More specifically, let P be the property of expressions

P(e) ¥ “for any list vy, ..., v, of variables containing all the variables in e, there is a
polynomial cv’é v’l‘ e vf,, such that for all natural number values of vy, ..., v, greater than

0, the value of e is less than the value of the polynomial.”

We show that for every expression e, we have P(e), by induction on the structure of
expressions. For clarity, we present this using the template above.

Goal: Prove P(e) for every expression e.

34 Introduction

Base cases: Prove P(0), P(1) and P(v;) for any variable v;. These are immediate since
0 < wvgvy...vpn, 1 <2vgvy...v, and v; < 2vgvy ... vy, for any values of vy, ..., v, greater
than 0.

Induction steps: Prove that for any expressions e and €', if P(e) and P(¢’) then P(e + ¢€')
and P(e*¢'). Let vy, .. ., v, be alist containing all the variables in e and ¢’. Our induction
hypothesis implies that there exist polynomials cv’(j .. vﬁ and ¢’ vé‘/ e vﬁ/ that are greater
than or equal to the values of e and €', respectively, for all natural number values of
vo, . . ., Uy greater than 0. For the compound expression e + ¢’, we can establish P (e + ¢')
using the polynomial

r r
(c+ c/)v(r)nax(k‘k) .. pMmaxk.K)

and for e * ¢’ the polynomial

7. (k4K (k+K")
cc v, LUy,

This completes the inductive proof.]

Although the difference is not usually emphasized as much as for natural-number induc-
tion, there is a second form of structural induction that includes all subexpressions in the
induction hypothesis.

Structural Induction, Form 2: To prove that P(e) is true for every expression ¢ generated
by some grammiar, it is sufficient to prove that for any expression e, if P(e’) for every
subexpression €’ of e, then P (e).

The difference between Form 1 and Form 2 is that in the second form, the induction
hypothesis includes all subexpressions, not just the immediate subexpressions. (For the
expression x + (y + z), the immediate subexpressions are x and y + z; the variable y is a
subexpression but not an immediate subexpression.)

We can regard each form of natural-number induction as a special case of the corre-
sponding form of structural induction. Specifically, consider the grammar

n ::= 0] succn

where intuitively the successor succn of n is n 4 1. Every natural number can be written
down using this grammar, and the two forms of induction on expressions give us exactly
the two forms of natural-number induction.

Induction on Proofs
The main ideas behind induction on the structure of proofs are essentially the same as
for induction on the structure of expressions. In many respects, both are really forms of

1.8 Induction 35

induction on trees. Before stating induction on the structure of proofs, we review some
basic concepts common to the most common form of proof systems.

A Hilbert-style proof system consists of axioms and proof rules. An axiom of a proof
system is a formula that is provable by definition. An inference rule asserts that if some
list of formulas is provable, then so is another formula. A proof, therefore, is a structured
object built from formulas according to constraints established by a set of axioms and
inference rules. Proofs are described more fully below.

Axioms and inference rules are generally written as schemes, representing all formulas
or proof steps of a given form. For example, the reflexivity axiom for equality

e=e¢e (ref)

is called a “scheme with metavariable e”. This axiom scheme asserts that every equation of
the form e = e is an axiom. In particular, x = x, y = y and 3 = 3 are axioms, provided that
x, y and 3 are all well-formed expressions of the language we have in mind. An inference
rule scheme generally has the form

Al ... Ay
B

meaning that if we have proofs of formulas of the form Ay, ..., A,, then we can combine
these to obtain a proof of the corresponding formula B. For example, the inference rule for
transitivity of equality is written
fgze a2=a (trans)
€r=e3

This means that if we have a proof of 3 + 5 = 8 and a proof that 8 = 23, for example, then
we can combine these two proofs to form a proof of the equation 3 + 5 = 23. Technically,
the formulas above the horizontal line are called the antecedents of the proof rule, and the
formula below the line the consequent.

Formally, a proof can be defined as a sequence of formulas, with each formula either
an axiom or following from previous formulas by a single inference rule. This formal
definition of proof is often useful; it lends itself to arguments by natural-number induction
on the length of the proof (i.e., the length of the sequence). An alternate view is often
more insightful, however. Since an inference rule generally has a list of antecedents and
one consequent, it is easy to visualize a proof as a form of tree with leaves and internal
nodes labeled by formulas. More specifically, we think of each axiom as a possible leaf
and each inference rule
Al ... Ay

B

36 Introduction

as a possible internal tree node whose subtrees must be proofs of Ay, ..., A,. Since this
preserves the ordinary orientation of inference rules, it is common to draw proof trees
with the trunk or root at the bottom. Thus if we construct a proof of B from proofs of
Ay, ..., A,, we would draw the resulting tree in the form

B

where each of the triangular shapes above the line represents a proof tree whose conclusion
is one of the antecedents of the proof rule. One useful consequence of thinking of proofs
as trees is that it suggests a form of induction that is essentially the same as induction on
the structure of trees.

If we use induction on the height of trees as in Example 1.8.3, the base case establishes
the property for each axiom. The induction step will be to assume that the property holds
for any shorter proof, and establish the property for a proof ending in an inference rule.
This leads to the following form of structural induction on proofs:

Structural Induction on Proofs: To prove that P(rr) is true for every proof 7 in some
proof system, it is sufficient to show that P holds for every axiom of the proof system and
then, assuming that P holds for proofs 7, . .., 4, prove that P(;r) for any proof that ends
by extending one or more of the proofs my, ..., mx with one inference rule.

Example 1.8.7 We will illustrate induction on the structure of proofs using a simple
proof system for inequalities e < ¢’, where e and €’ are generated by the example grammar

e :=0]1]v]et+e|exe

also used above. The proof system has two axioms, one stating that < is reflexive

e<e (refl)
and the other that 0 is less than any other expression.

O<e 0=

There is a transitivity inference rule and two additional inference rules giving monotonicity
of addition and multiplication.

1.8 Induction 37

— — trans

e<e’ ()

€1 ey e3=ey (+-mon)
ej+e3<ertey

e1<ey e3=<e4 (kmon)

erxe3<ej)*xey

This is a relatively weak proof system for the ordinary ordering on natural numbers.
However, it is sufficient to illustrate some basic ideas.

A very common property to establish for a proof system is that every provable formula is
true (under some specific interpretation of formulas). This is called soundness of the proof
system. We illustrate induction on the structure of proofs by proving soundness of our
example proof system for <, interpreting arithmetic expressions over the natural numbers
in the usual way. More precisely, we show that the property

P(r) ® if 7 is a proof of e < ¢’ then for all values of variables,

the value of e is < the value of ¢’

holds for every proof 7 in our system. In other words, if we can prove a formula, then the
formula is true, for all possible values of the variables that occur in the formula.

The base cases are to establish the property P for each of the axioms. This is easy.
Whatever values we give to the variables occurring in an expression e, the value of e is
some specific natural number. Therefore, we always have e < e and 0 < e.

There are three induction steps. We show the cases for (+mon) and (xmon) and leave
the case for (trans) to the reader. Suppose that we may prove inequalities e; < e; and
e3 < e4. Let us pick values for the variables that occur in e, . .., e4 and call the resulting
values of the expressions ny, ..., ns. By the inductive hypothesis, we have n| < n; and
n3 < ng. It is easy to see that therefore n| + n3 < ny + n4 and similarly n| * n3 < ny * ny.
Since this reasoning applies for all possible values of the variables, the property holds for
proofs ending in (+mon) and (xmon). Since the (trans) case is given as Exercise 1.8.10,
this concludes the inductive proof. n

The proof system in Example 1.8.7 is not only useful for proving inequalities that are
true for all values of the variables, but also for proving inequalities that follow from addi-
tional assumptions. Such additional assumptions are sometimes called nonlogical axioms.
Intuitively, these are assumptions that are true about a certain situation, but not always
true. For example, if we assume that 1 < x and x <5, we could prove that (under these

38 Introduction

assumptions) 1 + x < x + 5 using (+mon). This idea also applies to other proof systems,
of course. In general, a proof from assumptions or proof from nonlogical axioms is a proof
tree as described above, with each leaf either a (logical) axiom of the proof system or a
nonlogical axiom (one of the given assumptions) and each internal node an inference rule
of the proof system.

Exercise 1.8.8 Consider the set of variable-free expressions given by the following
grammar:

e ::=0|2]e+e|exe

where + is interpreted as addition and * multiplication, as usual. Use induction on the
structure of expressions to show that the value of every expression produced by this gram-
mar is an even number.

Exercise 1.8.9 We can apply structural induction to trees if we think of them as gener-
ated by the grammar

t ::= nil|leaf | node(t,t)

Use structural induction on trees (with two base cases and one induction step) to prove that
the size of a binary tree is at most 2", where 4 is the height of the tree.

Exercise 1.8.10 Prove the (trans) case of the induction on proofs given in Example 1.8.7.

Exercise 1.8.11 Use induction on the structure of proofs to show thatif e < ¢’ is provable
(using the axioms and rules given in this section), then ¢’ is at least as long an expression
(counting symbols) as e. Use the form of inductive proof illustrated in Example 1.8.7.

1.8.3 Well-founded Induction

All of the forms of induction we have discussed so far are instances of a general form of
induction on what are called “well-founded relations.” Although it is seldom necessary to
appeal to the general form of well-founded induction, this is occasionally the best way to
carry out a proof. Well-founded relations are also important in computer science for their
connection with termination of programs (see Section 3.7.3).

A well-founded relation on a set A is a binary relation < on A with the property that
there is no infinite descending sequence ag > a; > a3 > - --. An example is the relation
i <jif j =i+ 1 on the natural numbers. As this example illustrates, a well-founded
relation does not have to be transitive. It is easy to see that every well-founded relation

1.8 Induction 39

is irreflexive, i.e., we do not have a < a for any a € A. The reason is that if a < a, then
there is an infinite descending sequence a > a > a > - - -.

An equivalent definition is that a binary relation < on A is well-founded iff every
nonempty subset B of A has a minimal element, where a € B is minimal if there is no
a’' € B with a’ < a. This is proved in the following lemma.

Lemma 1.8.12 Let < be a binary relation on set A. Then < is well-founded iff every
nonempty subset of A has a minimal element.

Proof Suppose that < is a well-founded relation on A and let B C A be any nonempty
subset. We will show that B has a minimal element. The easiest way to do this is to argue
by contradiction. If B does not have a minimal element, then for every a € B we can find
some @’ € B with a’ < a. But in this case, we can construct an infinite decreasing sequence
ap > a) > ap > ... starting with any ag € B and using the fact that no g; can be minimal
since B has no minimal element. This proves the first half of the lemma.

For the converse, suppose that every subset has a minimal element. Then there can be
no infinite decreasing sequence agp > a; > a2 > ... since such a sequence would give us a
set {ag, a1, az, . . .} without a minimal element. This completes the proof. n

Proposition 1.8.13 (Well-founded Induction) Let < be a well-founded binary relation
on set A and let P be some property on A. If P(a) holds whenever we have P (b) for all
b < a, then P(a) is true foralla € A.

Proof Suppose that for every a € A, we have P(a) if P(b) for all b < a. (In symbols,
we are assuming Va. (Vb. (b < a D P(b)) D P(a)).) We will show that P(a) holds for all
a € A by contradiction. If there is some x € A with =P (x), then the set

B={acA | —-P(a)}

is nonempty. Therefore, by Lemma 1.8.12, the set B must have a minimal element a € B.
But since we therefore have P(b) for all b < a, this contradicts the assumption Vb. (b <
a D P(b)) D P(a). This proves the proposition. n

Table 1.1 lists the well-founded relation associated with each form of induction we have
already considered. A property of well-founded relations that is easy to establish is that
the transitive closure of any well-founded relation is also well-founded. This is helpful in
understanding the parallel between the two forms of natural-number induction and the two
forms of structural induction. In both cases, the well-founded relation giving rise to the
second form is just the transitive closure of the relation associated with the first form of
induction.

40 Introduction

Table 1.1

Well-founded relations for common forms of induction.

Form of Induction Well-founded Relation

Natural number induction, Form 1 m=<nifm+1=n

Natural number induction, Form 2 m<nifm<n

Structural induction, Form | e < ¢ if e is an immediate subexpression of e’

Structural induction, Form 2 e < ¢’ if e is a subexpression of e’

Induction on proofs 7 < n’ if w is the subproof for some antecedent of the last

inference rule in proof =’

In each of the examples in Table 1.1, it is easy to see that the listed relation is in fact
well-founded. For example, since each subexpression is shorter than the expression that
contains it, there can be no infinite sequence of successively smaller subexpressions.

A useful class of well-founded relations that are more complicated than the ones in
Table 1.1 are the lexicographical orderings. These are essentially dictionary-like orderings
on sequences drawn from some ordered set. For simplicity, we just consider orderings on
sequences of natural numbers.

A natural ordering on pairs of natural numbers is

(n,m) < (n’,m") iff n<nor(n=n"andm <m’)

In words, we say one pair is less than another if either the first (or “most significant”)
numbers are ordered, or, if the first numbers are the same, the second numbers are ordered.
If we only consider the single-digit numbers 0, . . ., 9 and think of a pair (n, m) as the two-
digit numeral nm, then this is the ordinary numeric ordering.

It is a little tricky to see that the relation < on pairs of natural numbers is well-founded.
We will argue that there is no infinite decreasing sequence. The trick is to arrange any
decreasing sequence of pairs in a two-dimensional array, moving down when the first el-
ement decreases and across when the second decreases. Illustrated with specific numbers,
the idea is to arrange any decreasing sequence like this:

(5,6) > (5,5)
> (4,50) > (4,40) > (4,30)
> (3,300) > (3, 250)
> (2,500) > (2,450) > (2,449) > (2,448)

For any decreasing sequence, we can see that no row can be infinite, since there is no
infinite decreasing sequence of natural numbers. Therefore, if the table is going to be

1.8 Induction 4]

infinite, there must be infinitely many rows. But this is impossible since the first number
must decrease each time we go down to another row.

We can generalize this ordering on pairs, which is technically called w?, to orderings on
triples, sequences of length 4, and so on. We can also extend this ordering to sequences of
differing lengths. Writing sequences of natural numbers in the form (ny, na, ..., ng), we
define the more general ordering by

k < {€or
(ny,na,...,n) < {my,ma,...,mg) iff k = ¢ and 3i < k with
nj=mjfor j <iandn; < m;

In words, we first order sequences by length. Then, for sequences of the same length, we
use the natural generalization of the ordering on pairs above, comparing numbers from left
to right until two differ. It is a bit harder to draw an “infinite dimensional matrix” showing
that this order is well-founded, but the idea is essentially similar to the argument given for
the pair ordering above.

Example 1.8.14 We illustrate well-founded induction by proving a “normalization prop-
erty” of proofs in the system of Example 1.8.7. This example may seem contrived, but it
actually corresponds quite closely to the kinds of reasoning about typing derivations and
subtyping derivations that appear occasionally in later chapters of the book. The property
we will prove is that if there is a proof of an inequality, possibly from some set of assump-
tions (as described at the end of Section 1.8.2), then there is a proof of the same inequality
that does not use (frans) after two uses of (+mon). (The same property also holds for
(xmon) but we will not take the time to show this.) This is best illustrated by example. If
we assume x < y < zand x’ < y’ < 7, then we can prove x + x’ < z + 7' in two ways. The
first,

x<y x'<y y<z y <7
x+x'<y+y y+y <z+4+7
x+x'<z+4+7

has two uses of monotonicity of +, before transitivity while the second

x<y y<z x'=y y=Z
X —<_ ZI xl S Zl
x+x'<z+7
has two uses of (trans) first, followed by (+mon). We will show that we can eliminate all
occurrences of the first pattern of proof steps from any proof. The reason we might want to
do this is that it makes it easier to search for proofs of an inequality. The general principle

42 Introduction

is that if we know that any provable formula has a proof of a certain form, then we can
decide whether a formula is provable by looking for proofs of this certain form.

In outline, our inductive argument will proceed by showing that if a proof has two
uses of (4+mon) before (trans), then we can eliminate this pattern of three steps in fa-
vor of two uses of (trans) followed by (4+mon). However, in order for this argument
to be correct, we must have an inductive hypothesis that applies to the proof produced
by this transformation. Since the result of the proof transformation has the same num-
ber of proof rules, we cannot use induction on the structure, length or number of proof
steps in the proof. In addition, we cannot use induction on the number of patterns that
we are trying to eliminate, since our proof transformation moves transitivity toward the
leaves, and may introduce new patterns of the form we are trying to eliminate. We could
try to do some form of induction on the number of uses of (4+mon) in the proof, which
seems to involve some case analysis on the way in which these rules occur. However, the
problem may be solved very simply by defining an appropriate well-founded relation on
proofs.

We will order proofs by assigning a sequence of numbers to each proof and ordering
these sequences lexicographically. For any proof 7, we calculate the degree deg(m) of
7 as follows, First, for each pattern of two uses of (4mon) before (trans), we count the
number of +’s occurring in each of the expressions in the conclusion of (trans). If the
two expressions differ in the number of +’s, we can just take the maximum of the two
numbers. Call this number the measure of this pattern of steps. Now, for each measure up
to the maximum measure occurring, count up the number of patterns with this measure
and sort this sequence of counts (some possibly zero) in order of decreasing associated
measure. This sequence of numbers will be our “degree” of the proof. With this form of
induction, we can easily carry out the proof. The reason why this works is that whenever
we replace two uses of (4+mon) before (trans) in favor of two uses of (trans) followed by
(+mon), we reduce the measure of any new pattern of two uses of (+mon) before (¢trans)
that is created.]

Exercise 1.8.15 A string s over alphabet X is a finite sequence of elements of ¥. In
this problem, we use capitals of the ordinary (Roman) alphabet, so that any string s can
be written s = aja; . . . ar where each g; is one of the twenty-six letters A, B, C, ..., Z. A
special case is the empty string, written €. Three relations on strings are given below, two
well-founded and the other not. For each well-founded relation, give a short explanation of
why it is well-founded. For the relation that is not well-founded, give an infinite decreasing
sequence.

(a) Relation < is the ordinary alphabetic order on strings (the “dictionary” ordering).

1.8 Induction 43

This is characterized by the following two axioms.
e<1s iff s#e
ais <y apt iff aj comes before a; in the alphabet, or
[a; = ap and s < t]
(b) The second relation orders strings by length:
ay...ap<pby...by iff k<U¥.

(c) The third relation, <3, combines the previous two by using < on strings of different
length, and < on strings of the same length.

ay...ag<3by...by iff k<forlk=4Landa)...a;<1b;...b¢]

2 The Language PCF

2.1 Introduction

This chapter presents a language for Programming Computable Functions called PCF,
originally formulated by Dana Scott in an influential unpublished manuscript [Sco69]. It is
a typed functional language based on lambda calculus. The language is designed to be eas-
ily analyzed, rather than as a practical language for writing large programs. However, with
certain extensions to the surface syntax, it is possible to write many functional programs
in a comfortable style. The presentation of PCF here is informal in the sense that we will
discuss the constructs of the language, and the axiomatic, operational and denotational se-
mantics, without going into the proofs of basic theorems. The main topics of the chapter
are:

* Introduction to syntax and semantics of typed lambda calculus and related languages by
example.

* Treatment of recursive definitions by fixed-point operators.

* Discussion of axiomatic, operational and denotational semantics, with a summary of the
relationships between them.

* Demonstration that basic programming methods may be carried out in a simplified func-
tional language.

* Study of expressive power and limitations of the language using operational semantics.

The main goals are to develop a feel for the programming capabilities of lambda-
calculus-based languages and summarize general properties and techniques that apply to
a variety of languages. Operational semantics are considered in more depth than denota-
tional semantics, since later chapters focus on the denotational and axiomatic semantics.
We discuss “programming techniques” at some length, to give some intuition for the way
that familiar programming constructs may be represented in lambda calculus and prove
both positive and negative results about the expressiveness of PCF. The chapter concludes
with a brief overview of extensions and variations of PCF that have either practical or the-
oretical significance. The technical theorems about PCF that are not proved in this chapter
are proved in Chapters 5 and 8, as special cases of more general results.

For those familiar with denotational semantics, we point out several differences between
the use of lambda calculus in this book and the traditional use of lambda calculus in de-
notational semantics. One is typing. The meta-language in standard texts on denotational
semantics, such as [Gor79, MS76, Sch86, Sto77], is not explicitly typed. In contrast, we
use only typed lambda calculus. This clarifies the kind of value each expression defines,
and simplifies the technical analysis in several ways. Another difference is that we regard
PCF itself as a language for writing programs, rather than solely as a meta-language for

46 The Language PCF

giving semantics to other languages. One reason for this approach is to develop some intu-
ition for the expressive power of typed lambda calculus. Another is to suggest that lambda
calculus may be used not only for denotational semantics, but for studying operational and
pragmatic issues in programming language analysis and design.

The evaluation order used in PCF is lazy or left-most. This is the evaluation order used in
the pure functional programming languages Haskell [HF92, H"92] and Miranda [Tur85].
(See [Pey87] for information on the implementation of lazy functional languages.) In con-
trast, the languages Lisp [McC60, McC78, Ste84] and ML (Mil85a), MTH90, MT91,
Ull94] use an eager form of evaluation. While most practical languages use eager eval-
uation, there are some advantages (as well as disadvantages) to developing a basic theory
using lazy evaluation. To a first approximation, the choice between evaluation orders is a
matter of taste. Since we can simulate eager reduction in a lazy language, and conversely
[Plo75], the reduction systems are theoretically equivalent. The denotational semantics
are also interdefinable, although there are some simplifications in the eager case. On the
other hand, the axiomatic semantics of eager languages seem more complicated. The main
reasons we prefer to study lazy PCF in this book are that this gives the simplest corre-
spondence between axiomatic, operational, and denotational semantics, and also the most
flexibility in operational semantics since we have equivalent deterministic, nondetermin-
istic and parallel forms of program execution. The theory is also older and more fully
developed. Since similar techniques apply in both cases, the ideas described in this book
are useful for analyzing both forms of evaluation. A general setting for considering both
evaluation orders is the extension of PCF with lifted types, described in Section 2.6.4.

2.2 Syntax of PCF

2.2.1 Overview

Every expression of PCF has a unique type. Therefore, we may summarize the constructs
of PCF by listing the types of the language. The basic values are natural numbers and
booleans (truth values true and false), which have types nat and bool, respectively. PCF
also has pairs, which belong to cartesian product types, and functions, belonging to func-
tion types. The PCF notation for the cartesian product of types o and 7 is o x t. For
example, the type of natural number pairs is written nat x nat. The type of a function
with domain o and range t is written 0 — 7. Some notational conventions regarding type
expressions are that — associates to the right, and x has higher precedence than —. Thus
o — T — p is parenthesized as 0 — (t — p),and o X T —> p as (0 X 7) —> p.

One property of PCF is that only expressions that satisfy certain typing constraints are
actually considered part of the language. For example, although PCF has addition, the

2.2 Syntax of PCF 47

expression true + 1 is not considered well formed. (It does not make sense to add a truth
value to a natural number.) With variables, the typing conditions depend on the context
in which an expression is used. For example, x + 5 only makes sense if the variable
x is declared to have type nat. A precise description of PCF, using typing rules and
assumptions about the types of variables, is given in Chapter 4. In the following informal
presentation, we assume we have infinitely many variables of each type and that we can
tell what type each variable has. When we write Ax: o, it is implicitly assumed that x is
a variable of type o. When we need to refer to the types of variables that are not lambda
bound, we will simply write typing assumptions x: oy, ..., Xx: 0k in parentheses or in the
text.

A general syntactic issue, discussed in Section 1.7.1, is the distinction between ob-
ject notation and meta-notation. The syntax of PCF, like other languages we will con-
sider, is defined using some set Var of variables, some set Cst of constant symbols,
and other classes of symbols. We do not need to be concerned with what the ele-
ments of the set Var actually are, as long as we have infinitely many of them (so
we don’t run out) and we can tell whether two are distinct or the same. We say that
the symbols and expressions of PCF belong to the object language since PCF is the
object of study. In studying PCF, it is convenient to use additional symbols to stand
for arbitrary symbols and expressions of the object language. These are said to be
symbols of the meta-language, the language we use in our study of the object lan-

guage.
We use letters x, y, z, ..., possibly with subscripts, primes or superscripts, as meta-
variables for arbitrary variables of PCF (elements of Var) and letters M, N, P, ..., again

possibly with subscripts, primes or superscripts, as meta-variables for expressions of PCF.
It is possible for two metavariables, x and y, to stand for the same object variable. We use
the symbol = for syntactic equality of object expressions, writing x = y if x and y stand
for the same variable of PCF and x # y to indicate that they are distinct variables. If we
say, “let x and y be variables” or “let M and N be terms,” then these could be distinct
variables or expressions, or syntactically identical.

2.2.2 Booleans and Natural Numbers

The basic boolean expressions are the constants true and false, and the boolean-valued
conditional expressions

if (boolean) then (boolean) else (boolean).
The basic natural number expressions include numerals

0,1,2,3,...,

48 The Language PCF

the usual symbols for natural numbers, and addition, written +. Thus if M and N are
natural number expressions, so is M + N. We can also compute natural numbers using
conditional tests,

if (boolean) then (natural_number) else (natural_number)

and compare natural numbers for equality. The equality test Eq? on natural numbers re-
turns a boolean value. For example, Eq? 3 0 has the boolean value false, since 3 is different
from O, but Eg? 5 5 = true.

The typing rules of PCF prevent conditional expressions such as

if (boolean) then 3 else true,

with one case returning a boolean and the other a natural number. In general, PCF al-
lows any conditional expression if (boolean) then M else N, provided alternatives
M and N have the same type. This allows us to choose between numeric functions by
writing

if (boolean) then Ax:nat.M else Ax:nat.N,

for example.

To summarize the expressions we have considered so far, the basic natural number and
boolean expressions are given by the following productions. While we have not discussed
arbitrary expressions of type o, we include conditional expressions below since condi-
tional is most naturally considered a boolean operation.

(bool_exp) ::= (bool_var) | true|false| Eq? (nat_exp) (nat_exp) |

if (bool_exp) then (bool_exp) else (bool_exp)

(nat_exp) ::= (nat_var)|0|1|2]| ... | (nat_exp) + {nat_exp) |

if (bool_exp) then (nat_exp) else ({(nat_exp)

(o _exp) 1i= ... |if (bool_exp) then (o_exp) else (o_exp)

Since both natural numbers and booleans may also be computed by function calls, these
are not all of the natural number and boolean expressions of PCF. The additional forms
will be presented in subsequent sections discussing product types, function types, and
recursive definitions.

The equational axioms for natural number and boolean expressions are straightforward.
We have an infinite collection of basic axioms

2.2 Syntax of PCF 49

0+0=0,04+1=1,...,14+0=1,14+1=2,...

for addition, giving us all true equations of the form n + m = p, for numerals n, m and p,
and two axiom schemes for conditional expressions of each type

if true then M else N=M,
if false then M else N=N.
There are infinitely many axioms for equality test, determined as follows
Eq?nn =true, each numeral n,
Eq?mn = false, m, n distinct numerals.

The operational semantics of natural number and boolean expressions are defined using
a set of reduction axioms, each obtained by reading one of the equational axioms from left
to right. In lambda calculus, these are usually called reduction rules, since they are “rules”
telling you how to reduce a term. However, when we axiomatize the reduction relation, the
axioms are the basic reduction “rules” obtained by reading an equational axiom from left
to right. Some useful terminology is that a term matching the left-hand side of a reduction
axiom is called a redex.

In the operational semantics (reduction system), we may evaluate an expression by
applying reduction axioms to any subexpression. To see how this works, consider the
expression

if Eq?(6+5)17 then (1 +1) else 27

We cannot simplify the conditional without first producing a boolean constant true or false.
This in turn requires numerals for both arguments to Eq?, so we begin by applying the
reduction rule 6 + 5 — 11. This gives us the expression

if Eq?1117 then (14 1) else 27
which is simplified using a reduction rule for Eq? to
if false then (14 1) else 27

Finally, one of the rules for conditional applies, and we produce the numeral 27. In order
to simplify this expression, we needed to evaluate the test before simplifying the condi-
tional. However, it was not necessary to simplify the number expression 1 + 1 since this
is discarded by the conditional. Since we may choose to reduce any subterm at any point,
we could have simplified 1 + 1 — 2 between any two of the reduction steps given. With
the exception of this “nondeterministic choice,” the steps involved mimic the action of any

50 The Language PCF

ordinary interpreter fairly closely. We will discuss connections between nondeterministic
and deterministic reduction in Section 2.3 4.

The reader may have noticed that we do not have the equational axiom Eq?M M =
true, for arbitrary natural-number expression M. One reason is that the reduction ax-
iom Eq? M M — true would lead to a non-confluent reduction system for PCF (see Sec-
tion 2.3.4). In reducing an expression Eq? M N, we must first simplify M and N to numer-
als. This corresponds to actual implementations, where a test for natural number equality
involves evaluating both expressions.

The denotational semantics of the basic natural number and boolean expressions falls
under the general pattern of algebraic terms and their interpretation in a multi-sorted al-
gebra, which is covered in detail in Chapter 3. To give a hint of things to come, we will
summarize some of the main ideas here. We assign a “mathematical meaning,” or de-
notation to every natural number and boolean expression by first choosing a set N of
natural-number values and a set B of boolean values. In the standard semantics of natural-
number and boolean expressions alone, these would be the usual set of natural numbers
and the usual set of booleans. However, in the context of PCF, we will also include an
extra element in each set to account for the fact that PCF has partial recursive functions
on natural numbers, in addition to total functions, and similarly for booleans. The extra
element arises from the fact that we may treat a partial function from N to N as a total
function from N to N U {c0}, as is sometimes done in recursive function theory.

Once we have chosen a set of values for each type, we can give meaning to expressions
by choosing a value for each free variable. Then, using induction on expressions, we spec-
ify a unique mathematical value (element of the appropriate set) for each expression. In
the standard interpretation of natural numbers and boolean expressions, 2 + 3 has its usual
value, 5, and so on, so there is nothing very surprising in this case. Since the denotational
semantics of basic data types are a special case of first-order semantics (or model theory),
the basic idea is probably familiar from logic. The main reason for mentioning the deno-
tational semantics at this point is to contrast this with the axiomatic semantics (equational
proof system) and operational semantics (reduction rules), which are entirely syntactic.

Definable Functions

Even without lambda abstraction, we can think of basic PCF natural-number expressions
as defining numeric functions. To describe this precisely, we need to distinguish between
the natural numbers and the symbols (called numerals) used in PCF. If n € A is a natural
number, then one of the symbols 0, 1, 2, ... of PCF is the numeral for n, i.e., the symbol
we usually use to write n on a piece of paper. For any n € AV, let us write [n] for this
numeral. Using this notation, we say an expression M: nat with natural number variable x
defines a numeric function f: N — N implicitly if, for every natural number n € N, we

2.2 Syntax of PCF 51

have [[n]/x]M —> [f(n)]. In words, we can simplify the expression [[n]/x]M, with the
numeral for n in place of x, to the numeral for the function value f (n).

Example 2.2.1 The numeric function f(n) =n + 5 is defined implicitly by the expres-
sion x + 5, where x ranges over natural numbers. =

The notion of implicit definition may be extended to other types. A boolean expression
M bool with boolean variable x defines a boolean function f implicitly if [true/x1M —>
[f (true)] and [false/x 1M —> [f (false)]. It is easy to see that negation is defined implic-
itly by the expression if x then false else true. Binary functions may also be defined
implicitly, as in Exercises 2.2.2 and 2.2.3.

With recursion, we will be able to define all computable numeric functions in PCF.
However, using only the basic natural-number and boolean expressions given in this sec-
tion, there are many functions that cannot be defined. One example is given in Exer-
cise 2.2.3.

Exercise 2.2.2 Write expressions with boolean variables x and y which implicitly define
the conjunction (x A y) and disjunction (x V y) of x and y.

Exercise 2.2.3 Show that the exponentiation function is not implicitly definable us-
ing PCF natural number and boolean expressions. In other words, prove that there
is no basic natural number expression M with numeric variables x and y such that
[[n1/x1([[m1/y]M) has value [n™].

2.2.3 Pairing and Functions

In PCF, we can form ordered pairs and functions of any type. If M and N are any PCF
expressions, then (M, N) is the ordered pair whose first component has the same value
as M and second component has the same value as N. Every PCF pair has a cartesian
product type which is determined by the following simple rule: if M has type o and
N has type 7, then the pair (M, N) has type o x t. For example, (3, 5) is an ordered
pair of natural numbers, with (3, 5) : nat x nat, and the “nested pair” (3, (5, 7)) has type
nat x (nat X nat).

In addition to forming pairs, we can also “take pairs apart” using projection operations.
The projection operations Proj; and Proj, return the first and second components of a pair.
This is formalized in the two equational axioms

Pr0j1<M’ N)=M, Projz(M, N)=N. (proj)

The final axiom for pairing is based on the idea that two pairs with the same first and
second components must be equal (i.e., the same pair). Since any P:o x T is a pair, we

52 The Language PCF

can form a pair {(Proj, P), (Proj,P)) from the first and second components of P. This
must be the same as P, since it has the same components. This gives us the equational
axiom

((Proj, P), (Proj,P)) = P. (sp)

One point about the (sp) axiom, called surjective pairing, is that this is redundant for
explicit pair terms of the form (M, N). This is easily demonstrated by substituting (M, N)
for P and applying equational axioms to subterms:

((Proj (M, N)), (Proj,(M, N)))
= (M, (Proj,(M, N)))
= (M, N)

However, if x:0 x 7 is a variable of product type, then we cannot prove ((Proj,x),
(Proj,x)) = x without the axiom that gives us this equation directly. This is demonstrated
in Example 2.4.3, which appears in a later section since it depends on properties of conflu-
ent reduction systems. The reason the axiom is called surjective pairing is that it implies
that the pairing function is surjective onto the set of elements of product type. A conse-
quence of (sp) is given in part (a) of Exercise 2.2.7.

As for natural number and boolean expressions, the reduction rules for pairs are derived
by reading the equational axioms from left to right. However, we only include reduction
rules corresponding to the (proj) axioms. There is no (sp) reduction rule in the operational
semantics of PCF for two reasons. The first is that it is not necessary, as demonstrated
by the adequacy of the operational semantics without (sp), discussed in Sections 2.3 and
5.4.1. The second is that the rule causes confluence to fail, when combined with recursive
definitions of functions (see Section 4.4.3).

Functions

PCF functions are written using lambda abstraction, and most of the examples given in
Section 1.2 are PCF expressions. For example, since we have numerals and addition in
PCF, both Ax:nat.x + 1 and Ax:nat.5 are acceptable PCF, with type nat — nat. In gen-
eral, a PCF function may have any PCF type as domain or range. Since we can have
functions that take functions as arguments and return functions as results, PCF is more
flexible (in this direction) than many programming languages. A simple higher-order func-
tion is composition of numeric functions

comp ¥ \f:nat — nat.Ag:nat — nat. Ax:nat. f(gx).

2.2 Syntax of PCF 53

To see how this works, suppose f and g are numeric functions. Then comp f g is the func-
tion Ax:nat. f(gx); the function which, on argument x, returns f(gx). Thus comp f g
defines f o g.

As mentioned in Section 1.3, we have the equational axiom

Ax:oM =MLy o[y/x]M, ynotfreein M ()

for renaming bound variables. This axiom is related only to the fact that A is a binding
operator, and does not have anything to do with the way that lambda abstraction defines
a function. Since renaming of bound variables is so basic, it is useful to have a special
name for it: we may write M =, N if terms M and N differ only in the names of bound
variables. It is often convenient to write FV (M) for the free variables of M, i.e., the
variables appearing in M that are not bound by A.

The second axiom,

(Ax:o.M)N =[N /xIM, B8)

gives us a way of computing the result of function application by substitution. To avoid any
confusion about substitution and bound variables, we define substitution on typed lambda
expressions precisely, by the following induction, with three subcases for different forms
of lambda abstractions:

[N/x]x=N
[N/x]a = a, for constant or variable a # x
[N/x](PQ) = (IN/x]P)(IN/x]Q)
[N/x]Ax:0.M = Ax:0.M
[N/x]Ay:0.M = Ay:a.[N/x]M, provided x # yand y ¢ FV(N)
[N/x]ry:0.M = (Az:0.[N/x][z/y]M), where z ¢ FV(MN)and y,z # x

While most of these clauses are easily understood, it may be worth saying a few more
words about the last three lines. The fourth line makes sense when we remember that a
substitution [N /x] only replaces free occurrences of x by N. Since x is bound in Ax: 0. M,
the substitution [N /x] has no effect on this term. The last two clauses tell how to substitute
for a free variable inside the binding operator A. If y is not free in the term N we are insert-
ing into M, then we may go ahead and perform the substitution. This is the intent of the
fifth line of the definition. However, if y is free in N, then we have a conflict and we must
rename y to some other variable z to avoid capturing the free y in N. The option is pro-
vided by the last line of the definition. Since substitution may involve arbitrary renaming,

54 The Language PCF

substitution is only defined up to «-equivalence. In other words, if we compute [N /x]M
by this definition, we may end up with any one of an infinite number of possible terms.
However, all of the possibilities are =, to each other. Since we consider a-equivalent
terms as essentially the same, and they are provably equal in the simplest possible way,
this “nondeterminism” in the definition of substitution is completely harmless. It is easy to
see that substitution respects a-equivalence, in the sense that [N/x]M =, [N /x]P when-
ever M =, P.

Substitution is extended to PCF by adding cases for addition, conditional, etc. These
are all straightforward, and follow the pattern of the application case above: we substitute
[N/x] in a compound expression by applying this substitution to each of its parts, e.g.,
IN/x](P+ Q)= ([N/x]1P) + (IN/x]Q). Exercise 2.2.6, which may be useful to remem-
ber, asks you to prove the following identities involving substitution.

(M/xI(IN/x]P) = [(IM/x]N)/x]P,
[M/x](IN/y]1P) =[(IM/xIN)/y]((M/x]P)if y #x and y & FV (M)

The combination of a-conversion and renaming bound variables in substitution provide
static scope in PCF, as illustrated in Exercise 2.2.13.

The final equational axiom for functions is based on the idea that two functions are equal
if they produce equal values on all arguments. To see how this arises, suppose M:o0 — 1
is a function expression, and x: ¢ is some variable not appearing in M. The condition on
x is to make sure that we do not use x in two different ways. Then since (Mx): 7, the
expression Ax:o.(Mx) also defines a function from o to 7. For any argument N: o, we
can apply either function to N. However, we get the same result in either case, since

(Ax:0.Mx)N =MN

by (B). (Notice that we get ([N/x]M)N, which is different, if we drop the assumption that
x is not free in M.) Since the two functions return the same result on all arguments, we
have the equational axiom

Ax:o.Mx =M, xnotfreein M (n)

Just as the final axiom for pairing is redundant for explicit pairs, the (n) axiom for
functions is redundant for explicit function expressions. Specifically, if M has the form
Ay:o. P, and x is not free in M, then we can prove Ax:o.Mx = M using (8). However,
we cannot prove Ax:o.Mx = M if M is a variable of function type without using (7). A
consequence of (n) is given in part (b) of Exercise 2.2.7.

Both (8) and () could be used as reduction rules, read left to right. When it is important
to distinguish between the equational axioms, we use (8)., and ()¢, for the equational

2.2 Syntax of PCF 55

axioms and (B)req and (n),.q for the reduction rules. While n-reduction is used in many
versions of lambda calculus, we will not use (17),.4 in PCF reduction since it is not needed.
As discussed in Section 1.3, we keep () as the single equational axiom of the reduction
system for PCF. In other words, PCF reduction is a relation on «-equivalence classes of
expressions.

For easy reference, the syntax of PCF is summarized in Section 2.2.6. The equational
proof system appears in Table 2.1 and the reduction system in Table 2.2.

Currying

A traditional topic in lambda calculus is the relationship between multi-argument and
higher-order functions. If we have a mathematical function of two arguments, such as the
addition function add(x, y: nat) = x + y, then we generally think of this as a function on
ordered pairs add: (nat x nat) — nat. This type of addition function may be written as the
PCF expression

add = Ap: nat x nat. (Proj, p) + (Proj,p)

In words, this add is the function which takes a pair of natural numbers, and returns the
sum of its two components.
A related function is called the “curried” addition function

Curry(add) = Ax:nat.Ly:nat. x +y

after lambda calculus pioneer Haskell Curry. The curried addition function yields x + y
when applied to x and y, but the form of parameterization is different. Like many other
Jlambda expressions, it is easiest to read Curry(add) from right to left. The final result
of applying the function is the expression to the right of all of the A’s, which is x +
y. The next smallest expression is Ay.x + y. This function adds x, whose value is not
determined within this expression, to the function argument. So we might call this the
“add x” function. Since this function takes a single natural-number argument and returns
a natural number result, we have

Ay.x + y:nat — nat.

Now let us look again at the whole function Curry(add). On argument x, the function
Curry(add) returns the “add x” function. So Curry(add) is a function of a single natural-
number argument, returning a numeric function. This is reflected in the type of the function

Curry(add) : nat — (nat — nat).

Thus the curried addition function yields x + y when applied to two natural numbers x

56 The Language PCF

and y, but as the type indicates, Curry(add) takes two natural number arguments one at a
time, rather than all at once.

As suggested by the notation Curry(add), there is a higher-order transformation Curry
which maps any binary natural- number function f to its curried form Curry(f). This map
can actually be written in PCF, as the lambda expression

Curry = Af: (nat x nat) — nat. Ax:nat.Xy:nat. f(x,y).

Using the axiom of B-equivalence, it is easy to see that when applied to add, the function
Curry produces the lambda expression written above.

Curry(add) = (\f: (nat x nat) — nat.Ax:nat.Ay:nat. f (x, y)) add
= Ax:nat.Ay:nat.add (x, y)
= Ax:nat.Ay: nat. (Ap: nat x nat. (Proj; p) + (Proj,p)) {(x, y)
= Ax:nat.Ay: nat.Proj, (x, y) + Proj,(x, y)
= Ax:nat.Ay:nat.x +y
Some properties of currying are given in Exercise 2.2.8.

Exercise 2.2.4 Write a PCF expression to take any numeric function f and return a
numeric function g such that for any 7, the value of g(n) is twice f(n).

Exercise 2.2.5 Perform the following substitution. (Do not reduce the expression.)

[(y +3)/x] ((\f:nat — nat. Ay: nat. f(x + y))(Ax:nat. x + y))

Exercise 2.2.6 Prove the following substitution identities.

[M/x](IN/x]P) = [([M/xIN)/x]P, (@)
(M/x](IN/ylP) =[((M/x]IN)/y](IM/x]P) if y #x and y & FV(M). (b)

Exercise 2.2.7 Show that the following two inference rules are derivable, i.e., the equa-
tion below the line is provable from the equation(s) above the line. For (a), you may
assume that from x = u and y = v it is possible to prove (x, y) = (u, v).

Proj, p = Proj,q, Proj,p = Proj,q
p=q

(@)

Mx=Nx

2.2 Syntax of PCF 57

Exercise 2.2.8 Write a PCF expression Uncurry which “uncurries” natural number func-
tions. More specifically, if f is a curried function f: nat — (nat — nat), then Uncurry(f)
should be an ordinary binary function Uncurry(f): (nat x nat) — nat taking a pair of
numbers and producing a natural number result. Use the axioms for functions and pairing
to prove the equations Uncurry(Curry g) = g and Curry(Uncurry f) = f, for any ordi-
nary binary g: (nat x nat) — nat and any curried f: nat — (nat — nat).

2.2.4 Declarations and Syntactic Sugar

One of the appeals of lambda calculus, as a model programming language, is the way that
lambda abstraction corresponds to variable binding in common programming languages.
This is immediately clear for Lisp and its dialects, which are based on lambda notation. It
is also true for Algol-like languages, such as Pascal. For example, consider the following
Algol-like program fragment

begin function f (x: nat) nat;
return x;
end;

(body)

end

with a function declaration at the beginning of a block. We can easily write the function
f as the lambda expression Ax:nat.x. We will also see that the entire block may be
translated into lambda notation. The translation may be simplified by adopting a general
notational convention.

A reasonable typed syntax for declarations is

let x:0 =M in N,

which binds x to M within the declaration body N. In other words, the value of let
x:0 =M in N is the value of N with x set to M. We consider this well-typed only if
M has type 0. Using let, we can now write the Algol-like block above as

let f:nat — nat = Ax:nat.x in (body).

Instead of adding 1et declarations to PCF directly, we will treat 1et as an abbreviation,
or what is often called “syntactic sugar” in computer science. This means that we will feel
free to use let in writing PCF expressions, but we do not consider let part of the actual
syntax of PCF. Instead, we will think of 1et as an abbreviation for a lambda expression,
according to the rule

let x:0=M in N & (x:0c.N)M

58 The Language PCF

This treatment of 1et allows us to keep the size of PCF relatively small, which will pay off
when we come to proving things about the language. In addition, we need not specify any
additional equational axioms or reduction rules, as these are inherited directly from A. To
distinguish abbreviations from actual PCF syntax, we will use the symbol &, as above,
when defining meta-notational conventions. In general, M & N means that whenever we
write a term of the form M, this is shorthand for a term of form N.

Example 2.2.9 We will translate the following “sugared” PCF expression into pure PCF
(without syntactic sugar)

let compose = \f:nat — nat.\g:nat — nat.Ax:nat.f(gx) in
let h=Ax:nat.x +x in
compose h h 3

and simplify by applying the appropriate reduction rules. The “de-sugared,” pure PCF
expression, written using the same names for bound variables, is:

(Acompose: (nat — nat) — (nat — nat) — nat — nat.
(Ah:nat — nat. compose h h 3) Ax:nat.x + x)
Af:nat — nat.Ag:nat — nat. Ax:nat. f(g x).
This reduces as follows:
— (Ah:nat — nat. (Af:nat — nat. Lg: nat — nat. Ax:nat. f(g x)) h h 3)(Ax:nat. x 4 x)
— (Af:nat — nat.Ag:nat — nat.Ax:nat. f(g x)) (Ax:nat.x + x) (Ax:nat.x +x) 3
—> (Ax:nat. x + x)((Ax:nat. x + x) 3)
— ((Ax:nat.x +x) 3) + (Ax:nat. x + x) 3)
- 3+3)+@B+3)
—> 12. []

The notion of “syntactic sugar” is very useful in programming language analysis. By
considering certain constructs as syntactic sugar for others, we can write program exam-
ples in a familiar notation, and analyze these programs as if they are written using simpler
or less troubling primitives. However, this technique must be used with care. Since com-
putation may be modeled by substitution, as in the reduction rules for PCF, we do not want
to make too many transformations under the umbrella of syntactic sugar. Three indications
that the definition of let does not add any computational power to PCF are:

2.2 Syntax of PCF 59

(i) let x:0 =M in N and the lambda expression (Ax: 0.N)M have approximately the
same size (counting symbols);

(ii) both have the same typing constraints;

(iii) the two expressions have the same immediate subexpressions (syntactic constituents).
While these conditions are not absolute rules about syntactic sugar, they are a useful guide
towards good use of syntactic sugar.

Another syntactic extension allows us to write function declarations in a more familiar
form, as follows

let f(x:t):0=M in N & let fit—>o=Ax:T.M in N
We can also add multi-argument function definitions, as in Exercise 2.2.12 below.

Example 2.2.10 The language ISWIM, described in [Lan66], has an expression form
M where x:o = N. Intuitively, the value of this expression is the value of M when the
variable x is set to N. We can easily add where to PCF by the abbreviation

M where x:0 =N & let x:0=N in M. "

Exercise 2.2.11 Which PCF reduction rule is applicable to any term of the form
let x:0 =M in N, and what is the result of a single application of this rule?

Exercise 2.2.12
(a) Show how to add two-argument functions to PCF by defining
AMx:io, yiT). M

as syntactic sugar. If Ax:0.Ay: t. M has type 0 — © — p, then A(x:0, y: 7). M has type
o X T — p. You may want to use the results of Exercise 2.2.8.

(b) Introduce a two-argument function form of let
let f{x:o, y:1):p=M in N

as syntactic sugar, using the result of part (a). Illustrate the induced reduction rule for
this definition form by expanding let f(x:o, y:p):t =M in N into pure PCF and
reducing.

Exercise 2.2.13 This exercise is concerned with static scope and renaming of bound vari-
ables. Intuitively, static scoping of variables means that the binding of a variable is always
determined by finding the closest enclosing binding operator for that variable. Moreover,
the binding of a variable does not change during evaluation of expressions. With dynamic

60 The Language PCF

scoping, the way a variable is bound may change during evaluation. This distinction will
be intuitively familiar to computer scientists who have studied programming languages.

(a) Under static scope, the free x in the declaration of f is bound by the outer declaration.
As a result, the function f always adds 3 to its argument, no matter where it is called.

let x:nat=3 in
let f(y:nat):nat=x+y in
let x:nat=4 in

f5

Use reduction to simplify this PCF expression to 8. You may save yourself the trouble
of rewriting let’s to A’s by using the derived rule let x:0 =M in N — [M/x]N.

(b) Suppose that in reducing the expression in part (a), you begin by substituting Ay: nat.
x + y for f in the inner expression, let x:nat =4 in f 5. (This actually corresponds
to the usual implementations, since we begin evaluation of f 5 by passing 5 to the body of
f-) Explain how renaming bound variables provides static scope. In particular, say which
variable above (x, f or y) must be renamed, and how a specific occurrence of this variable
is therefore resolved statically.

(c) Under dynamic scope, the binding for x in the body of f changes when f is called
in the scope of the inner binding of x. Therefore, under dynamic scope, the value of
this expression will be 4 + 5 =9. Show how you can reduce the expression to 9 by not
renaming bound variables when you perform substitution.

(d) In the usual statically scoped lambda calculus, «-conversion (renaming bound vari-
ables) does not change the value of an expression. Use the example expression from part
(a) to explain why a-conversion may change the value of an expression if variables are
dynamically scoped.

(e) Show that confluence fails for dynamically-scoped PCF.
2.2.5 Recursion and Fixed-point Operators

The final construct of PCF provides definition by recursion. Rather than add a new dec-
laration form, we will treat recursive declarations as a combination of let and one new
basic function, a fixed-point operator fix, for each type o. The reader should be warned
that this construct raises more subtle issues than the parts of the language we have already
discussed. To begin with, recursion makes it possible to write expressions with no normal
form. This changes our basic intuition about the way that an expression defines a mathe-
matical value. In addition, when there are several possible reductions that could be applied
to a term, the choice between these becomes important.

2.2 Syntax of PCF 61

We will see how fixed-point operators provide recursion by beginning with the declara-
tion form

letrec f:o=M in N.

This has the intended meaning that within N, the variable f denotes a solution to the
equation f = M. In general, f may occur in M. The main typing constraint for this
declaration is that M must have type o, since otherwise the equation f = M does not
make sense. We will see that letrec may be treated as syntactic sugar for a combination
of ordinary let and a fixed-point operator.

We can see how letrec works by writing the factorial function. To simplify the nota-
tion, let us write x — 1 for the predecessor of x, and x * y for the product of x and y. (To
stay within the natural-numbers, we consider 0 — 1 = 0.) We will see later how to define
predecessor and natural number multiplication in PCF using recursion. With these extra
operations, we can define the factorial function and compute 5! by writing

letrec f:nat — nat=>MAy:nat. (if Eq?y0 then 1 else y* f(y—1)) in f5

Since the variable f occurs free in the expression on the right-hand side of the equals sign,
we cannot simply take f to refer to the expression on the right. Instead, we want f in the
function body to refer “recursively” to the function being defined. We may summarize this
by saying that f must be a solution to the equation

f=Ay:nat. if Eq?7y0 then | else yx f(y—1)

with two occurrences of the function variable f. From a mathematical point of view, it is
not clear that every equation f:o = M involving an arbitrary PCF expression M should
have a solution, or which solution to choose if several exist. We will consider these ques-
tions more carefully when we investigate the denotational semantics of PCF in Chapter 5.
However, recursive function declarations have a clear computational interpretation. There-
fore, we will assume that every defining equation has some solution and add syntax to
PCF for expressing this. The associated equational axiom and rewrite rule will allow us
to think operationally about recursive definitions and provide a useful guide in discussing
denotational semantics in Chapter 5.

Using lambda abstraction, we can represent any recursive definition f:o0 = M by a
function Af:o. M. Rather than looking for a solution to a recursive defining equation,
we will produce a fixed point of the associated function. In general, if F:0 — o is a
function from some type to itself, a fixed point of F is a value x:o such that F(x) = x.
For example, returning to the factorial function, we can see that factorial is a fixed point of
the operator

62 The Language PCF

F & Af:nat — nat.Ay:nat. if Eq?y0 then 1 else yx* f(y —1)

on natural-number functions. We show how factorial is defined and computed in PCF by
applying a fixed-point operator to this function.
The last basic construct of PCF is a family of functions

fix, (0 > 0)— o0,

one for each type o. The function fix, produces a fixed point of any function from o to o.
Using lambda abstraction and fix,, we can regard the recursive letrec declaration form
as an abbreviation:

letrec f:o=M in N & let f:0 = (fix, Af:0.M) in N.

Since we often use letrec to define functions, we also adopt the syntactic sugar

letrec f(x:7):0 =M in N & letrec f:t > o =Ax:t.M in N.

The equational axiom for fix,: (¢ — o) — o is that it produces a fixed point

fix, =Afio = o.f (fix, f). (fix)
Using (B), it is easy to derive the more intuitive equation

fixg M =M (fix, M)

for any M:0 — o. The (fix) reduction rule is obtained by reading the equational axiom
from left to right. Some reasonable, non-equational properties of fix, are more subtle, and
will be discussed in Sections 5.2 and 5.3.

To see how (fix) reduction works, we will continue the factorial example. Using
SiXpat—snar» the factorial function may be written fact < fix,,,_, .., F, Where F is writ-
ten out above. As a typographical simplification, we will drop the subscript of fix in the
calculation below. To compute fact n, we may expand the definition, and use reduction to
obtain the following.

fact n = (fix F)n
—> F(fix F)n
= (Af:nat — nat.Ay:nat. if Eq?y0 then 1 else yx f(y—1)) (fix F) n
—> if Eq7n0 then | else nx (fix F)(n— 1)

Note that apart from (fix) reduction, we have used only ordinary 8-reduction. When n = 0,
we can use the axiom for conditional to simplify fact 0 to 1. For n > 0, we can simplify

2.2 Syntax of PCF 63

the test to obtain n * (fix F)(n — 1) and continue as above. For any natural number n,
it is clear that we will eventually compute fact n = n!. Put more formally, we may use
ordinary natural-number induction to prove the theorem about PCF that for every natural
number n the application of fact to the PCF numeral for n may be reduced to the numeral
forn!.

As mentioned above, fixed-point operators raise mathematical problems. If we think of
the functions from nat — nat to nat — nat as ordinary set-theoretic functions, then it does
not make sense to postulate that every f: (nat — nat) — (nat — nat) has a fixed point x
with the property x = f(x). However, as shown in Exercise 2.2.16, we have fixed points
of this type iff we allow numeric functions to be defined by recursion. Since recursion is
fundamental to computation, it is important to have fixed-point operators in PCF. The way
to make mathematical sense of fix is to realize that when we have recursion, we may write
algorithms that define partial functions. If f: (nat — nat) — (nat — nat), then its fixed
point may be a partial function, such as the function which is undefined on all integer
arguments. Thus, when we add recursion to PCF, we must understand that an expression
of type o defines an algorithm for computing an element of type o. In the case that this
algorithm does not terminate, the expression may not define one of the standard values of
that type. (A note for recursion theorists is that if we replace fix by some other construct
that does not allow us to write nonterminating functions, there would be total recursive
functions we could not write in PCF. This follows from the fact that the set of all total
recursive functions is not r.e.)

Although fix takes the fixed point of a single function, we can actually use fix to define
any number of mutually recursive functions. This is most easily illustrated for the case of
two recursive functions. Suppose we want to define recursive functions f and g satisfying
the equations

f=Ffg
g=Gfg

where we assume that neither f nor g appears free in F or G. Let us assume that F: 0 —
T — o and G:0 — T — t so that both equations are type correct. We may then apply
fixy ., to the function on pairs

Mfio,g:t).{(Ffg, Gfg)

This gives us a recursively-defined pair whose first and second components satisfy the
original defining equations. The details are left as Exercise 2.2.15. An alternative approach
which does not use pairing is given in Exercise 5.3.5.

64 The Language PCF

Exercise 2.2.14 Assuming we have subtraction in PCF, write a 1etrec expression of the
form

letrec fib(x:nat):nat=... in fib(4)

which defines the Fibonacci function and applies it to 4 to compute the fourth Fibonacci
number. (Recall that the zero-th Fibonacci number is 1, the first Fibonacci number is 1,
and after that each Fibonacci number is the sum of the preceding two.) Show how your
letrec expression reduces to the 4th Fibonacci number. You should give approximately
the same amount of detail as in the factorial example of this section.

Exercise 2.2.15 Consider the pair of equations
f=Ffg
g=Gfg

where F:0 — 7 — 0, G:0 — T — 7 and neither f nor g appears free in F or G. Show
that the first and second components of

Jixoxe A(f:0,8:7).(F fg, Gfg)

satisfy these equations. (An alternative approach to mutually-recursive definitions is given
in Exercise 5.3.5.)

Exercise 2.2.16 In this section, we defined 1etrec as syntactic sugar using fix. The point
of this exercise is to demonstrate that fix is also definable from letrec.

(a) Write an expression FIX using letrec with the property that if we expand letrec
fio=MinN to (A\f:0.N)(fix, (A\f:0.M)), we can reduce FIX to fix using only B-
reduction and n-reduction.

(b) Write a reduction rule for letrec of the form
letrec fio=M in N — P,

where P is an expression containing M, N and letrec, but not fix. As a check that this is
plausible, show that P is provably equal to

[[(FIX (A f:0.M))/fIM]/ fIN,

which corresponds to the result of doing one fix reduction and one B-reduction to the term
(Af:0.N)(fix, (Af:0.M)) mentioned in part (a).

(c) Show that if we take letrec as basic, and use the reduction rule given in part (b), the

2.2 Syntax of PCF 65

term FIX you gave in answer to part (a) is a fixed-point operator. That is, show that for
any term M of the correct type, FIX M — M F, where F is the result of applying one
B-reduction to (FIX M).

2.2.6 PCF Syntax Summary and Collected Examples

Pure PCF

The syntax of pure PCF, without extension by syntactic sugar, is summarized below by
a BNF-like grammar. The first set of productions describe the expressions of an arbitrary
type o. These include variables, conditional expressions, and the results of function appli-
cation, projection functions, and fixed-point application.

(o _exp) 1= {o_var)|if (bool_exp) then {o_exp) else (o_exp)|

(o_application) | (o _projection) | {0 _fixed_point)

(o _application) ::= (v — o_exp)(t_exp)
(o _projection) ::= Proj,{c x t_exp)|Proj,(t x o_exp)
(o _fixed_point) ::= fix, (o — o_exp)

For function and product types, we also have lambda abstraction and explicit pairing.

(o0 > t_exp) ::= Ax:0.(t_exp)

(o x T_exp) ::= ((o_exp), {t_exp))

The constants and functions for natural numbers and booleans are covered by the following
productions.

(bool_exp) ::= true|false|Eq? (nat_exp) (nat_exp)

(nat_exp) ::= 0|12} ... |(nat_exp) + (nat_exp)

This concludes the definition of PCF. An alternate definition of the syntax of PCF may be
given using the typing rule style of Chapter 4.

Syntactic Extensions

The most commonly used extensions of PCF by syntactic sugar are listed below, along
with their definitions. To distinguish abbreviations from actual PCF syntax, we use the
symbol ¥ to define meta-notational conventions. The definition M & N means that
whenever we write a term of the form M, this is short-hand for the corresponding term
of the form N.

66

let x:0 =M in N

let f(x:o):t=M in N

letrec f:o=M in N

letrec f(x:t):o=M in N

Mxio,viT). M

let (x:0,y:t)=M in N

def
def

def

The Language PCF

(x:o. N)M

let f:0 > t=ix:0.M in N
(Af:0 > t.N)(Ax:0. M)

let f:0 =(fix, (Af:0.M)) in N

(Af:0.N)(fix, (Af:0.M))

letrec f:T—o=Ax:T.M in N

let fit—>o=(ix,,, Afit—>0.Ax:7.M)) in N
Afit = 0. N)fix,L,o Af:T—0.dx:T. M))

Apio X 1.(dx:0.Ay: 1. M)(Proj, p)(Proj, p)
(AM{x:o,y: 7). N)M

A useful convention is to write M”N for the term M (M ...(M N)...) constructed by
applying M to N a total of n times. A more precise definition is that M'N ¢ N and

M'HIN & M(M™N).

Examples

Boolean and natural-number expressions.

if Eq?(4+5)9 then 27 else 42

if (if Eq?(4+5)9 then false else true) then 42 else 27

(if Eq?(x + y)z then Ax:nat.x +5 else Ay:nat.y+7)
(if Eq?(x + y)z then 7 else 5)

Lambda abstraction and application.

AX:nat.x

Ax:nat.x + 1

(Ax:nat.x + 1)((Ay:nat.5 + y) 3)
(Af:nat — nat. Ax:nat. f(f(fx))) (Ay:nat.5+ y)3

Pairing and functions.

Ax:nat x nat.(Proj, x + 1, Proj, x + 1) . (nat x nat) — (nat x nat)

Ax:o x t.(Proj, x, Proj, x)

(o x1)> (T xX0)

2.3 PCF Programs and Their Semantics 67

AXx:nat X nat.
if Eq? (Proj, x)0 then Proj,x else O : nat x nat — nat
Af:nat — nat.Ag: nat — nat. Ax:nat. f(g x) is composition of numeric functions
Af:nat — nat.\g: nat — nat. Ax:nat.
if Eq?(fx)0 then gx else 0 . (nat — nat) > (nat — nat) — (nat — nat)

Af:(nat x nat) — nat.Ax:nat.Ay:nat. f(x,y) is Curry for numeric functions
Declarations and recursion.

let comp:(t — p) > (0 > 1) > (0 = p)
=Afi1 > p.Agio > t.Ax:0. f(gx)
in comp f g
let add: (nat x nat) — nat
= Ax:nat x nat.(Proj; x) + (Proj, x)
in let curry: ((nat x nat) — nat) — nat — nat — nat
= Af: (nat X nat) — nat.Ax:nat.Ay:nat. f(x,y)
in curryadd57

Assuming we have a predecessor function pred which maps each n > 0 to n — 1 and
zero to zero, we can write multiplication as follows. A definition of pred is given in
Section 2.5.2, using a general method described there.

letrec mult: (nat x nat) — nat
= Ap:nat X nat.
if Eq?(Proj; p)0 then 0 else (Proj, p) + mult{pred (Proj, p), Proj, p)
in mult(6,7)

We may rewrite this last example using more syntactic sugar to make it clearer:

letrec mult{x:nat, y:nat):nat = if Eq?x0 then 0 else y + mult{predx,y)
in mult(6,7)

For further examples, see Section 2.5 and the exercises.

2.3 PCF Programs and Their Semantics

2.3.1 Programs and Results

Now that we have seen all of the constructs of PCF, we will take a step back and discuss
the meaning, or semantics, of PCF in a general way that is intended to apply to a variety

68 The Language PCF

of programming languages. This should put the equational axioms and reduction rules that
were presented along with the syntax of PCF in perspective. The three forms of semantics
we will consider are axiomatic semantics, given by a proof system, operational semantics
arising from a set of reduction rules, and denotational semantics (with details put off to
Chapter 4). Each form of semantics has advantages and disadvantages for understanding
properties of programs. In addition, there are standard connections between the three
forms of semantics that should hold for any programming language. We discuss a few
syntactic distinctions in this brief subsection before stating the connections precisely in
the next three subsections.

Most programming languages have several different syntactic categories, or “kinds of
expressions.” These may include expressions as used in assignments or function calls,
imperative statements, declarations or modules. However, not all well-formed syntactic
entities can be executed or evaluated by themselves. Therefore, in any programming lan-
guage, we distinguish programs from other syntactic forms that may be used only as parts
of programs. The two characteristics that distinguish a program from an arbitrary syntac-
tic form are that a program should not refer to any undeclared or unbound variables and a
program should have the appropriate type or form to yield a printable value or observable
effect.

In PCEF, the two syntactic categories are types and terms (expressions that have types).
If we think of giving a closed natural number or boolean term to an interpreter, then we
could expect the interpreter to print its value. Therefore, we consider closed boolean and
numeric expressions programs. But if we give an open natural number term such as x + 5
to an interpreter, there is no correct value since the value of x is not given. In addition,
we cannot expect the value of a function expression to be printed with the same degree
of accuracy as a natural number or boolean. Although an interpreter could certainly print
back the function expression we give it, or perhaps print some kind of “optimized” code,
no interpreter can print function expressions in a way that would tell us exactly which
mathematical function is defined by the function expression typed in. This is because
equality for partial recursive functions is undecidable and, as proved in Section 2.5.5,
every partial recursive function is definable in PCF. For this reason, we say that natural
number and boolean values are observable, but nat — nat values are not.

We give a precise definition of PCF program by defining the types of observable values.
Although a pair of observable values could be considered observable, since an interpreter
can easily print a pair of printable values, we will simplify several technical arguments by
choosing a simpler set of observable types. This will not have any significant effect on our
theory, as shown in Exercise 2.3.5. We say 7 is an observable type if t is either nat or
bool. A PCF program is a well-formed, closed term of observable type. One potentially
confusing aspect of this definition is that it does not consider input or output; it might

2.3 PCF Programs and Their Semantics 69

be more accurate to call these “programs that require no additional input and produce
one output.” The reason we focus on programs which already have whatever input they
require is that we use these programs to compare axiomatic, operational and denotational
semantics. For this purpose, it is sufficient for each program to yield a single “data point”
about the semantics.

Another general term we use in comparing semantics is result. Intuitively, a result is
an observable effect of evaluating or executing a program. In a functional setting, this
generally means a term giving an expected final result of program evaluation. For PCF,
we make this precise by saying that a result is a closed normal form of observable type. In
other words, the PCF results are the numerals, O, 1, 2, ... and boolean constants frue and
false.

With this terminology, we can give a general definition of semantics, at least for pro-
gramming languages: a semantics of programs is a relation between programs and results.
This is a minimal condition; all of the semantics we consider give more information than
the result of evaluating each program. Typically, axiomatic and denotational semantics
give more useful information than operational semantics when it comes to expressions that
may occur in programs but are not full programs themselves.

2.3.2 Axiomatic Semantics

In general, an axiomatic semantics consists of a proof system for deducing properties of
programs and their parts. These properties may be equations, as in the PCF proof system
(reviewed below), assertions about the output of programs, given certain inputs, or other
properties. Since it is difficult to discuss all forms of axiomatic semantics in general, we
will focus on equational axiomatic semantics. We may apply this discussion to axiomatic
semantics that address other properties of programs by saying that two programs are equiv-
alent in an axiomatic semantics whenever exactly the same assertions are derivable about
each of them.

There are three general properties of axiomatic semantics that hold for PCFE. The first
is that the axiomatic semantics defines program behavior in some way. The other two are
relations between the axiomatic and operational or denotational semantics.

* The axiomatic semantics determine the result (or output or observable effect, in general)
of any program that has one.

* When two expressions are equivalent, according to the axiomatic semantics, we may
safely substitute one for the other in any program without changing the operational se-
mantics of that program. This could be called “soundness of the axiomatic semantics with
respect to the operational semantics.”

70 The Language PCF

* The axiomatic semantics are sound with respect to the denotational semantics. Specifi-
cally, if we can prove any pair of PCF terms equal, then these terms must have the same
denotation, regardless of which values we give to their free variables.

The PCF axiomatic semantics satisfies the first requirement since, for any full program
that terminates according to the operational semantics, we may prove that this expression
is equal to the appropriate numeral (0, 1, 2, ...) or boolean constant (true or false). This is
a simple consequence of the fact that the PCF reduction axioms are a subset of the equa-
tional axioms. It follows from either of the last two conditions that, unless the operational
or denotational semantics is degenerate, the axiomatic semantics does not equate all ex-
pressions of each type.

The axiomatic semantics of PCF is given by the proof system whose axioms are de-
scribed in Sections 2.2.2 through 2.2.5 and listed again in Table 2.1. These axioms are
combined with inference rules that make provable equality a congruence, also included in
Table 2.1. Congruence means that provable equality is an equivalence relation (reflexive,
symmetric and transitive), and that equality is preserved if we replace any subexpression
by an equivalent one. We do not need a proof system for types, since two types are equal
iff they are syntactically identical.

All of the congruence rules in Table 2.1, except the two concerned with lambda abstrac-
tion and application (the two at the bottom of the table) are in fact redundant. The reason
is that we can use lambda abstraction and application to achieve the same effect. For ex-
ample, suppose we can prove M = N and P = Q, for four natural-number expressions M,
N, P, and Q. We can derive M + P = N + Q as follows. By the reflexivity axiom, we
have the equation

Ax:nat.Ay:nat.x +y=Ax:nat.Ay:nat.x + y.

Therefore, by the congruence rule for application, we can prove
(Ax:nat.Ay:nat.x +y) M = (Ax:nat.Ay:nat.x + y) N.
Then, by axiom scheme (8) and transitivity,

Ay:nat. M +y=2Ay:nat.N + y.

Repeating application, (f) and transitivity we may complete the proof of M + P = N +
Q. The reason that the congruence rules are listed is that these are important properties
of equality. In addition, if we were to develop a first-order theory of natural numbers and
booleans, in the absence of lambda abstraction, we would need axioms expressing these
properties.

2.3 PCF Programs and Their Semantics

Table 2.1
Equational Proof System for PCF.
Axioms
Equality
(ref) M=M
Types nat and bool
(add) 0+0=0,0+1=1,...,3+5=8,...
(Eq?) Eq?nn = true, Eq? n m = false (n, m distinct numerals)
(cond) if true then M else N =M, if false then M else N=N
Pairs
(proj) Proj (M,N)=M Proj,(M,N)=N
(sp) (Proj, P, Proj, P) = P
Binding
() Ax:0.M = Ay:o.[y/x]M, provided y not free in M.
Functions
B (Ax:0.M)N =[N /xIM
n) Ax:0.Mx = M, provided x not free in M
Recursion
(fix) fixg =Afr0 = 0. f(fixg f)
Inference Rules
Equivalence
(M=N M=N,N=P
sym), (trans) N M =P
Congruence
M=N,P=Q M=N,P=Q
T t and bool
ypes nat and boo. M+P=N<0 EQMP=EQNQ
Mi=My Ny=N2, P\=P)
if M| then N else Py=1if M, then N; else P,
. M=N M=N,P=Q
Pairs T T
Proj; M = Proj, N (M, P)=(N, Q)
. M=N M=N,P=Q
Functions

Ax:o.M =Ax:0. N MP=NQ

72 The Language PCF

It is worth mentioning that although the axiomatic semantics is powerful enough to
determine the meaning of programs, this proof system is not as powerful as one might
initially expect. For example, we cannot even prove that addition is commutative. Nor
can we prove many interesting equivalences between recursive functions. For these kinds
of properties, the most natural approach would be to add induction rules. Induction on
natural numbers would let us prove commutativity quite easily, and a form of induction
called “fixed-point induction” would allow us to prove a great many more equations be-
tween recursively-defined functions. For further information on natural-number induction,
the reader may consult Section 1.8 or almost any book on mathematical logic, such as
[End72). Since fixed-point induction is specifically related to programs, and not a tradi-
tional topic in mathematical logic, we consider this in Section 5.3. A rudimentary form of
fixed-point induction is discussed in Exercise 2.3.3 below.

Exercise 2.3.1 Use the equational proof system to prove that the following two terms are
equal, for any M. You do not need any axioms about subtraction to carry out the proof.

letrec f(x:nat):nat=1if Eq?x0 then 1 else f(x—1) in M

let f(x:nat):nat=1if Eq?x0 then 1
else letrec g(x:nat):nat=if Eq?x0 then 1 else g(x — 1) in g(x — 1)
in M

Exercise 2.3.2 A system for proving equations is inconsistent if every equation M = N
between well-formed expressions M and N of the same type is provable. Show that if
true = false is provable from the axioms and inference rules of PCF, then the proof system
is inconsistent. Use the same idea to show that if we can prove m = n for distinct numerals
m and n, the proof system is also inconsistent.

Exercise 2.3.3 While we can prove some simple equations involving recursion, such
as the one given in Exercise 2.3.1, many similar-looking equations cannot be proved
in the equational proof system given here. The reason is subtle but important. Consider
two recursive definitions of factorial, for example, f; = fix F| and f> = fix F». The two
functions f; and f> may give the same result for any natural number argument, even
though the functions F) and F; are quite different. However, the proof system does not
seem to provide any way to deduce f; = f, without essentially showing that | and F; are
closely related.
A proof rule that helps prove equations involving fixed points is the following.

M-—>> NM

M=fxN (rec ind)

2.3 PCF Programs and Their Semantics 73

The intuitive explanation of this rule, which is loosely based on McCarthy’s rule of re-
cursion induction [McC61, McC63], is that when M behaves computationally like a fixed
point of N, then we conclude that M and fix N have the same value. The computational
nature of reduction is important here, since the rule becomes unsound if the hypothesis is
replaced by the equation M = NM, as may be seen by taking N to be the identity. For
further discussion of this rule, see Exercise 5.4.9.

Prove the following equations using (fix ind) in combination with the other equational
proof rules.

(a) fix(f o g) = f(fix(g o f)).
) fix, =fix(y5)>orfi (0 = 0) > 0.Ag:0 — 0.8(fg) where 0 =01 — 02.

2.3.3 Denotational Semantics

The PCF denotational semantics assigns a natural number value (or a special additional
value corresponding to nontermination) to each expression of type nat, a boolean value
(or special value for nontermination) to each expression of type bool, and a mathematical
function or pair of values to any function expression or expression of cartesian product
type. The mathematical value of an expression is called its denotation. If a term has free
variables, its denotation will generally depend on the values assumed for the free variables.
While we will not go into details in this chapter, we will give a brief overview of the
denotational semantics of PCF so that we can compare the three forms of semantics.

We give denotations to terms by first choosing a set of values for each type. In the
standard semantics, the set of mathematical vales for type nat will include all of the
natural numbers, plus a special element L ,,,; representing nontermination. This extra value
is needed since we have PCF expressions of type nat such as letrec f(x:nat):nat=
f(x+1) in f(0) which do not terminate under the standard interpreter, and do not
denote any standard natural number. For similar reasons, the set of denotations of type bool
includes true, false and an extra value Lp,,. The mathematical values of a product type
o x 1 are ordered pairs, as you would expect. The mathematical values of type o — T are
functions from o to 7 with the property that if T = o, then each function has a fixed point.
The precise way of obtaining such a set of functions is discussed in Chapter 5. We interpret
addition and other PCF functions in the usual way, for arguments that are ordinary natural
numbers, and as the special value L,,; when one of the arguments is L, This is because
we cannot compute an ordinary natural number by adding a number to an expression that
does not define a terminating computation.

Once we have chosen a set of values for each type, we assign meanings to terms by
choosing an environment, which is a mapping from variables to values. If x is a variable
of type o, and 7 is an environment, then 7(x) must be a mathematical value from type

74 The Language PCF

o. We then define the meaning [M]n of term M in environment 7 by induction, in the
manner that may be familiar from first-order logic. Specifically, the meaning [[x] is the
value given to variable x by the environment, namely 7 (x). The meaning of an application
[[M NTn is obtained by applying the function [[M] denoted by M to the argument [N]n
denoted by N. Other cases are handled in a similar way. An important property is that the
meaning of a term of type o will always be one of the mathematical values associated
with this type. Therefore, in the case of an application M N, for example, the typing rules
of PCF guarantee that the denotation of M will be a function and the denotation of N
will be a value in its domain. In this way, the syntactic typing rules of PCF avoid possible
complications in the denotational semantics of the language.

There are several properties of denotational semantics that generally hold. The first is
an intrinsic property of denotational semantics that distinguishes it from other forms of
semantics.

 The denotational semantics is compositional, which means that the meaning of any
expression is determined from the meanings of its subexpressions. For example,

[M1n if [Bln is true,
[if B then M else Nln= 3 [Nln if[Bly is false,
4 otherwise.

where 1 is used as the meaning of the expression in the case that evaluation of the test B
does not terminate. An immediate consequence of the compositional form of this definition
is that if B’, M’ and N’ have the same denotations as B, M and N, respectively, then

[if B then M else Nlp=[if B’ then M’ else N'In.

The reason these two must be equivalent is that the meaning of the conditional expression
if B then M else N cannot depend on factors such as the syntactic form of B, M
and N, only their semantic meaning.

* If we can prove the same assertions about M and N in the axiomatic semantics, then M
and N must have the same meaning in the denotational semantics. This is called sound-
ness, for an equational proof system. This is a minimal property in the sense that if sound-
ness fails, we would conclude that something was wrong with either the axiomatic or
denotational semantics. It follows from soundness, by connections between the axiomatic
and operational semantics of PCF, that if M —> N, then M and N must have the same
meaning in the denotational semantics.

Both of these properties hold for the standard denotational semantics of PCE. Further
connections between operational, denotational and axiomatic semantics are summarized
in Section 2.3.5.

2.3 PCF Programs and Their Semantics 75

Table 2.2
Reduction axioms for PCF.

Types nat and bool

(add) 04+0—->0,0+1—>1,...,34+5—>8,...

(Eq?) Eq?nn — true, Eq?nm — false (n, m distinct numerals)
(cond) if true then M else N — M, if false then M else N > M
Pairs (o X 1)

(proj) Proj (M, N) - M Proj,(M,N) > N

Rename bound variables

(o) Ax:o.M = Ay:o.[y/x]M, provided y not free in M.
Functions (¢ — 1)

B (x:o.M)N — [N/xIM

Recursion

(fix) fixg > Afio0 > o.f(fixg f)

2.3.4 Operational Semantics

An operational semantics may be given in several ways. The most common mathe-
matical presentations are proof systems for either deducing the final result of evalua-
tion or for transforming an expression through a sequence of steps. An alternative that
may provide more insight into practical implementation is to define an abstract ma-
chine, which is a theoretical computing machine that evaluates programs by progressing
through a series of machine states. The most common practical presentations of opera-
tional semantics are interpreters and compilers. In this book, we concentrate on the first
forms of operational semantics, proof systems defining either complete or step-by-step
evaluation.

The operational semantics of PCF are given by the reduction axioms mentioned in Sec-
tions 2.2.2 through 2.2.5, which are summarized in Table 2.2. The reduction axioms are
written with the symbol — instead of =, to emphasize the direction of reduction. In-
tuitively, M — N means that with one evaluation step, the expression M may be trans-
formed to the expression N. While N may not be shorter than M, most of the rules have
the “feel” of program execution; it seems that we are making progress towards a simpler
expression in some way. We may define an evaluation partial function from the reduc-
tion system by eval/(M) = N iff M may be reduced to normal form N in zero or more
steps.

This relatively abstract operational semantics, which lacks any specific evaluation order,
may be refined in several ways. We will discuss three forms of “symbolic interpreters” in

76 The Language PCF

Section 2.4, one deterministic, one nondeterministic, and the third a form of parallel inter-
preter. While all of the interpreters are defined from reduction axioms, each applies reduc-
tion axioms to subexpressions of programs in a different way. The deterministic interpreter
is defined by choosing a specific “next reduction step” at each point in program evaluation,
while the nondeterministic interpreter may choose to reduce any subexpression, or choose
to halt. The parallel interpreter may apply several reductions simultaneously to disjoint
subexpressions. All determine the same partial evaluation function.

With three exceptions, the PCF reduction axioms are exactly the left-to-right readings of
the equational axioms. The first exception is that we allow renaming of bound variables at
any point during reduction, without considering this as a reduction step. From a technical
standpoint, the reason is that we cannot always do substitution without renaming. The
other exceptions are that we do not have reductions corresponding to the surjective pairing
axioms (sp) for pairs or the extensionality axiom () for functions. The reason for these
two omissions is largely technical and discussed briefly in Section 2.4.1.

* In general, if M is a program (closed expression of observable type) and eval(M) = N,
then N should be something that cannot be further evaluated. In PCF in particular, if
eval(M) = N, then N is either a numeral 0, 1, 2, . .. or a boolean constant, depending on
the type of M.

* If eval(M) = N, then M and N are equivalent according to both the axiomatic and
denotational semantics. This is true for PCF, since each term is provably equal to its
normal form, and the proof rules are sound for the denotational semantics.

» If M is a program and M has the same denotation as a result N, then the result of
executing program M in the operational semantics is N. This is commonly referred to as
computational adequacy since, if we take the denotational semantics as our guide, it says
that we have enough reduction rules to properly determine the value of any program. If
computational adequacy fails, we generally look to see if we are missing some reduction
rules, or consider whether the denotational semantics gives too many expressions equal
meaning. It generally follows from connections between the axiomatic and denotational
semantics that if the operational semantics are adequate with respect to the denotational
semantics, they are also adequate with respect to the axiomatic semantics.

2.3.5 Equivalence Relations Defined by Each Form of Semantics

We may summarize the basic connections between axiomatic, operational and denotational
semantics by comparing the equivalence relations defined by each one. Since the axiomatic
semantics of PCF is a logical system for deriving equations, the obvious equivalence rela-
tion is provable equality. The denotational semantics gives us the relation of denotational

2.3 PCF Programs and Their Semantics 77

equivalence: two terms are denotationally equivalent if they have the same denotation (for
any association of values to free variables). The natural equivalence relation associated
with the operational semantics involves substitution of terms into full programs, described
below.

We say that two programs of PCF, or any similar language, are operationally equiv-
alent if they have the same value under the operational semantics. In symbolic form,
programs M and N are operationally equivalent if eval(M) =~ eval(N). The “Kleene equa-
tion” eval(M) ~ eval(N) means that either M and N both evaluate to the same term, or
neither evaluation is defined. However, this is only an equivalence relation on programs,
not arbitrary terms. We extend this relation to terms that may have free variables or non-
observable types using an important syntactic notion called a context.

A context C[] is a term with a “hole” in it, written as a pair of empty square brackets.
An example is the context

Col]l & Ax:nat.x +1[]

If we insert a term into a context, then this is done without renaming bound variables. For
example, Co[x] is Ax:nat. x + x. We can think of a context as an incomplete program,
sitting in the buffer of a text editor. Inserting a program into a context corresponds to using
the text editor to fill in the rest of the program. A special case is the empty context [],
which corresponds to a text editor containing no program at all. In Exercise 2.3.4 below,
the empty context is used to show that evaluation respects operational equivalence for
programs.

Using contexts, we define operational equivalence on arbitrary terms, as follows. Terms
M and N of the same type are operationally equivalent if, for every context C[] such that
both C[M] and C[N] are programs, we have eval(C[M]) ~ eval(C[N]). In the literature,
operational equivalence is sometimes called “observational equivalence” or “observational
congruence.”

If we write M =4, N for provable equality in the axiomatic semantics, M =g, N for
denotational equivalence, and M =,, N for operational equivalence, then the minimal
requirement on the three semantics, called adequacy or computational adequacy, is

(Y programs M) (¥ results N) M =43 N iff M =g4on N iff M =,, N.

We also expect that for arbitrary terms, the axiomatic semantics are sound for the deno-
tational semantics, and that denotationally equivalent terms are operationally equivalent.
These may be written as the following inclusions between relations on terms:

=ax © =den © =op -

78 The Language PCF

In general, operational equivalence is the coarsest of the three, i.e., more terms are oper-
ationally equivalent than denotationally equivalent or provably equivalent. This is not an
accidental fact about operational semantics, but a consequence of the way that operational
equivalence is defined. For example, if two terms M and N are not operationally equiv-
alent in PCF, then there is some context C[] with C[M] and C[N] different numerals or
boolean constants. Consequently, if we equate M and N in the axiomatic semantics, we
would have an inconsistent proof system; see Exercise 2.3.2. Similar reasoning applies to
the denotational semantics, so in general =,, and =g4., cannot be any coarser than =,,.
The reason why we usually have =, € =4,, is that we usually justify our axiom system

by showing it is sound for denotational semantics (which is just what =4, € =4., means).
Since denotational equivalence is usually not recursively enumerable, we do not typically
have complete axiom systems (systems where =, and =4, are the same) for languages
with recursion (fixed-point operators). A related fact for PCF is given as Corollary 2.5.16
in Section 2.5.5. The relationship between =4., and =, is discussed in the next para-
graph.

A denotational semantics with M =g, N iff M =,, N, for arbitrary terms, is called
Sfully abstract. A fully abstract denotational semantics may be very useful, since reasoning
about the denotational semantics therefore allows us to reason about =,,. This is impor-
tant since =, is generally difficult to reason about directly, yet it is the most useful form of
equivalence for program optimization or transformation. However, it is generally a difficult
mathematical problem to construct fully-abstract denotational semantics. The CPO seman-
tics of PCF in Chapter 5, for example, is shown not to be fully abstract in Section 5.4.2.
On the other hand, it is also shown in Section 5.4.2 that this semantics is fully abstract for
an extension of PCF. Some general and historical references on full abstraction are [Cur86,
Mil77, Plo77, Sto88].

Exercise 2.3.4 This exercise demonstrates general properties of evaluation and opera-
tional equivalence that hold for a variety of languages. For concreteness, however, the
problem is stated for PCF. You may assume that the PCF reduction rules are confluent
and that eval is the partial function from PCF terms to PCF terms such that eval(M) = N
iff N is the unique normal form of M. Show that if programs M and N are operationally
equivalent, then eval(M) =~ eval(N). Assuming that all programs with no normal form are
operationally equivalent, which is justified for PCF in Exercise 2.5.27, show that if M and
N are programs with eval(M) = eval(N), then M and N are operationally equivalent.

Exercise 2.3.5 In Section 2.3.1, we defined programs as closed terms of observable type,
and chose nat and bool as observable. Show that the relation =, remains the same if we
change the set of observable types in the following ways.

2.4 PCF Reduction and Symbolic Interpreters 79

(a) Only nat is considered observable.

(b) We say 7 is an observable type if t is either nat, bool, or the product 7; x 7; of two
observable types 7| and 15.

Exercise 2.3.6 Show that if eval is a partial recursive function on a recursively enumer-
able language, then operational equivalence is l'[g. (This assumes some familiarity with
recursive function theory.)

2.4 PCF Reduction and Symbolic Interpreters

2.4.1 Nondeterministic Reduction

The operational semantics given by reduction may be regarded as a “nondeterministic
symbolic interpreter.”” However, only the order in which subterms are reduced is nonde-
terministic, not the final result of reducing all possible subterms. Section 2.4.3 presents a
deterministic form of reduction that gives the same final results for terminating PCF pro-
grams, and Section 2.4.4 gives a related “parallel” form of reduction. An inequivalent but
often used deterministic reduction is considered in Section 2.4.5.

In general, given any set of reduction rules, we say M reduces to N in one step,
and write M — N, if N may be obtained from M by applying one reduction rule to one
subexpression. For any notion — of reduction, the corresponding multi-step reduction
relation —> is defined inductively by

M—>> Nif M =4 N, or
M — M and M —> N.

In other words, — is the least reflexive and transitive relation on «-equivalence classes of
expressions that contains one-step reduction.

Example 2.4.1 Some differences between one-step reduction (—), equality (=), and
multi-step reduction (—>) are illustrated using PCF below.

(a) (if M then 3+ 4 else 7)=(if M then 7 else 3+4)
since we have 3 + 4 = 7 and equations can be used in either direction

(b) (if M then 3+ 4 else 7) /» (if M then 7 else 3+4)
since7 A~ 3+ 4

) 5+2—>>5+2but5+2A5+2
since one-step reduction is not reflexive

80 The Language PCF

(d) if (Eq?34) then 5+ 2 else 9—>>9
by first reducing (Eq? 3 4)

It is easy to see from the definition of reduction that if M —> N, then we can prove the
equation M = N. It follows that if M —> N and P —> N, we can also prove M = P.

For most notions of reduction, a term may be reduced in several ways. The reason is
that a term may have many different subterms, each matching the left-hand side of a dif-
ferent reduction rule. We may think of reduction as defining a nondeterministic symbolic
interpreter that evaluates an expression M by repeatedly choosing a reduction to apply or
choosing to halt. At each step, the “state” of the interpreter is characterized by the expres-
sion that is produced. We have a reduction sequence M —> N iff this nondeterministic
interpreter, executing M, may choose to halt in state N. A necessarily halting state, which
is a term N with N -4 P for any P, is called a normal form. Some example PCF normal
forms are the truth values true and false, the numerals 0, 1,2, .. ., a tuple (M, ..., M) of
distinct normal forms, and any function expression Ax: o.M with M in normal form. We
consider the result of nondeterministic evaluation to be the set of normal forms produced.
As we shall see below, there is at most one normal form of any PCF term, in spite of the
nondeterministic choices involved.

A useful property of many sets of reduction rules, and PCF reduction in particular, is
called confluence, or the Church-Rosser property, also mentioned in Section 1.3. This
property may be sketched graphically as follows.

In this picture, the top two arrows are universally quantified, and the bottom two are
existentially quantified. So the picture “says” that whenever M —> N1 and M —> N,,
there exists a term P with Ny —> P and Ny —> P.From Theorem 8.3.24 in Section 8.3.4,
we have the following fact about PCF.

Proposition 2.4.2 PCF reduction is confluent.

If — is determined by directing a set of equational axioms, then confluence implies
that an equation is provable iff both terms reduce to a common form. A corollary is
that if two distinct terms cannot be reduced at all, they cannot be proved equal. This

2.4 PCF Reduction and Symbolic Interpreters 81

provides a useful syntactic technique for showing that an equational proof system does
not prove all equations. Another simple corollary of confluence is that no term has more
than one normal form. These and other general consequences of confluence are proved in
Section 3.7.2.

To illustrate the value of confluence in analyzing a proof system, we justify the state-
ment in Section 2.2.3 that (sp) is not derivable from (proj).

Example 2.4.3 Consider the reduction system with only two reduction axioms, Proj,
(M, N) — M and Proj,(M, N) — N. This system may be proved confluent and there-
fore an equation is provable from the two equational axioms Prej, (M, N) = M and
Proj,(M, N) = N using reflexivity and the PCF equational inference rules iff the two
terms reduce to a common term. It follows that the equation x = (Proj,x, Proj,x) cannot
be proved from Proj, (M, N) = M and Proj,(M, N) = N, since x and (Proj,x, Proj,x)
are distinct normal forms. L]

While most of us are used to deterministic execution, there are some reasons to con-
sider nondeterministic evaluation. A common reason for the designers of a programming
language not to specify the order of evaluation completely is that this allows greater flexi-
bility in optimization. An example of optimization is common subexpression elimination,
which effectively reorders the evaluation of parts of an expression. A related issue is par-
allelism. If we are allowed to evaluate parts of an expression in any order, then it would
be possible to evaluate parts of the expression in parallel, without concern for the rel-
ative speeds of the processors involved. However, in many languages where the design
does not fully determine the order of evaluation, the output of some programs accepted
by the compiler may depend on evaluation order. In contrast, confluence of PCF guar-
antees that the final result does not depend on the order in which subexpressions are
evaluated.

The reason we do not use reduction axioms corresponding to equational axioms (1) and
(sp) is that these would destroy confluence. It is acceptable to omit these two reductions
since these are not necessary for reducing programs; reduction based on (1) and (sp) only
affects the normal forms of terms that either have free variables or are not of observable
type. This is an easy consequence of computational adequacy (Corollary 5.4.7). Intuitively,
the reason that (77) is unnecessary is that if we have a reduction of the form

M— (... x:0.Mx) ..)—> (... (M) ...) > 5

for example, then since the result 5 does not contain any function expressions, the func-
tion expression M must eventually be applied to an argument or discarded in the reduc-
tion (... (M) ...) —> 5. If M is applied, say in a subterm M N, then we would get the
same result if we had not used () and had stuck with Ax:o. Mx in place of M, since

82 The Language PCF

(Ax: 0. Mx)N reduces to MN by (8) alone. The situation for surjective pairing is essen-
tially similar.

Example 2.4.4 Consider the expression
letrec f(x:nat):nat=if Eq?x0 then 0 else x+ f(x —1) in fn

which we would expect to produce the natural number n(n + 1)/2, under any ordinary
interpreter. We can see how the nondeterministic PCF interpreter works by eliminating
syntactic sugar and reducing. Letting

F & Af:nat — nat.Ax:nat.if Eq?x0 then 0 else x + f(x — 1)
and taking n = 2, we have the following reduction sequence.
(fix F)2 —> (Af:nat — nat.Ax:nat.if Eq?7x0 then 0 else x+ f(x — 1)) (fix F)2
—> if Eq?20 then 0 else 2+ (fix F)(1)
—> 2+ 1if Eq?10 then O else 1+ (fix F)(0)
—> 2+ 1+ (fix F)(0)
—>24+140—>3

Of course, other reduction sequences may be obtained by choosing fix-reduction in place
of any of the reduction steps used here. However, by the confluence of PCF reduction, any
finite interleaving of fix-reductions would still yield an expression that reduces to 3. "

Example 2.4.5 Consider the expression letrec f(x:nat):nat= f(x+1) in f1.If
we write a similar function declaration in another language like Lisp or Pascal, we would
expect f(n) not to terminate (except with stack overflow), regardless of the value of n.
This is reflected in the fact that the PCF expression has no normal form. Letting

F & Af:nat — nat.Ax:nat. f(x + 1),

we can de—sugar the letrec expression to (Af:nat — nat. f 1)(fix F). Then we can
reduce to (fix F)1 — F(fix F)1. At this point, there are two possibilities

F (F(fix F)) 1
(Ax:nat.(fix F)(x + 1)) 1

one using fix-reduction, and the other B-reduction. By confluence, these two must re-
duce to some common form. This common form may be found by taking each term and
applying the reduction used to produce the other. Applying B-reduction to the first and
fix-reduction to the second, we obtain

F(fix F)l-»[

2.4 PCF Reduction and Symbolic Interpreters 83

(Ax:nat.(F(fix F))(x + 1)) 1

From here, we could either apply fix-reduction or (8). In either case, we obtain a term that
reduces to

(F2(fix F))2

Continuing in this way, we can see that regardless of our choice of reduction, we
cannot ever produce an expression that does not contain (fix F) as a subterm. Thus
letrec f(x:nat):nat= f(x + 1) in f 1 has no normal form and the nondeterminis-
tic PCF interpreter need not halt. Although this brief argument is not a complete proof
that the term has no normal form, a rigorous proof can be developed along these lines. A
simpler proof method is to use the deterministic evaluator described in Section 2.4.3 (see
Exercise 2.4.18). .

Example 2.4.6 While PCF reduction agrees with the axiomatic semantics of PCF, this
form of program execution may be slightly different from what most readers are familiar
with. The difference may be illustrated by considering the following program.

let f(x:nat):nat=3 in
letrec g(x:nat):nat=g(x +1) in f(g5)

In most familiar programming languages, this program would not halt, since the call
f(g5) is compiled or interpreted as code that computes g 5 before calling f. Since the call
to g runs forever, the program does not halt. However, in PCF, we can reduce the function
call to f without reducing g 5. Since f disregards its argument, we obtain the value 3.
Although this explanation of termination uses the ability to reduce any subexpression,
this is not essential. In particular, the deterministic evaluator defined in Section 2.4.3 will
also reduce the term above to the numeral 3. (See Exercise 2.4.17.) Further comparison of
evaluation orders appears in the next section. n

As mentioned earlier in Section 2.3.4, it is important that the axiomatic semantics re-
spect the operational semantics. Specifically, if we can prove M = N, then these two
terms should produce the same result when placed inside any PCF program. The reader
may wonder about the extensionality axiom (), which is Ax:0.Mx = M for x not free
in M. This equation seems very reasonable when viewed as a statement about mathemat-
ical functions, but it is not completely obvious that Ax: 0.Mx and M are interchangeable
with respect to the nondeterministic PCF interpreter. Since PCF reduction does not include
n-reduction, the nondeterministic interpreter is forced to halt on Ax:o.yx, for example,
which is different from y; clearly Ax:o.yx and y do not have the same normal form if we
omit (n). However, when placed inside a context C[] such that both C[Ax:o.yx] and C[y]

84 The Language PCF

are programs, we have already observed that C[Ax:¢.yx] and C[y] will have the same nor-
mal form, if any. (The situation for (sp), surjective pairing, is similar.) Thus, the equational
proof system of PCF is sound for reasoning about program modification, or interchange-
ability of program “parts.”

Exercise 2.4.7 Show that (fix) reduction may be applied indefinitely to any expression
of the form letrec f:o0 =M in N. Does this mean that recursive functions never
“terminate” in PCF?

Exercise 2.4.8 Compute normal forms for the following terms.
(a) comp (Ax:nat.x + 1) (Ax:nat.x + 1) 5, where the definition of natural number func-

tion composition is given in Section 2.2.3.

(b) let not = Ax:bool.if x then false else true in
letrec f =Ax:bool.if x then true else f(notx) in

f false

Exercise 2.4.9 Show that taken together the following three reduction rules for typed
lambda calculus with fixed points are not confluent.

(Ax:0.M)N — [N/xIM)
Ax:0.Mx — M, x notfreein M m
fixeM — M (fix, M) (fix)aiz

More specifically, find a term M that may be reduced in one step to N or P, where
N and P cannot be reduced to a common term. Hint: It is possible to find such an M
which has no (8) redexes. Your counterexample will not work if we use (fix) reduction,
fix, = Af:0 — 0. f(fix, f), as in the text.

2.4.2 Reduction Strategies

We will discuss various deterministic interpreters using the notion of reduction strategy.
A reduction strategy is a partial function F from terms to terms with the property that if
F(M)= N, then M — N. This is called a “strategy” since the function may be used to
choose one out of many possible reductions. For any reduction strategy F, we may define
a partial evaluation function eval p: PCF — PCF on PCF expressions by

if F(M) is not defined
if F(M) =M’ and evalp(M') =N

The evaluation function eval r is the mathematical equivalent of a deterministic interpreter
that repeats single reduction steps, following the strategy F, until this strategy cannot be

evalp(M) = { ?V/I

2.4 PCF Reduction and Symbolic Interpreters 85

followed any further (i.e., we reach a term where the partial function F is undefined). If
the strategy can be followed indefinitely from M, then the function evalr will be unde-
fined on M, and an actual interpreter following F would run forever. (See Exercise 2.4.10
below for further discussion of the way evalr is defined from F.) As a notational con-
venience, we will omit the subscript F if the reduction strategy is clear from context or
irrelevant.

In general, we will be interested in reduction strategies that choose a reduction when-
ever possible, at least if the term is a program. For such reduction strategies, the evaluation
eval(M) of a program M will either be the normal form of M, or undefined. In the termi-
nology of [Bar84], the reduction strategies we consider are one-step reduction strategies,
since they choose a single reduction step based on the form of the term alone. For discus-
sion of multi-step reduction strategies, the reader may consult [Bar84].

It is possible to define a “brute force” reduction strategy F with the property that for any
term M, eval(M) is either the normal form of M or undefined. Given M, we can compute
F (M) by enumerating (in parallel) all reduction paths from M and seeing if any produces
a normal form. If we find one reduction path, say M —- M| - M, — ... — N, leading
to a normal form, we let F (M) = M be the first term along this reduction path. This is
not a very satisfying reduction strategy, however, since it may take a long time to compute
F(M); it is not even decidable whether F (M) is defined. However, we will see below that
there is an efficiently computable reduction strategy which will always find the normal
form of a term.

An important property of PCF is that the idealized nondeterministic interpreter may
be implemented deterministically in an efficient manner. More specifically, there is an
efficiently computable reduction strategy F such that whenever M reduces to a normal
form N, we have evalp(M) = N. This reduction strategy is called left-most outer-most
or, more simply, left-most reduction. It is defined precisely in the next section. Another
name that is sometimes used is call-by-name reduction, but this is sometimes confusing
since call-by-name is also used to refer to a parameter-passing mechanism implemented
by “thunks” (see [ASU86], for example). The difference between left-most reduction and
other alternatives may be illustrated by considering an expression (Ax:o.M)N, where
M — M’ and N — N'. There are three possible ways to reduce this expression:

(Ax:0.M)N

(Ax:0.M)N’ (Ax:0.M")N

[N/xIM

86 The Language PCF

The first alternative is a form of what is called eager reduction, or call-by-value. (Like
call-by-name, call-by-value has other meanings.) The second is called lazy or left-most re-
duction, and the third may be regarded as an attempt to “optimize” the function Ax: o.M
before supplying the argument N. There is no guarantee that such an “optimization” short-
ens the reduction to normal form.

An eager strategy, which may choose to reduce a function argument before doing B-
reduction, sometimes leads to shorter reductions. The reason is that a function body M
may have several occurrences of the formal parameter x. In this case, substituting N for
x duplicates N, and so any later reduction of N must be repeated for each of the resulting
copies. On the other hand, if x does not occur in M, then there is no point in reducing
N. An extreme but important case occurs when N has no normal form. In this situation,
an eager interpreter will not terminate on (Ax:o.M)N, since it will reduce N indefinitely.
However, if N is not used in the final result (e.g., x does not occur in M), a left-most inter-
preter may terminate without reducing N. Some common optimization techniques, such as
“code motion” and “in-line substitution” fall into the category corresponding to the third
alternative in the picture above.

Since most of the PCF programming examples we consider are aimed at producing
a normal form as a final result, we can think of the PCF interpreter as either a nonde-
terministic reduction machine, or a deterministic evaluator following a left-most reduc-
tion strategy. The latter alternative is particularly useful if we wish to show that a PCF
expression has no normal form. In doing hand calculations, however, the nondetermin-
istic execution model lets us choose reduction steps which lead more quickly to normal
form.

Exercise 2.4.10 The definition of evalr at the beginning of this section appears to be a
definition by induction. However, it is not clear that the definition is well-founded. Give
an equivalent inductive definition of the following form. For each natural number 7, define
a partial function eval"!. Intuitively, eval” (M) will be defined if M reduces to normal
form in n (or fewer) steps, and undefined otherwise. Your definition of the eval”"s should
use induction on x. Then define evalg as the union of the eval™s. (Recall that a partial
function is a set of ordered pairs, so it makes sense to take the union of a set of partial
functions.)

2.4.3 The Left-most and Lazy Reduction Strategies

We will define a deterministic interpreter by defining a specialized reduction relation '
that is a subset of nondeterministic PCF reduction. An optimization of left-most reduc-
tion, called lazy reduction is also described in this section. While lazy reduction does

2.4 PCF Reduction and Symbolic Interpreters 87

not find a normal form for every term that has one, lazy reduction has the same ef-
fect as left-most reduction for programs (closed terms of observable type) that reduce to
results.

Intuitively, left-most reduction works by applying the reduction step that involves the
left-most symbol in the term. Another way to describe this is that we compare two possible
reductions by looking at the set of symbols in the term that match the left-hand side of the
appropriate reduction axiom. In left-most reduction, we apply the reduction that involves
the left-most symbol possible. The relation *t is defined in Table 2.3 by a set of inference
rules, following a style that is commonly called structured operational semantics. The
definition is structured in the sense that each rule applies to exactly one form of term, so
that we can see which rule applies by examining the structure of a term. The first rule in the
table says that if M — N is a reduction axiom (these are collected in Table 2.2), then this
is a left-most reduction step. In other words, if M is a redex, then the left-most reduction
of M is to reduce M. The remaining rules describe reductions on subterms. An intuitive
way to read a rule such as

MM
MN < M'N

is in a counter-clockwise direction, starting from the bottom left. If we want to reduce an
application M N, then we perform the left-most reduction step in M. If this results in a
term M’, then the left-most reduction step from M N is the one taking us from MN to
M’'N. Multi-step left-most reduction, written 4% | is the reflexive and transitive closure of
Xt as usual.

In order to simplify the table, some side conditions are omitted. The convention to be
used in reading the rules in Table 2.3 is that the reductions on subterms are to be applied
only if a reduction axiom does not apply to the entire term. Thus the left-most reduction of
(Ax:0.M)N yields [N /x]M, as opposed to some reduction of Ax:o.M. An alternate pre-
sentation of left-most reduction may be given using what are called “evaluation contexts,”
which are discussed in Section 2.5.6.

For any M, there is at most one term N with M 4 N. This means that ! is a reduction
strategy, and we may write % (M) = N in place of M *§ N when desired. However, the
notation M ! N generally seems more suggestive.

Example 2.4.11 The left-most reduction of the term ((Ax:nat.Ay:nat.x + y)7)5 +
(Ax:nat. x) 3 is written below, with the left-most redex underlined in each step.

88 The Language PCF

Table 2.3
Left-most Reduction for PCF.
Axioms

M—-> N

WEEN M — N is a reduction axiom

=
Subterm Rules
Mt M M ket M’

nat and bool N a normal form

M+ NEtM +N N+MEEN 4 M

M eft p’ Mty
Eq?MN 't Eg7M'N EgINM ¥ EgINM’

N a normal form

M et M/
if M then N else Peftif M’ then N else P

N e N
if M then N else PIftif M then N’ else P

M a normal form

P Ieft p/
if M then N else P!ftif M then N else P’

M, N normal forms

M et M/ N left N7
(M, N) = (M', N) (M, N) 8 (M, N)

Pairs M a normal form

M et M’
Proj; M '{! Proj, M’

M et p7 N ft N7
MN 't M/N MN et MN'

Functions M a normal form

M left M/
Ax:io. Mt Ax:0. M/

Subterm rules apply only when no axiom applies to the entire term. For example, Proj M left Proj M ’ only when
M is not of the form (M, M,) and M N reduces to M’N only when M is not of the form Ax: 0. M.

((Ax:nat. Ly nat.x + y)7) S+ (Ax:nat. x) 3

B (Ay:nat. 7+ y)S+ (Ax:nat.x)3
(745 + (Ax:inat.x)3
k124 (Ax:nat.x)3

k15

2.4 PCF Reduction and Symbolic Interpreters 89

A second example, not producing a numeral, follows.

(Ax:nat. Ay:nat.x + (x + ¥)) ((Az: nat. z) 12)

L8 Ayinat.((Az:nat.z) 12) + ((Az:nat. 2) 12) + y)
k8 Ayinat. 12+ ((Az:nat. 2) 12) + y)

ko Ay:nat. 124+ (12 + y)

The last term is a normal form with respect to left-most reduction. Neither sum can be
reduced since the parentheses associate the sums to the right. If we had (12 + 12) + y
instead, the body of this lambda term could be reduced to 24 + y.]

As stated in the following proposition, left-most reduction will find the normal form of
any term that has one.

Proposition 2.4.12 Let M be a PCF term of any type. Then for any normal form N, we
have M %% N iff M —> N.

This follows from Theorem 8.3.26 in Section 8.3.4, which gives a general condition
guaranteeing completeness of left-most reduction for PCF-like languages.

Since "% is a reduction strategy, we may apply the general definition of evaluation func-
tion from Section 2.4.2 to obtain an evaluation (partial) function evalis. For typographical
reasons, we will write evaljs instead of evallgl. A corollary of Proposition 2.4.12 is that
this evaluator finds the normal form of any term that has one.

Proposition 2.4.13 Let M be a PCF term of any type. Then evaljs (M) = N iff M —> N
and N is a normal form.

If we only want Propositions 2.4.12 and 2.4.13 to hold for PCF programs (closed terms
of observable type), then we may omit many of the reductions on subterms. The result
is lazy reduction, which is far more commonly implemented in practice than left-most
reduction. This is given by axioms and inference rules in Table 2.4. As usual, we write
lazy for the reflexive and transitive closure of 3. We say a term M is in lazy normal
form if there is no N with M 2 N. Note that the lazy normal forms of types nat and bool
are exactly the normal forms of these types. However, the lazy normal forms of function
or product types may have subterms that are not in normal form (lazy or otherwise), as
illustrated in the following example.

Example 2.4.14 The lazy reduction of the term ((Ax:nat.Ay:nat.x + y)7)5+
(Ax:nat.x) 3 is exactly the left-most reduction given in Example 2.4.11. For the second

90 The Language PCF

Table 2.4
Lazy reduction for PCF.
Axioms

M- N

- M — N is a reduction axiom

My N
Subterm Rules

M lazy pm/ M ey M’
d n a numeral
nat and bool MINZM +N ntM@ntM
M lazy M/ M lazy M/
1—> 7]‘% 5 n a numeral
Eq?M N a2y EgIM'N EqMmM %2y EqInM
My M/
if M then N else P!#yif M’ then N else P
M lazy M’

Pairs - =

Proj, M 122y Proj. M’

. M lazy M’

Functions W—Wﬁ

term given in Example 2.4.11, lazy reduction terminates sooner, since lazy reduction does
not change any subexpression inside the scope of a A or inside a pair of the form (-, -).

(Ax:nat. Ay:nat.x + (x + y)) ((Az: nat. z) 12)
lay Ay:nat.((Az:nat.z) 12) + (((Az:nat.z) 12) + y)

The last term is a lazy normal form, since there is no lazy reduction of this term. [

The main property of lazy reduction, in comparison with left-most reduction, follows
from the following proposition.

Proposition 2.4.15 If M is a closed PCF term that does not have the form Ax:o. M; or
(M|, M5), then for any term N, we have M *g N iff M { N.

Proof 1Itis easy to see that if M *% N then M "} N. We prove the converse by induction
on the proof (using the rules that appear in Table 2.3) that M *{ N. The base case is that
M — N is areduction axiom, in which case M 2§ N.

The induction step for each inference rule that appears in both in Table 2.3 and Table 2.4
is straightforward. The only observation that is required, in the case N + M *t N + M’
with N a normal form, is that since N is closed, it must be a numeral. Therefore, N +
M ¥ N + M’, and similarly for Eg? N M =t Eq? N M’

If the left-most reduction is by

2.4 PCF Reduction and Symbolic Interpreters 91

if M then N else P! if M then N’ else P

with M a normal form, then the assumption that the entire term is closed means that M
must be true or false. Therefore, the left-most reduction should have been to eliminate the
conditional and proceed with N or P.

The hypothesis that M is neither a A-abstraction or pair rules out the cases for left-most
reduction inside a A-abstraction or pair.

The final case is the reduction of a closed term M N * M N’ where M is a normal form.
But since M must be closed, it must have the form M = Ax: 0. M| or M = fix M. In either
case, this contradicts the assumption that M N *§ M N’, concluding the proof. n

Corollary 2.4.16 If P is a PCF program and R a result (closed normal form of the same
type), then P % R iff P X\ R.

Exercise 2.4.17 Show, by performing left-most reduction, that the deterministic evalua-
tor halts with value 3 on the program given in Example 2.4.6.

Exercise 2.4.18 Show that the PCF expression letrecf(x:nat):nat = f(x + 1) in f1,
described in Example 2.4.5, has no normal form.

2.4.4 Parallel Reduction

The general idea behind parallel evaluation of PCF is that whenever we can reduce either
of two subterms independently, we may reduce both simultaneously. We might reach a
normal form faster this way, although of course this is not guaranteed. However, there is
no harm in doing so: since PCF reduction is confluent, we will not reach a different normal
form by doing extra reduction in parallel.

We will define a parallel reduction relation = from nondeterministic reduction using
two inference rules. The first rule below says that a single reduction may be considered a
special case of parallel reduction.

M—> N

M=N

where we intend M — N to indicate that N results from a single reduction to M itself or
one of its subterms. If C[...] is a context with places for k terms to be inserted, then a
term of the form C[My, ..., M;] will have nonoverlapping subterms My, ..., M. In this
case, it makes sense to reduce these subterms simultaneously, possibly in parallel. This is
expressed by the following rule.

M= Ni,..., M, = N,
CIMy,...,M 1= C[Ny,..., Ny}

92 The Language PCF

As usual, multi-step parallel reduction == is the reflexive and transitive closure of single-
step parallel reduction.

This parallel reduction relation gives us a nondeterministic form of reduction with the
property that M —> N by ordinary PCF reduction iff M == N by parallel reduction steps.
It is also possible to define parallel reduction strategies which give the same normal form
as sequential reduction. This may be done in a way that maximizes parallelism, optionally
up to some bound which we may think of as the maximum feasible number of parallel
processes for some parallel architecture. However, we will not go into the details.

Exercise 2.4.19 This exercise asks you to compare parallel and sequential reduction.

(a) Prove that M == N iff M —> N. You may use the fact that for any context C[],
the term C[My, ..., M] has independent subterms M, ..., My which may be replaced
separately by Ny, ..., Ni to yield C[Ny, ..., Ngl.

(b) Suppose M —> N and N is a normal form. Use confluence of —> and part (a) to show
that if M == P, then P = N.

(c) Show by counterexample that part (b) fails if = is not confluent. In other words, give
a single-step reduction relation — on some set of terms such that there exist M, N and P
with M —> N, term N not reducible, and M =% P with P not reducible to N by either
parallel or sequential reduction.

2.4.5 Eager PCF

Left-most reduction matches the axiomatic semantics of PCF and allows nondeterministic
or parallel implementations. However, most implementations of existing programming
languages do not follow this evaluation order. (An exception is Algol 60, whose “copy
rule” procedure-call semantics match PCF reduction; more modern examples are Haskell
and Miranda, as noted in Section 2.1.) The more common order is eager evaluation, which
does not match the PCF axiomatic semantics, as illustrated in Example 2.4.6 (see also
Example 2.4.21 below). In this section, we give a precise definition of eager evaluation
for PCF and consider a few properties. Eager PCF is also discussed in Section 2.6.4 in
connection with “explicit lifting.”

An important idea in eager reduction is the notion of value, which is a term that is
not further reduced by eager reduction. The terms that are not values are function appli-
cations and pairs of non-values. The main difference between eager reduction and other
reduction strategies considered in this chapter is that under eager reduction, we only ap-
ply B-reduction and Proj;-reduction when a function argument is a value. There is also a
change in fix reduction to halt reduction of the argument to fix, as explained below. The
name “value” comes from the fact that values are considered “fully evaluated.” One-step

2.4 PCF Reduction and Symbolic Interpreters

93

Table 2.5
Eager PCF reduction.
Values
V is a value if V is a constant, variable,
lambda abstraction or pair of values.
delayy _,.[M] %f Ax:0c.Mx xnotfreein M:oc > 1
Axioms

Subterm Rules

nat

bool

Pairs

Functions

(Ax:o. M)V &V /xIM V a value
Proj, (V{, V) 2T V; V1, V; values

Sixg 5o VET Vdelay, ¢ [fixg 7 V1) V avalue

0+ 0°28T0,0+ 128" 1,...,3 45878, ..,

Eq?nn " true, Eq?nm % false n,m distinct numerals

if true then M else N %™ M, if false then M else N 3TN

M caget M M e M
M+ N M LN n+ M M n anumeral

M et A/ M eager M/

a eral
Eq?MN %" Eq?"M’N EqInM & EqinM’ n anumeral
Mea er M/

if M then N else P P&Tif M’ then N else P

M cager M N eager N

cager (pg/ cager V avalue

(M, N)E(M/,N) (V,N)E(V,N)

Megfr M/
Broj, M 8 Praj, 1’

M o8t M/ N eager N/

V avalue

MN<"M'N VN T VN

eager or call-by-value reduction is defined in Table 2.5. Like lazy reduction, eager re-
duction is only intended to produce a numeral or boolean constant from a full (closed)
program; it is not intended to produce normal forms or fully reduce open terms that may
have free variables. This can be seen in the rules for addition: there is no eager reduction
from a term of the form x + M, even though M could be further reduced.

A significant restriction on eager PCF is that we only have fixed-point operator fix, for
Sfunction types 0 = o1 — o2. The intuitive reason is that since a recursively-defined natural
number, boolean or pair would be fully evaluated before any function could be applied to
it, any such expression would cause the program containing it to diverge. In more detail,
reduction of closed terms only halts on lambda abstractions, pairs of values and constants.

94 The Language PCF

While lambda abstractions and pairs of values could contain occurrences of fix, analysis of
a pair (Vy, V) with V} and V; values shows that any occurrence of fix must occur inside a
lambda abstraction. Therefore, the only values that could involve recursion are functions.
If we changed the system so that a pair (M, N) were a value, for any terms M and N, then
it would make sense to have a fixed-point operator fix,, for each product type o = o} X 03.

It is easy to verify, by examination of Table 2.5, that for any M, there is at most one
N with M %™ N. Since no values are reduced, “&" is a partial function on terms whose
domain contains only non-values.

The use of delay and fix reduction requires some explanation. Since eager reduction
does not reduce under a lambda abstraction, a term of the form delay,._, [M]=Ax:0. Mx
will not be reduced. This explains why we call the mapping M +— Ax:o. Mx “delay.”
The reason that delay is used in fix reduction is to halt reduction of a recursive function
definition until an argument is supplied. An example is given in Exercise 2.4.24; see also
Exercise 2.4.25.

Example 2.4.20 Some of the characteristics of eager reduction are illustrated by reduc-
ing the term

(fix (\x:nat — nat.Ay:nat.y)) (Az:nat.z 4+ 1) 2)

to a value. This is only a trivial fixed point, but the term does give us a chance to see
the order of evaluation. The first step in determining which reduction to apply is to check
the entire term. This has the form of an application M N, but neither the function M nor
the argument N is a value. According to the rule at the bottom left of Table 2.5, we must
eager-reduce the function M = fix (Ax: nat — nat. Ay: nat. y). Since the argument to fix is
a value, we apply the reduction axiom for fix. Followed by B-reduction, since delayl. . .] is
a value, this gives us a function value (lambda abstraction) as follows:

fix (Ax:nat — nat. Ay:nat.y)
P&T (Ax:nat — nat. Ay:nat.y) (delay[fix (Ax:nat — nat. Ly: nat. y)])
T Ay:nat.y
Note that without delay[], the eager strategy would have continued fix reduction indefi-
nitely.

We have now reduced the original term M N to a term V N with function V = Ay: nat. y
a value but argument N = (Az: nat. z + 1) 2 not a value. According to the rule at the bottom
right of Table 2.5, we must eager-reduce the function argument. Since Az:nat.z + 1 and
2 are both values, we can apply B-reduction, followed by reduction of the sum of two
numerals:

(Azznat.z+1)2282 + 1983

2.4 PCF Reduction and Symbolic Interpreters 95

This now gives us the application (Ay:nat.y)3 of one value to another, which can be
reduced to 3. -

Example 2.4.21 Divergence of eager evaluation can be seen in the term

let f(x:nat):nat=3 in
letrec g(x:nat):nat =g(x+1) in f(g5)

from Example 2.4.6. Exercise 2.4.22 asks you to reduce this term. Since we can easily
prove that this term is equal to 3, this term shows that the equational proof system of PCF
is not sound for proving equivalence under eager evaluation. It is possible to develop an
alternative proof system for eager equivalence, restricting 8-conversion to the case where
the function argument is a value, for example. However, due to restrictions on replacing
subexpressions, the resulting system is more complicated than the equational system for
PCFE. =

The deterministic call-by-value evaluator evaly is defined from %" in the usual way.
Since the partial function “&" selects a reduction step iff the term is not a value, evaly may
also be defined as follows.

M if M is a value

evalv(M) = [N if M et M/ and evalv(M/) =N

There seem to be two main reasons for implementing eager rather than left-most (or
lazy) evaluation in practice. The first is that even for a purely functional language such
as PCF (i.e., a language without assignment or other operations with side effects), the
usual implementation of left-most reduction is less efficient. The reason for the ineffi-
ciency appears to be that when an argument such as f x is passed to a function g, it
is necessary to pass a pointer to the code for f and to keep a record of the appropriate
lexical environment. As a result, there is significantly more overhead to implementing
function calls. It would be simpler just to call f with argument x immediately and then
pass the resulting integer, for example, to g. The second reason that left-most reduction
is not usually implemented has to do with side effects. As illustrated by the many tricks
used in Algol 60, the combination of left-most evaluation and assignment is often con-
fusing. In addition, in the presence of side effects, left-most evaluation does not coincide
with nondeterministic or parallel evaluation. The reason is that the order in which assign-
ments are made to a variable will generally affect the program output. We cannot expect
different orders of evaluation to produce the same result. Since most languages in com-
mon use include assignment, many of the advantages of left-most or lazy evaluation are
lost.

96 The Language PCF

Exercise 2.4.22 Show, by performing eager reduction, that the eager interpreter does not
halt on the program given in Example 2.4.21.

Exercise 2.4.23 Assuming appropriate reduction rules for the function symbols used in
the factorial function fact of Section 2.2.5, show that fact 3 85 6.

Exercise 2.4.24 An alternate eager reduction for fix might be
fix, Axio. M) & [fix, (Ax:0.M)/x]M

Find a term Ax:o. M where eager reduction as defined in Table 2.5 would terminate, but
the alternate form given by this rule would not. Explain why, for programs of the form
letrec f(x:0)=M in N with fix not occurring in M or N, it does not seem possible
to distinguish between the two possible eager reductions for fix.

Exercise 2.4.25 Eager or call-by-value reduction may also be applied to untyped lambda
calculus. With ordinary (left-most) reduction, an untyped fixed-point operator, Y, may
be written ¥ % Af.(Ax. f(xx))(Ax. f(xx)). Under eager, or call-by-value reduction,
the standard untyped fixed-point operator is written Z % Af.(Ax. f(delay[xx]))(Ax.
f (delay[xx])) where delay[U] & iz. Ux for x not free in untyped term U. Show that
for M & Ax.Ay.y, the application Y M lazy or left-most reduces to a term beginning
with a lambda, and similarly for ZM using untyped eager reduction. What happens when
we apply eager reduction to Y M?

2.5 PCF Programming Examples, Expressive Power and Limitations

2.5.1 Records and n-tuples

Records are a useful data type in Pascal and many other languages. We will see that record
expressions may be translated into PCF using pairing and projection. Essentially, a record
is an aggregate of one or more components, each with a different label. We can combine
any expressions M: o1, ..., My: o; and form a record {£1 = My, ..., £x = My} whose £;
component has the value of M;. The type of this record may be written {£;: 01, . .., £;: 0x}.
We select the £; component of any record r of this type (0 < i < k) using the “dot” notation
r.;. For example, the record {A = 3, B = true} with components labeled A and B has
type {A: nat, B: bool}. The A component is selected by writing {A = 3, B = true}.A. In
general, we have the equational axiom

{bi=My,....¢ =M}l =M; (record selection)

for component selection, which may be used as a reduction rule from left to right.

2.5 PCF Programming Examples, Expressive Power and Limitations 97

One convenient aspect of records is that component order does not matter (in the syntax
just introduced and in most languages). We can access the A component of a record r
without having to remember which component we listed first in defining r. In addition, we
may choose mnemonic names for labels, as in

let person = {name: string, age: nat, married: bool, . . .}

However, these are the only substantive differences between records and cartesian prod-
ucts; by choosing an ordering of components, we can translate records and record
types into pairs and product types of PCF. For records with two components, such as
{A:nat, B: bool}, we can translate directly into pairs by choosing one component to
be first. However, for records with more than two components, we must translate into
“nested” pairs.

To simplify the translation of n-component records into PCF, we will define n-tuples

as syntactic sugar. For any sequence of types o1, ..., o, we introduce the n-ary product
notation
o1 X...x0, ¥ g1 x (02 x... (01 X0Op)...)

by associating to the right. (This is an arbitrary decision. We could just as easily associate
n-ary products to the left.) To define elements of an n-ary product, we use the tupling
notation

(M], ceey Mn) qéf (M]7 (M27 .. (Mn—l, Mn) . ")>
as syntactic sugar for a nested pair. It is easy to check that if M;: g;, then
(My,....,My):01 X ... X 0y

To retrieve the components of an n-tuple, we use the following notation for combinations
of binary projection functions.

201 X... X0y

Proj; *f Ax:op X ... X a,,.Proj,(Projg'lx) (i<n)

301X ... XOn def

Proj;,

AX:0] X ... X o,,.(Proj;'lx)
We leave it as an exercise to check that
Proj] "My, ..., My) —> M;,

justifying the use of this notation. A useful piece of meta-notation is to write o* for the
producto x ... x o ofko’s.

98 The Language PCF

Using n-tuples, we can now translate records with more than two components into PCF
quite easily. If we want to eliminate records of some type {£1: 071, ..., £k: 0k}, we choose
some ordering of the labels £, ..., £; and write each type expression and record expres-
sion using this order. (Any ordering will do, as long as we are consistent. For concreteness,
we could use alpha-numeric lexicographical order.) We then translate expressions with
records into PCF as follows.

{ti:o1,...,Lr:0p) & o) x ... x 0oy
{li=My, ..., =M} & (M, ..., M)
M.; & Proj]' " %M

If an expression contains more than one type of records, we apply the same process to
each type independently.

Example 2.5.1 We will translate the expression
let r:{A:int, B:bool} ={A =3, B=true} in if r.B then r.A else r.A+1

into PCF. The first step is to number the record labels. Using the number 1 for A and
2 for B, the type {A:int, B:bool} becomes int x bool and a record {A =x, B =y}:
{A:int, B:bool} becomes a pair (x, y) : int X bool. Following the general procedure out-
lined above, we desugar the expression with records to the following expression with
product types and pairing:

let r:int x bool = (3, true) in if Proj,r then Proj;r else (Proj;r)+ 1
Some slightly more complicated examples are given in the exercise. n

Exercise 2.5.2 Desugar the following expressions with records to expressions with prod-
uct types and pairing.

(a) let r:{A:int, B:bool, C:int — int} ={A =5, B =false, C = Ax:int.x}

in if r.B then r.A else (r.C)(r.A)

(b) 1let f(r:{A:int, C:bool}):{A:int, B:bool} ={A=r.A, B=r.C}

in f{A =3, C =true}

You may wish to eliminate one type of records first and then the other. If you do this, the
intermediate term should be a well-typed expression with only one type of records.

2.5.2 Searching the Natural Numbers

One useful programming technique in PCF is to “search” the natural numbers, starting
from 0. In recursive function theory, this method is called minimization, and written us-

2.5 PCF Programming Examples, Expressive Power and Limitations 99

ing the operator w. Specifically, if p is a computable predicate on the natural numbers
(which means a computable function from nat to bool), then ux[p x] is the least nat-
ural number n such that pn = rrue and pn’ = false for all n’ < n. If there is no such
n, then pux[px] is “undefined,” which means that there is no natural number n with
ux[px]=n.

In PCF, given a natural number predicate p: nat — bool, we can compute px[p x] using
the expression

letrec f(x:nat):nat=if px then x else f(x+1) in fO

Intuitively, the recursive function f tests to see if its argument x is has the property p. If

so, then this is the result of the function call. Otherwise, the function f is called recursively

on x + 1. Since the first call is to f 0, we start with 0 and test all natural numbers in

succession. However, if p n may be reduced indefinitely without producing either true or

false, then it is possible to reduce this expression indefinitely without testing p(n + 1).
Since we will use minimization several times, we will adopt the abbreviation

search & Ap:nat — bool. letrec f(x:nat): nat =
if (px) then x else f(x+1) fO

The main property of search is described by the following proposition, which relies on the
fact that no expression reduces to both frue and false.

Proposition 2.5.3 Let M:nat — bool be any PCF predicate on the natural numbers. If
M n —> true and M n' —> false for all n’ < n, then search M —> n.

The astute reader may notice a convenient pun in the statement of this proposition.
The statement includes a condition n’ <n on n and n’ of PCF, not natural numbers.
To be precise, we should distinguish between numerals, symbols used in expressions of
PCF, and the “mathematical objects” we usually refer to by these symbols. However, it is
convenient to order the numerals by the usual ordering on natural numbers, use induction
on numerals, and transfer other properties of the natural numbers to numerals. This makes
many statements about PCF, such as the inductive argument in the proof below, much
easier to phrase.

Proof We will prove the following statement by induction on n:
If M n' —> false for all n’ < n, then
search M —> if (Mn) then n else (fix F)(n+ 1), (%)
where F is Af:nat — nat.Ax:nat.if (Mx) then x else f(x+1).
The proposition follows from () by noticing that if Mn — true, the conditional expres-
sion reduces to 7.

100 The Language PCF

The inductive proof begins with the base case n = 0. By expanding definitions and
reducing, we have

search M —> (Af:nat — nat. f 0)(fix F)
—> (fix F)0
—> F (fix F)0
—> if (MO) then 0 else (fix F)(1)

To prove the inductive step, suppose the claim holds for #, and that M n’ —> false for all
n’ < n + 1. Starting with the inductive hypothesis and continuing with the assumption that
M n —> false, we have

search M —> if (Mn) then n else (fix F)(n+ 1)
—> (fix F)(n + 1)
—> F(fix F)(n + 1)
—>if (M (n+ 1)) then n+1 else (fix F)((n+ 1)+ 1).

Since n is a meta-variable for some numeral 0, 1, 2, ... of PCF, we can simplify n + 1
to a numeral, obtaining an expression of the desired form. This proves (x), and hence the
proposition. -

Example 2.5.4 The definition of factorial uses a predecessor function Ax:nat.x — 1,
which is not a basic operation of PCF. However, using search, it is easy to compute the
predecessor of any natural number x. We simply search for the first y satisfying y + 1 = x.
Accounting for the special case x = 0, whose “predecessor” is 0 by convention, we define
the predecessor function on the natural numbers by the PCF expression

pred & Ax:nat.if Eq?x0 then O else (search Ay:nat.Eq?(y + 1) x)

Using Proposition 2.5.3 and properties of Egq?, it is straightforward to show that pred
computes the predecessor function. u

Exercise 2.5.5 Write a PCF function half: nat — nat mapping any numeral n to the
numeral for |n/2], the greatest natural number not exceeding n /2.

Exercise 2.5.6 Write a function comp that maps any natural number n to the n-fold
composition function Af:nat — nat.Ax:nat. f"x, where f"x is an abbreviation for the
application f(f(...(fx)...)) of f tox atotal of n times. Use this to define multiplication
mult: nat x nat — nat in PCF. (Hint: multiply m - n by repeatedly adding n to itself.)

2.5 PCF Programming Examples, Expressive Power and Limitations 101

Exercise 2.5.7 This question is about a restricted form of recursion called primitive
recursion. One property of primitive recursion is that if f is defined from g and h by
primitive recursion, and g and & are both total functions (i.e., yield natural-number results
for all natural number arguments), then f is also total.

(a) A function f:nat — o is defined from g: o and h: (o x nat) — o by primitive recur-
sion if

f0 = g

fn+1D = h((fn),n)

Write a PCF function prim,: o — (o X nat — o) — (nat — o) such that for any g and &
of the appropriate types, the function (prim, g h) satisfies the equations for f above. You
will need to use the fact that PCF allows conditional expressions of any type.

(b) In PCF, both addition and equality test are basic operations. However, if we add
primitive recursion to PCF, we may remove + and Eq? from PCF and replace them with
the simpler functions of successor and zero test, without changing the set of definable
functions. This may be proved by showing that addition and equality test are definable in a
version of PCF with addition and equality replaced by primitive recursion, successor and
zero test. This problem asks you to prove slightly more. Using functions succ: nat — nat,
zero?. nat — bool, and prim?.0 — (0 X nat — o) — nat — o, satisfying the infinite
collection of equations

succ0=1
succl =2

zero?0 = true
zero? 1 = false

prim?ghO=g

prim? g h (succn) = h {prim? ghn,n),

along with the other basic operations of PCF (except +, Eq? and fix), show how to define
predecessor, addition and equality test. Since letrec is defined using fix, do not use
letrec. (Hint: Try predecessor first.)

2.5.3 TIteration and Tail Recursion

Many algorithms, when written in an imperative language like Pascal, use the following
pattern of initialization and iteration.

102 The Language PCF

Initialize;

while —~Done do Stmt end

If the sections Initialize and Stmt only change the values of a fixed, finite set of variables,
and Done is a side-effect-free test depending on the values of these variables, then we may
easily transform a program segment of this form into a functional program. Let us assume
for simplicity that there is only one variable involved; there is no loss of generality in this
since we can replace a finite set of variables by a record or n-tuple containing their values.
To put this in the context of PCF, suppose we have PCF expressions

init:o

next.oc —> o0

done : ¢ — bool

so that the iteration could be written

X = init;

while —(done x) do x := (next x) end

using an assignable variable x of type . We may compute the final value of x pro-
duced by this loop, using essentially the same sequence of operations, with the expression
loop init next done defined by.

loop init next done ¥ letrec f(x:0)=1if (donex) then x else f (nextx) in
(f init)

Since loop is a straightforward generalization of the function search, the analysis given in

Proposition 2.5.3 applies. To be more specific, writing next™ x for the result next(next(. . .

(next x) ...)) of applying next to x a total of n times, we we have the following proposi-
tion.

Proposition 2.5.8 If done (next! init) —> false for all i < n and done (next” init) —>
true, then

loop init next done —> next" init

The translation of iterative loops into recursive functions always produces a recursive
function with a particular form. A recursive function with a definition of the form

f(x)=if B then M else f(N),

where neither B, M nor N contains f, is called a rail-recursive function. In languages
such as Lisp and Scheme, where recursive functions are used extensively, tail-recursive
functions are often recognized by the compiler. The reason for treating tail-recursive func-
tions separately is that these may be compiled into efficient iterative code that does not
require a new activation record (stack frame) for each recursive call in the source program.

2.5 PCF Programming Examples, Expressive Power and Limitations 103

Example 2.5.9 Using pairing, we may translate the following iterative algorithm into
PCF.

x :=100;
y:=0;
while =(Eg?x y)dox:=x —1;y:=y + 1 end

The initial value of the pair (x, y) is (100, 0). Using the syntactic sugar introduced in
Exercise 2.2.12, we may write the body of the while loop as the following “next” function

next ¥ J(x:nat,y:nat). (x — 1, x + 1).

The test for loop termination may be written similarly as done % A(x:nat, y:nat).
(Eq?x y). Putting these together, the while loop may be written as

L ¢ loop (100, 0) next done
If we let F be the term
F & X\f:nat x nat — nat x nat. Ap:nat x nat.if (done p) then p else f(nextp).
then we may reduce the PCF expression representing the while loop as follows:
L = (Af:nat x nat — nat x nat. f {100, 0))(fix F)
— (fix F)(100, 0)
— (fix F)(100, 0)
— (Ap:nat x nat.if Eq?(Proj,p)(Proj,p) then p
else (fix F)((Proj,p) — 1, (Proj,p) + 1))(100, 0)
— if Eq?(Proj (100, 0))(Proj,(100,0)) then (100, 0)
else (fix F){(Proj (100, 0)) — I, (Proj,(100, 0)) + 1)

At this point, we depart from left-most reduction order and evaluate all the projections,
additions and subtractions before continuing.

—> if Eq?1000 then (100, 0) else (fix F){99, 1)
— if false then (100,0) else (fix F){(99, 1)
— (fix F){(99, 1)

At this point, we have completed “execution” of one iteration of the while loop. Contin-
uing in this manner, we can see that the functional expression computes the final values

104 The Language PCF

of x and y by approximately the same sequence of additions, subtractions and tests as the
iterative while loop. [

We may compare the sequence of operations involved in a while loop and its PCF
translation by giving a reduction rule for while loops. A natural rule which corresponds
to the way that iteration is actually implemented is

while —B do S end — if B then skip else(S; while =B do S end)

where skip is a statement that does nothing. We may use this reduction rule to argue
informally that an iterative algorithm

X 1= init;

while —(done x) do x := (next x) end

and its translation into PCF perform the same sequence of evaluations of init,next and

done. The reader is encouraged to work this out in Exercise 2.5.10.

Exercise 2.5.10 Translate the imperative algorithm

q:=0;

r:=m;

while r > n do
qg:=q+1
r:=r—mn;
od

into PCF by defining functions init next done. (You will have to use recursion to implement
the test r > n.) Use the reduction rule for while loops to argue informally that the loop and
its PCF translation involve essentially the same arithmetic operations. You may assume
left-most order of PCF evaluation.

Exercise 2.5.11 Translate the following imperative algorithm to compute the greatest
common divisor into PCF by defining functions init next done.

while n # 0do

ri=m;

while r > n do
r:=r—n;
od

m:=n;

n:=r;

2.5 PCF Programming Examples, Expressive Power and Limitations 105

Think of this program as using m and n as input, and producing a new value of m as
output.

2.5.4 Total Recursive Functions

In this section and the next, we compare the natural-number functions definable in PCF
with the classes of total and partial recursive functions (defined below and in the next
section). The main results are that all recursive total and partial functions on the natural
numbers are definable in PCF. Similar proofs using Turing machines are given in the
exercises.

A commonly accepted belief, called Church’s thesis, is that every numeric function that
is computable by any practical computer is recursive. This thesis was formulated in the
1930’s, before electronic computers, during a period when mathematicians were actively
investigating the possibility and impossibility of solving problems by systematic algo-
rithms. One reason for believing Church’s thesis is that all of the formalisms for defining
computable functions that were proposed in the 1930’s, and since, give rise to the same set
of functions on the natural numbers. The early formalisms include the recursive functions,
Turing machines, and lambda calculus. It follows from Church’s thesis (although this is no
way to prove something rigorously), that every partial or total function definable in PCF is
recursive. The reason is that we have an algorithm for computing any definable function,
namely reduction. It is not hard to give a rigorous proof that every PCF-definable function
is recursive, although we will not do so since this involves tricks with recursive functions
and does not shed much light on PCF itself. One reason for proving that every recursive
total or partial function is definable in PCF is that, via Church’s thesis, this gives evidence
that every computable function on the natural numbers is definable in PCF. In other words,
this is as close as we can get to showing that, at least for natural-number functions, PCF
is a “universal” programming language. The second reason is that, by appealing to unde-
cidable properties of recursive functions, we obtain interesting undecidability properties of
PCFE.

A subtle issue that is not often discussed in basic courses on computability or complex-
ity theory is the limitation of Church’s thesis for functions on types other than the natural
numbers. For basic data such as booleans, strings or arrays of such data, it makes sense
to think of the computable functions as precisely those functions we can compute when
we code each boolean, string or array by a natural number. By this reasoning, we can see
that any programming language that lets us associate natural numbers with its basic data
types, and compute all recursive functions on the natural numbers, is “universal” for defin-
ing computable functions on all the basic data types. However, for “infinite” values, such

106 The Language PCF

as functions, the issue is not as clear cut. In particular, mathematical logicians have identi-
fied several distinct classes of “computable functions on the natural-number functions” and
have not been able to prove that these are identical. A related phenomenon is discussed in
Section 2.5.6, where we show that certain “parallel” operations are not definable in PCF,
in spite of the ability to define all recursive functions on the natural numbers.

Since there are some subtle points about termination and function composition for par-
tial functions, we begin with the simple case of total functions. Since we have pairing in
PCF, we will consider total recursive functions of more than one argument. A function f
is numeric if f: N* — N for some k > 0. If C is a class of numeric functions, we say C is

« Closed under composition if, for every fi, ..., fo N¥ - N and g: Nt — N from C,
the class C also contains the function 4 defined by

hny,....,np)=8(H(ny,....¢06), ..., fe(ny, ..., nk)),

* Closed under primitive recursion if, for every f: N* =~ N and g: N¥*2 —~ A/ from C,
the class C contains the function / defined by

h(O,nl,...,nk) =f(n1,...,nk)

hm+ 1, ny,....np)=gh(m,ny,...,n8),m,nyq,...,RHL),

* Closed under minimization if, for every f: N**! — N from C such that Va, ..., ng.
Im. f(m,ny,...,ng) =0, the class C contains the function g defined by

g(ny, ..., ng) =theleast m such that f(m,ny,...,ng) =0.

The class R of total recursive functions is the least class of numeric functions that contains
the projection functions Projf‘(nl, ..., ng) = n;, the successor function Ax: nat. x + 1, the
constant zero function Ax:nat.0, and that is closed under composition, primitive recur-
sion, and minimization.

We can show that every total recursive function is definable in PCF, in the following
precise sense. For any natural number n € A/, let us write [n] for the corresponding
numeral of PCF. We say a numeric function f:N* — A is PCF-definable, or simply
definable, if there is a closed PCF expression M:nat* — nat, where nat* is the k-ary
product type nat X ... X nat, such that

Vay,...,ng e N. Mm%, ..., [m1)=[fny, ...,n07.
Theorem 2.5.12 Every total recursive function is definable in PCF.

Proof To show that every total recursive function is definable in PCF, we must give the
projection functions Projf.‘, the successor function, and the constant zero function, and

2.5 PCF Programming Examples, Expressive Power and Limitations 107

show closure under composition, primitive recursion, and minimization. Some of the work
has already been done in Exercise 2.5.7 and Proposition 2.5.3. Following the definitions in
Section 2.5.1, we let

Proj] & Ax:nat.x

Proj¢ & ix:nar*. Projx (1 <k)

Proj’ & ix:nar*. Proji | (Proj,x) (1 <i<k)

As in the definition of the class of total recursive functions, we may define successor and
the constant function returning zero by

succ 4 Ax:nat.x +1,
zero ¥ Ax:nat.0.

If fi... fo N* — N and g: N¢ — A are represented by the PCF terms M| ... Mg and N,
respectively, then the function A defined by composition is represented by the term

Ax: natk. N{Mx, ..., Mx).

If f:N*— N and g: N**2 — A are represented by M and N, then the function h
defined by primitive recursion is represented by

A{x:nat, y:natk).prim (M y) (A(m: nat, n:nat). N (m, (n, y))) x,

where prim is as in Exercise 2.5.7. Finally, to establish closure under minimization, sup-
pose f:N**t! — A is represented by M, and for every n; ...n; there exists an m such
that f(m, n;...nx) = 0. By Proposition 2.5.3, the function g defined by minimization is
represented by

k

Ax:nat®.search(An:nat. M (n, x)). u

Exercise 2.5.13 Although a Turing machine may compute a partial function, there is a
natural total function associated with every Turing machine, namely, the function giving
the contents of the tape after n steps. This exercise asks you to show directly that this
function is definable in PCF and conclude that every function computed by a Turing
machine that halts on all input is definable in PCF.

There are a number of equivalent definitions of Turing machines. As a reminder, and
to set notation, we briefly review one standard definition (from [HU79]) before stating the
problem. A Turing machine is given by a tuple

108 The Language PCF

(Q,.Z,1,68,q1, b, F)

where Q = {q1, ---, qn} is a finite set of states; ¥ is the (finite) input alphabet, not including
b, the “blank” symbol; I is the (finite) tape alphabet with " © Z;

§:0xI'=0OxT x{L,R}

is a partial function telling the next state, symbol to write on the tape, and direction to
move the tape head; g is the start state; p is the “blank” symbol; and F € Q is the set
of final accepting states. Since § may be a partial function, §(g, g) may be undefined for
some state g € O and tape symbol g € T". In this case, the machine halts and does not
move. (The machine also halts if it moves off the left end of the tape.) The machine accepts
its input if it halts in a final state g € F. Since Q, I" and {L, R} are all finite, the transition
function § is a finite set. There is no loss of generality in assuming that there is exactly one
final state g € F and that 8(q, g) is defined iff g # g 7. This makes § a total function from
(@ —{gf) xT'to O x ' x {L, R}. We may assume that £ = {0, 1} and I' = Z U { p},
since any symbol may be coded by a sequence of bits (using ASCII, for example). In this
problem, you may represent 4 by the number 2.

(a) We will code a Turing machine tape using a coding of pairs as natural numbers.
Specifically, a pair of natural numbers (n, m) may be coded by the natural number

prinm)=n+m)(n+m+1)/2+m.

This may be understood by arranging all the pairs of natural numbers in an infinite table,
with {0, 0) in the upper left corner and first and second coordinates increasing as we
move down and right in the table (respectively). If we “walk” through this table along
the northeast diagonals, moving to the next diagonal when we reach the top border, then
the pair (n, m) is reached after pr(n, m) steps. Show that the pairing function pr and the
corresponding projection functions p; and p> mapping pr(n, m) to n and m are definable
in PCF.

(b) We may code a finite sequence of natural numbers as follows:
seq() =pr(0,0)
seq(ns) =pr((k + 1), pr(n, seq(s)))

where in the seq(ns) case we may follow the convention that & is the length of sequence
5. Show that if m = seq(ns), we may compute » from m in PCF. Show that if m = seq(s),
we may compute seq(ns) from m and n in PCE.

(c) Let M be a Turing machine, as described above, with states numbered 1 through g.

2.5 PCF Programming Examples, Expressive Power and Limitations 109

Suppose g < g is a natural number representing a state of M, natural number n, codes
the sequence of tape symbols to the left of the tape head, as in (b) above, and n, codes the
sequence of tape symbols under and to the right of the tape head. Show that the next state
and two numbers representing the contents of the Turing machine tape are computable
from the g, n¢ and n, in PCF.

(d) Show that for any Turing machine M, the function
fm(J, s, n) = the jth tape symbol after n computation steps of M on initial tape s

is representable in PCF, where the initial tape contents are coded as a natural number.

(e) A Turing machine M computes a total numeric function f: N"— A if, when started
with the binary representation of # on the tape, the machine halts with the binary represen-
tation of f(n) on the tape. Show that every total function computed by a Turing machine
is definable in PCF.

2.5.5 Partial Recursive Functions

In this section, we show that every partial recursive function is definable in PCF. Since
it is generally believed that all mechanically computable functions are partial recursive
functions, as discussed in Section 2.5.4, the main theorem of this section suggests that
every function on the natural numbers that could be computed by any ordinary computer is
definable in PCF. Two corollaries are that there is no algorithm to determine whether a PCF
expression has a normal form and no algorithm to determine whether two PCF expressions
are provably equal.

Although we may prove the main theorem of this section without repeating the inductive
argument of Theorem 2.5.12, there are two reasons for giving a direct inductive proof. The
first is to emphasize the difference between representing a total function and representing
a partial one. The second is to gain further intuition for the evaluation mechanism of PCF
and its relation to standard mathematical conventions about partial functions. This intuition
may be useful in considering “parallel” functions in the next section.

We discuss the representation of partial functions before defining the class of partial
recursive functions.

Suppose we have some partial function f: N'— N which we would like to represent by
a PCF expression. We clearly want a closed term M: nat — nat such that M [n] gives the
value of f(n) when f(n) is defined. However, it is not as clear what property M should
have if f(n) is not defined. One possibility, of course, is to not to require any property of
M [n]. However, an accurate representation of a partial function is a term M with M [n]
“defined” iff f(n) is defined. This requires some notion of “undefined term.” A convenient
representation of undefinedness, or nontermination, is that M [n7] should have no normal

110 The Language PCF

form when f(n) is undefined. We will adopt this below for terms that represent numeric
functions.
We say a partial function f: N* — N is PCF-definable, or simply definable, if there is

a closed PCF expression M: nat* — nat such that for all ny, ..., nx € N, we have
M) = [f(n,...,n0)] if f(nl.’ ..., ng) is defined,
has no normal form otherwise

The reader familiar with untyped lambda calculus may know that the convention for partial
functions is to represent undefinedness by lack of a head normal form. For PCF, a head
normal form, is either a numeral, a boolean constant (true or false), or term of the form
Ax:0.M or (M, N}, according to its type. Since a term of type nat or bool has a normal
form iff it has a head normal form, the type constraints of PCF make the two possible
definitions equivalent. Those interested in untyped lambda calculus may wish to consult
[Bar84, Section 8.4] for a discussion of partial recursive functions in the pure, untyped
lambda calculus.

To show that every partial recursive function is definable in PCF, we give a precise
definition of the class of all partial recursive functions. A partial function f is numeric
if £: N* —~ N for some k > 0. If C is a class of partial numeric functions, we say C is

« Closed under composition if, for all partial functions fi, ..., fe: N* — N and g: N¢ —
N from C, the class C also contains the partial function 4 defined by

glmy,...,mg) ifm;= fi(ny,...,nx)defined 1 <i <¥¢
hng, ..., ng) = and g(m, ..., mg) is defined,
undefined otherwise.

« Closed under primitive recursion if, for every f: N* — N and g: N¥*2 —~ A/ from C,
the class C contains the partial function /4 defined by

T, _ fny, ..., nK) 1ff(n1.,...,nk)deﬁned
undefined otherwise.
glp,m,ny,...,nx), if p=h(m,ni,..., n) and
hm + 1,y . ng) = | g(p,m,ny, ..., ni) are defined,
undefined otherwise.

* Closed under minimization if, for every partial f: N**! —~ A from C, the class C con-
tains the partial function g defined by

2.5 PCF Programming Examples, Expressive Power and Limitations 111

the least m with f(m,ny,...,n;) =0,
when such an m exists,
glny, ..., ng) =

undefined otherwise.

The class PR of partial recursive functions is the least class of partial numeric func-
tions containing the projection functions Projf(nl, ..., ng) = n;, the successor function
Ax:nat.x + 1, the constant zero function Ax: nat. 0, and closed under composition, primi-
tive recursion, and minimization.

Theorem 2.5.14 Every partial recursive function is definable in PCF

Proof The proof is similar to the proof of Theorem 2.5.12, except that the term repre-
senting a partial recursive function must not have a normal form when the partial recursive
function is undefined. We can see that this requires some changes by considering the
composition case. If f, g: N' — N are unary partial recursive functions, represented by
PCF terms M and N, then in the proof of Theorem 2.5.12, we represent the composi-
tion A(n) = g(f (n)) by the term Ax: nat. N (Mx). However, this does not have the correct
termination behavior when f may be partial. For example, let g be the constant function
g(x) =3 and f a partial function with f(5) undefined. The ordinary mathematical con-
vention is to consider A(5) = g(f(5)) undefined since f(5) is undefined. However, the
application (Ax: nat. N (Mx)) 5 reduces to 3 in PCE.

A simple trick is to define a function cnvg that may be used to force nontermination in
PCF when required. Due to typing restrictions, we will define a separate function cnvg,
for each natural number & > 0. If f and g are numeric functions of k arguments, then
cnvg, f g will behave like g, except that an application to k arguments will only have a
normal form (or “halt”’) when the application of f has a normal form. For any £ > O, the
function cnvg; may be written as follows:

cnvg, fg Ax:nat®. if Eq?(fx)0 then gx else gx.

For any x, if fx can be reduced to normal form then (whether this is equal to zero or not)
the result is gx. However, if fx cannot be reduced to a normal form, then the conditional
can never be eliminated and cnvg, f g will not have a normal form. The main reason why
this works is that we cannot reduce Eg? (fx)O0 to true or false without reducing fx to
normal form.

Using cnvg, we can define a composition f and g that is defined only when f is defined.
For example, if f, g: ' — A are unary partial recursive functions represented by PCF
terms M and N, we represent their composition by the term cnvg M (Ax: nat.(N(Mx))).

112 The Language PCF

The generalization to the composition of partial functions fi,..., f: N¥ ~ N and
g: Nt —~ N is straightforward and left to the reader.

The remaining cases of the proof are treated similarly, using cnvg, for appropriate k.
The reader is encouraged to write out the argument for primitive recursion, and convince
him- or herself that no modification is needed for minimization.]

This theorem has some important corollaries. Both of the corollaries below follow from
a well-known undecidability property of recursive functions. Specifically, there is no re-
cursive, or algorithmic, method for deciding whether a recursive partial function is defined
on some argument. This fact is often referred to as the recursive unsolvability of the Halt-
ing Problem. Exercise 2.5.18 describes a direct proof that the PCF halting problem is not
solvable in PCF.

Corollary 2.5.15 There is no algorithm for deciding whether a given PCF expression has
a normal form.

Proof If there were such an algorithm, then by Theorem 2.5.14, we could decide
whether a given partial recursive function was defined on some argument, simply by writ-
ing the function applied to its argument in PCF.]

Corollary 2.5.16 There is no algorithm for deciding equality between PCF expressions.

Proof If there were such an algorithm, then by Theorem 2.5.14, we could decide
whether a given partial recursive function was defined on some argument. Specifically,
given a description of a partial function f, we may produce PCF term M representing the
application f (n) by the straightforward algorithm outlined in the proof of Theorem 2.5.14,
for any n. Then, using the supposed algorithm to determine whether if Eq? M M then

0 else 0=0, we could decide whether f(n) is defined. n

Exercise 2.5.17 A primitive recursive function is a total recursive function that is defined
without using minimization. The Kleene normal form theorem states that every partial
recursive function f: N* — A’ may be written in the form

f(ni, ..., nx) = p(the least n with t(i,ny, ..., nk,n) =1)

where p and # are primitive recursive functions that are independent of f, and i depends
on f. This is called the Kleene normal form of f, after Stephen C. Kleene, and the number
i is called the index of partial recursive function f. The Kleene normal form theorem may
be found in standard books on computability or recursion theory, such as [Rog67].

(a) Use the Kleene normal form theorem and Theorem 2.5.12 to show that every partial
recursive function is definable in PCF.

2.5 PCF Programming Examples, Expressive Power and Limitations 113

(b) Using the results of Exercise 2.5.13, show that every partial function computed by a
Turing machine is definable in PCF.

Exercise 2.5.18 1t is easy to show the halting problem for PCF is not solvable in PCF.
Specifically, the halting function on type o, H,, is a function which, when applied to
any PCF term M,, returns true if M has a normal form (“halts™), and false otherwise.
In this exercise, you are asked to show that there is no PCF term Hp,,; defining the halting
function on type bool, using a variant of the diagonalization argument from recursive
function theory. Since the proof proceeds by contradiction, assume there is a PCF term
Hpoo1: bool — bool defining the halting function.

(a) Show that using Hp,n, we may write a PCF term G: bool — bool with the property
that for any PCF term M: bool, the application GM has a normal form iff M does not.

(b) Derive a contradiction by considering whether or not fix G has a normal form.
2.5.6 Nondefinability of Parallel Operations

We have seen in Sections 2.5.4 and 2.5.5 that the PCF-definable functions on numerals
correspond exactly to the recursive functions and (in the exercises) the numeric functions
computable by Turing machines. By Church’s thesis, as discussed in Section 2.5.4, this
suggests that all mechanically computable functions on the natural numbers are definable
in PCF. However, as we shall see in this section, there are operations that are computable
in a reasonable way, but nor definable in PCF. The main theorem and the basic idea of
Lemma 2.5.24 are due to Plotkin [Plo77]. A semantic proof of Theorem 2.5.19 appears as
Example 8.6.3, using logical relations and the denotational semantics of PCF.

The main example we consider in this section is called parallel-or. Before discussing
this function, it is worth remembering that for a PCF term to represent a k-ary function
on the natural numbers, we only consider the result of applying the PCF term to a tuple
of numerals. It is not important how the PCF term behaves when applied to expressions
that are not in normal form. The difference between the positive results on representing
numeric functions in Sections 2.5.4 and 2.5.5 and the negative result in this section is that
we now take into account the way a function evaluates its arguments.

It is easiest to describe the parallel-or function algorithmically. Suppose we are given
closed terms M, N: bool and wish to compute the logical disjunction, M v N. We know
that either M —> true, M —> false, or M has no normal form, and similarly for N. One
way to compute M V N is to first reduce both M and N to normal form, then return
true if either is true and false otherwise. This algorithm computes what is called the
sequential-or of M and N’; it will only terminate if both M and N have a normal form.
For parallel-or, we wish to return true if either M or N reduces to true, regardless of

114 The Language PCF

Table 2.6
Evaluation contexts for lazy PCF reduction.

Ev[] ::= [1| EV[]14+ M | n+ Ev[]for numeral n
| Eq?Eev] | M | Eq?nEv|] for numeral n
|if EV[] then N else P
lPl‘OjiEV[] | EV[IM

whether the other term has a normal form. It is easy to see how to compute parallel-
or in a computational setting with explicit parallelism. We begin reducing M and N in
parallel. If either terminates with value true, we abort the other computation and return
true. Otherwise we continue to reduce both, hoping to produce two normal forms. If both
reduce to false, then we return false. To summarize, the parallel-or of M and N is true if
either M or N reduces to true, false if both reduce to false, and nonterminating otherwise.

The rest of this section will be devoted to proving that parallel-or is not definable in
PCEF, as stated in the following theorem.

Theorem 2.5.19 There is no PCF expression POR with the following behavior

true if M —> true or N —> true
PORM N —> 1 false if M —> false and N — false
no normal form otherwise

for all closed boolean expressions M and N.

We will prove Theorem 2.5.19 by analyzing the operational semantics of PCF. This
gives us an opportunity to develop some general tools for operational reasoning. The first
important decision is to choose a deterministic reduction strategy instead of reasoning
about arbitrary reduction order. Since we will only be interested in reduction on terms
of type nat or bool, we can use lazy reduction, defined in Section 2.4.3, instead of the
more complicated left-most reduction strategy. A convenient way to analyze the reduction
of subterms is to work with contexts. To identify a critical subterm, we define a special
form of context called an evaluation context. While the analysis of parallel-or only re-
quires evaluation contexts for boolean terms, we give the general definition for use in the
exercises and in Section 5.4.2. The evaluation contexts of PCF are defined in Table 2.6.

An example appears below, after two basic lemmas. To make the outline of the proof of
Theorem 2.5.19 as clear as possible, we postpone the proofs of the lemmas to the end of
the section.

There are two main properties of evaluation contexts. The first is that if M ¥ N, then M
matches the form of some evaluation context and N is obtained by reducing the indicated
term.

2.5 PCF Programming Examples, Expressive Power and Limitations 115

Lemma 2.520 If M "3 N, then there is a unique evaluation context EV[] such that
M = ev[M'’], the reduction M’ — N’ is an instance of one of the PCF reduction axioms,
and N = Eev[N'].

Since we can determine the unique evaluation context mentioned in the lemma by pat-
tern matching, evaluation contexts provide a complete characterization of lazy reduction.

The second basic property of evaluation contexts is that the lazy reduction of EV[M] is
the lazy reduction of M, when M has one. This is stated more precisely in the following
lemma.

Lemma 2.5.21 If M % M’ then, for any evaluation context EV[], we have EV[M] %
EV[M’].

A subtle point is that when M is a lazy normal form, the lazy reduction of EV[M] may
be a reduction that does not involve M.

Example 2.5.22 The left-most reduction of the term ((Ax:nat.Ay:nat.x + y)7)5 +
(Ax:nat.x) 3 is given in Example 2.4.11. As observed in Example 2.4.14 this is also the
lazy reduction of this term. We illustrate the use of evaluation contexts by writing the
evaluation context for each term in the reduction sequence. Since we underline the active
redex, the evaluation context is exactly the part of the term that is not underlined.

((Ax:nat. Ay nat.x +y)7)5+ (Ax:nat.x) 3 EV[]=([]15) 4+ (Ax:nat.x)3

= (Ay:nat.7+y)5+ (Ax:nat.x)3 EV[]=[]+ (Ax:nat.x)3
E (7 +5)+ (Ax:nat.x)3 EV[]=[]1+ (Ax:nat.x)3
et 124+ (Ax:nat.x)3 EV[]= 1241}

koo 1243 Ev[]=[]

15

If we look at the second evaluation context, EV[] =[] + (Ax:nat.x) 3, then it is easy
to see that when M ¥ M’ the lazy reduction of EV[M] will be EV[M] ™ EV[M'], as
guaranteed by Lemma 2.5.21. However, if we insert a lazy normal form such as 2 into
the context, then the resulting term, EV{2] = 2 4+ (Ax: nat. x) 3, will have its lazy reduction
completely to the right of the position marked by the placeholder [] in the context. Another
case arises with the first context, Ev[] = ([]5) + (Ax:nat.x) 3. If we insert the lazy
normal form M = Ay:nat.7 + y, we obtain a term EV[M] whose lazy reduction involves
a larger subterm than M. [

We note here that left-most reduction can also be characterized using evaluation con-
texts. To do so, we add six more forms to the definition of evaluation context, correspond-
ing to the six rules that appear in Table 2.3 but not in Table 2.4. Lemma 2.5.20 extends

116 The Language PCF

easily to left-most reduction, but Lemma 2.5.21 requires the additional hypothesis that M
does not have the form Ax: o. My or (M1, M3).

We use Lemma 2.5.21 in the analysis of parallel-or by showing that if the normal form
of a compound term depends on the subterms M7, ..., M, as we expect the parallel-or of
M7 and M, to depend on M| and M,, then we may reduce the term to the form EV[M;],
for some i independent of the form of M|, ..., M. The intuition behind this is that some
number of reduction steps may be independent of the chosen subterms. But if any of these
subterms has any effect on the result, then eventually we must come to some term EV[M;]
where the next reduction depends on the form of M;. The “sequential” nature of PCF is
that when we reach a term of the form EV[M;], it follows from Lemma 2.5.21 that if M; is
not a lazy normal form, we continue to reduce M; until this subterm term does not lazy-
reduce further.

Since we are interested in analyzing the reduction steps applied to a function of several
arguments, we will use contexts with more than one “hole” (place for inserting a term).
A context C[-, ..., -] with k holes is a syntactic expression with exactly the same form
as a term, but containing zero or more occurrences of the placeholders [], ..., [Ix, each
assumed to have a fixed type within this expression. As for contexts with a single hole,
we write C[M1, ..., M;] for the result of replacing the ith placeholder []; by M;, without
renaming bound variables.

Our first lemma about reduction in arbitrary contexts is that the lazy reduction of a
term of the form C[Mj, ..., Mi] is either a reduction on C, independent of the terms
M,, ..., My placed in the context, or a reduction that depends on the form of one of the
terms My, ..., M;.

Lemma 2.5.23 Let C[-, ..., -] be a context with k holes. Suppose that there exist
closed terms Ny, ..., Ny of the appropriate types such that C[N1, ..., Ni] is not in lazy
normal form. Then C must have one of the following two properties:

(i) There is a context C'[-, ..., -] such that for all closed terms M, ..., My of the
appropriate types C[My, ..., Mi]1 *3 C'[M, ..., My].

(ii) There is some i such that for all closed terms My, ..., My of the appropriate types
there is an evaluation context EV[] with C[M, ..., My] = EV[M;].

We use Lemma 2.5.23 to prove the following statement about sequences of lazy reduc-
tions.

Lemma 2.5.24 Let C[-, ..., -] be a context with k holes, let M1, ..., M be closed
terms of the appropriate types for C and suppose C[My, ..., M}] is a program with nor-
mal form N. Then either C[M], ..., M;] reduces to N for all closed M, ..., M; of the

2.5 PCF Programming Examples, Expressive Power and Limitations 117

appropriate types or there is some integer i such that for all closed M, ..., M; of the
appropriate types there is an evaluation context EV[] with C[M], ..., M}] %5 Ev[M]].

An intuitive reading of this lemma is that some number of reduction steps of a term
C[Mj, ..., Mi] may be independent of all the M;. If this does not produce a normal form,
then eventually the reduction of C[My, ..., My] will reach a step that depends on the form
of some M;, with the number i depending only on C.

If we replace lazy reduction with left-most reduction, then we may change lazy normal
form to normal form in Lemma 2.5.23 and drop the assumption that C[My, ..., M;] is a
program in Lemma 2.5.24.

Using Lemmas 2.5.21 and 2.5.24, we now prove Theorem 2.5.19.

Proof of Theorem 2.5.19 Suppose we have a PCF expression POR defining parallel-
or and consider the context C[-, -] & POR[1;[]»- Since POR defines parallel-or,
Cltrue, true] —> true and C[false, false] —> false. By Lemma 2.5.24, there are two possi-
bilities for the lazy reduction of C[true, true] to true. The first implies that C[M, M] —>
true for all closed boolean terms M) and M;. But this contradicts C[false, false] — false.
Therefore, there is an integer i € {1, 2} such that for all closed boolean terms M;, M,
there is an evaluation context EV[| with C[M}, M,] 2 ev[M;]. But, by Lemma 2.5.21,
this implies that if we apply POR to true and the term fix,,,; (Ax: bool. x) with no normal
form, making fix,,,,; (Ax: bool. x) the ith argument, we cannot reduce the resulting term to
true. This contradicts the assumption that POR defines parallel-or.]

The reader may reasonably ask whether the non-definability of parallel-or is a peculiar-
ity of PCF or a basic property shared by sequential programming languages such as Pascal
and Lisp. The main complicating factor in comparing PCF to these languages is the or-
der of evaluation. Since a Pascal function call P(M,N) is compiled so that expressions M
and N are evaluated before P is called, it is clear that no boolean function P could compute
parallel-or. However, we can ask whether parallel-or is definable by a Pascal (or Lisp) con-
text with two boolean positions. More precisely, consider a Pascal program context P -, -]
with two “holes” for boolean expressions (or bodies of functions that return boolean val-
ues). An important part of the execution of P[M, N} is what happens when M or N may run
forever. Therefore, it is sensible and nontrivial to ask whether parallel-or is definable by a
Pascal or Lisp context. If we were to go to the effort of formalizing the execution of Pascal
programs in the way that we have formalized PCF evaluation, it seems very likely that we
could prove that parallel-or is not definable by any context. The reader may enjoy trying to
demonstrate otherwise by constructing a Pascal context that defines parallel-or and seeing
what obstacles are involved. In Lisp, it is possible to define parallel-or by defining your

118 The Language PCF

own eval function. However, the apparent need to define a non-standard eval illustrates
the sequentiality of standard Lisp evaluation.

Proof of Lemma 2.5.20 'We use induction on the proof, in the system of Table 2.4, that
M = N . The base case is that M — N is one of the reduction axioms (these are listed in
Table 2.2). If this is so, then the lemma holds with Ev[] = [|. The induction steps for the
inference rules in Table 2.4 are all similar and essentially straightforward. For example, if
we have P + R '™ Q + R by the rule

PO
P+R™ Q+R’

then by the induction hypothesis there is a unique evaluation context EV'[] such that
P =©eV'[P'], PP — Q' is a reduction axioms, and Q = EV'[Q’]. The lemma follows by
taking EV[| =EV/[] + R. n

Proof of Lemma 2.5.21 We prove the lemma by induction on the structure of evaluation
contexts. In the base case, we have an evaluation context EV[] = []. Since EV[M] = M and
EV[M'] = M’, it is easy to see that under the hypotheses of the lemma, EV[M] ¥ EV[M'].

There are a number of induction cases, corresponding to the possible syntactic forms of
EV[]. Since the analysis of each of these is similar, we consider three representative cases.

The case EV[1 =EV'[] + M; is similar to most of the compound evaluation con-
texts. In this case, EV[M] = EV/[M] + M; and, by the induction hypothesis, EV/[M]
EV/[M’]. Since EV/[M] is not syntactically a numeral, no axiom can apply to the entire
term EV'[M] + M. Therefore the only rule in Table 2.4 that applies is

EV[M] ™ EV/[M']
EV[M]+ M ® eV M|+ M~

This gives us EV[M] % Ev[M’].

The two other cases we will consider are projection and function application. A context
EV[] =Proj;EV'[] is an evaluation context only if EV'[] does not have the syntactic form
of a pair. Since M ™3 M’ implies that M is not a pair, we know that EV[M] and EV'[M]
do not have the syntactic form of a pair. It follows that no reduction axiom applies to the
entire term Proj,Ev/[M]. Therefore, by the induction hypothesis that EV'[M] % EV/[M],
we conclude that EV[M | = Proj,EV'[M] %4 Proj,Ev'[M'] = EV[M'].

The last case we consider is EV[] = EV'[] V. This is similar to the projection case. The
context EV'[] cannot be a lambda abstraction, by the definition of evaluation contexts,
and M is not a lambda abstraction since M % M’. It follows that Ev'[M] does not have
the syntactic form of a lambda abstraction. Since the reduction axiom (8) does not apply

2.5 PCF Programming Examples, Expressive Power and Limitations 119

to the entire term EV/[M] N, we use the induction hypothesis EV/[M] % Ev/[M’] and the
definition of lazy reduction in Table 2.4 to conclude that EV[M] % ev(M’]. n

Proof of Lemma 2.5.23 We prove the lemma by induction on the structure of contexts. If
C is a single symbol, then it is either one of the placeholders, [];, a variable or a constant.
It is easy to see that C has property (if) if it is a placeholder and property (i) if it is some
other symbol.

ForacontextC[-, ..., -1+ Caf-, ..., -], we consider two cases, each dividing into
two subcases when we apply the induction hypothesis. If there exist terms M, ..., M;
with Ci[M], ..., Mi] not in lazy normal form, then we apply the induction hypothesis to
Cr. f Ci[My, ..., M1 Ci[M). ..., My] for all My, ..., My, then it is easy to see from
the definition of lazy reduction that

C][M|,,..,Mk]+62[M|,.,.,Mk]l_‘E>yCi[M1, e, Ml + Co[My, .., My

for all My, ..., M. On the other hand, if for every M, ..., My we can write C,[M|, ...,
My] = EV[M;], then

CiIMy, ..., M+ Co[My, ..., Ml =EVIM;]1+Co[My, ..., Mi]

and we have an evaluation context for M;. The second case is that C;[M, ..., M;]is a
numeral and therefore M\, ..., My do not occur in C1[M1, ..., Mi]. In this case, we apply
the induction hypothesis to C; and reason as above.

The induction steps for Eq? and if ... then ... else ... are similar to the addi-
tion case. The induction steps for pairing and lambda abstraction are trivial, since these are
lazy normal forms.

For a context Proj,C[-, ..., -], we must consider the form of C.IfC[-, ..., - =[1;,
then Proj,C[-, ..., -] satisfies condition (i/) of the lemma since this is an evaluation
context. If C[-, ..., -]1=(i[-. ..., -1, Cal-, ..., - 1), then Proj,C[-, ..., -] satis-
fies condition (i). If C[-, ..., -] has some other form, then Proj,C[M;, ..., M;] cannot

be a (proj) redex. Therefore, we apply the induction hypothesis to C and reason as in the
earlier cases.

The induction step for a contextCi[-, ..., -1Ca[-, ..., -1is similar to the Proj; case,
except that we will need to use the assumption that all the terms we place in contexts
are closed. Specifically, if Ci[-, ..., -]=Ax:0.C3[-, ..., -], then let C’ be the context
Cle,..., 1=[Cal-, ..., -1/xICi[-, ..., -] Forall closed My, ..., My we have

x:0.C3[My, ..., MiDCa[My, ..., M1 2 C'[My, ..., Mi]

and the context satisfies condition (i) of the lemma. If Ci[-, ..., -] =1];, then as in the
projection case, the application context satisfies condition (i/) of the lemma. Finally, if

120 The Language PCF

Cil[-, ..., -]11is some context that is not of one of these two forms, we reason as in the
addition case, applying the induction hypothesis to either C; or, if Ci[My, ..., Mi] is a
lazy a normal form for all M, ..., My, the context C,. This completes the proof.]

Proof of Lemma 2.5.24 1etC[-, ..., -]be a context with k holes and let M, ..., My
be closed terms of the appropriate types such that C[M, ..., M] has normal form N of
observable type. Then C[M1, ..., Mi] %%, N, where n indicates the number of reduction
steps. We prove the lemma by induction on 7.

In the base case, C[M}, ..., My] = N is in normal form. There are two cases to con-
sider. The degenerate one is that C[M], ..., M,i] is in normal form for all closed terms
Mj, ..., M, of the appropriate types. But since the only results are numerals and boolean
constants, M{, M,Q must not appear in N and the lemma easily follows. The sec-
ond case is that C[M],..., M;] is not in normal form for some M{,..., M;. Since
C[My, ..., My] is in normal form, condition (i) of Lemma 2.5.23 cannot hold. Therefore
CIM{, ..., Ml =EV[M]].

In the induction step, with C[My, ..., Mi] 3% | N, Lemma 2.5.23 gives us two cases.
The simpler is that there is some i such that for all closed terms M7, ..., M, of the ap-
propriate types C[M], ..., M;] has the form EV[M/]. But then clearly C[M], ..., M;] %
EV[M] and the lemma holds. The remaining case is that there is some context C'[-, ..., -]
such that for all M], ..., M; of appropriate types, we have a reduction of the form

CIMy, ..., M1 C'[My, ..., Mi] %, N.

The lemma follows by the induction hypothesis for C'[- ... , - 1. This concludes the proof.
L}

Exercise 2.5.25 Show that Lemma 2.5.24 fails if we drop the assumption that C[M|, .. .,
M;] is a program.

Exercise 2.5.26 This exercise asks you to prove that parallel-conditional is not defin-
able in PCF. Use Lemmas 2.5.21 and 2.5.24 to show that there is no PCF expression
PIF 4 : bool — nat — nat — nat such that for all closed boolean expressions M: bool
and N, P, Q: nat with Q in normal form,

M —> true and N has normal form Q or,
PIF 0t M N P —> Q iff | M —> false and P has normal form Q or,
N, P both have normal form Q.

(If we extend Lemmas 2.5.21 and 2.5.24 to left-most reduction, the same proof shows that
PIF, is not definable for any type o.)

2.5 PCF Programming Examples, Expressive Power and Limitations 121

Exercise 2.5.27 The operational equivalence relation =,, on terms is defined in Sec-
tion 2.3.5. Show that if M and N are either closed terms of type nat or closed terms of
type bool, neither having a normal form, then M =, N.

Exercise 2.5.28 A plausible statement that is stronger than Lemma 2.5.24 is this:

Let C[-,..., -] be a context with k holes, let M;,..., My be closed terms of the
appropriate types for C and suppose C[M;,..., Mi] % N, where N does not fur-
ther reduce by lazy reduction. Then either C[M], ..., M;] reduces to N for all closed
Mj, ..., M, of the appropriate types or there is some integer i such that for all closed
Mj, ..., M, of the appropriate types there is an evaluation context EV[] with C[M], ...,
M;] »% EV[M]].

The only difference is that we do not require N to be in normal form. Show that this
statement is false by giving a counterexample. This may be done using a context C[] with
only one placeholder.

Exercise 2.5.29 [Sto91a] This problem asks you to show that parallel-or, boolean
parallel-conditional and natural-number parallel-conditional are all interdefinable.
Parallel-or is defined in the statement of Theorem 2.5.19 and parallel-conditional is de-
fined in Exercise 2.5.26. An intermediate step involves parallel-and, defined below.

(a) Show how to define POR from PIF,, by writing a PCF expression containing
PIF o1

(b) Show how to define PIF},,; from PIF ,, using an expression of the form
Ax:bool. Ly:bool. Lz: bool. Eq? 1 (PIF ;i x M N).
(¢) Parallel-and, PAND, has the following behavior:

true if M —> true and N —> true,
PANDM N —> 1 false if M —> false or N —> false,
no normal form otherwise.

Show how to define PAND from POR by writing a PCF expression containing POR.

(d) Show how to define PIF,, from POR using an expression of the form
Ax:bool. y:nat. Lz: nat. search P

where P:nat — bool has x, y, z free and contains POR, PAND, and Eq?. The essential
properties of search are summarized in Proposition 2.5.3 on page 99.

122 The Language PCF

2.6 Variations and Extensions of PCF

2.6.1 Summary of Extensions

This section briefly summarizes several important extensions of PCF. All are obtained by
adding new types. The first extension is a very simple one, a type unit with only one
element. The second extension is sum, or disjoint union, types. With unit and disjoint
unions, we can define bool as the disjoint union of unit and unit. This makes the primitive
type bool unnecessary. The next extension is recursive type definitions. With recursive type
definitions, unit and sum types, we can define nar and its operations, making the primitive
type nat also unnecessary. Other commonly-used types that have straightforward recursive
definitions are stacks, lists and trees. Another use of recursive types is that we can define
the fixed-point operator fix on any type. Thus with unit, sums and recursive types, we may
define all of the type and term constants of PCF.

The final language is a variant of PCF with lifted types, which give us a different view
of nontermination. With lifted types, written in the form o, we can distinguish between
natural-number expressions that necessarily have a normal form and those that may not.
Specifically, natural-number terms that do not involve fix may have type nat, while terms
that involve fix, and therefore may not have a normal form, have the lifted type nat .
Thus the type nat of PCF corresponds to type nat) in this language. The syntax of many
common programs becomes more complicated, since the distinction between lifted and
unlifted types forces us to include additional lifting operations in terms. However, the
refinement achieved with lifted types has some theoretical advantages. One is that many
more equational or reduction axioms become consistent with recursion. Another is that we
may study different evaluation orders within a single framework. For this reason, explicit
lifting seems useful in meta-languages for studying other programming languages.

All of the extensions summarized here may be combined with polymorphism, treated in
Chapter 9 and other typing ideas in Chapters 10 and 11.

2.6.2 Unit and Sum Types

We add the one-element type unit to PCF, or any language based on typed lambda calculus,
by adding unit to the type expressions and adding the constant *: unit to the syntax of
terms. The equational axiom for * is

M = x: unit (unit)

for any term M: unit. Intuitively, this axiom says that every element of type unit is equal
to *. This may be used as a reduction rule, read left to right. While unir may not seem very
interesting, it is surprisingly useful in combination with sums and other forms of types.

2.6 Variations and Extensions of PCF 123

It should be mentioned that the reduction rule for unit terms causes confluence to fail,
when combined with n-reduction [CD91, L.S86]. This does not have an immediate conse-
quence for PCF, since we do not use n-reduction.

Intuitively, the sum type o + t is the disjoint union of types o and t. The difference
between a disjoint union and an ordinary set union is that with a disjoint union, we can tell
which type any element comes from. This is particularly noticeable when the two types
overlap or are identical. For example, if we take the set union of int and int, we just get int.
In contrast, the disjoint union of int and int has two “copies” of int. Informally, we think
of the sum type int + int as the collection of “tagged” integers, with each tag indicating
whether the integer comes from the left or right int in the sum.

The term forms associated with sums are injection and case functions. For any types o
and 7, the injection functions Inleft”* and Inright”* have types

Inleft®’ : c—so+7

tG,'[

Inrigh T—>0+T

Intuitively, the injection functions map o or T to o + t by “tagging” elements. However,
since the operations on tags are encapsulated in the injection and case functions, we never
say exactly what the tags actually are.

The Case function applies one of two functions to an element of a sum type. The choice
between functions depends on which type of the sum the element comes from. For all types
o, T and p, the case function Case”** has type

0,T,p

Case o+ T)> (0> p)>(t—>p)>p

Intuitively, Case”"” x f g inspects the tag on x and applies f if x is from o and g if x is
from t. The main equational axioms are

Case” ™" (Inleft”" x) fg = fx (case),
Case” ™" (Inright®* x) f g = gx (case)

Both of these give us reduction axioms, read left to right. There is also an extensionality
axiom for sum types,

Case”"? x (f o Inleft®") (f o Inright”®) = f x, (case)s

where f:(0c + 1) — (0 + 1). Some consequences of this axiom are given in Exer-
cise 2.6.3. Since the extensionality axiom leads to inconsistency, when combined with
fix, we do not include this equational axiom in the extension of PCF with sum types (see
Exercise 2.6.4). We will drop the type superscripts from injection and case functions when
the type is either irrelevant or determined by context.

124 The Language PCF

As an illustration of unit and sum types, we will show how bool may be eliminated if
unit and sum types are added to PCF. We define bool by

bool £ unit + unit

and boolean values true and false by
true & Inleft *

false & Inright *

The remaining basic boolean expression is conditional, if ... then ... else
We may consider this sugar for Case, as follows:

if M then N else P (l_e—_f Case””M(Kp,uni;N) (Kp,unitP)’

where N, P:p and K i is the lambda term Ax: p. Ay:unit. x that produces a constant
function. To show that this works, we must check the two equational axioms for condi-
tional:

if true then M else N=M,
if false then M else N=N.

The reader may easily verify that when we eliminate syntactic sugar, the first equational
axiom for Case yields if true then M else N = K unitM * = M, and similarly for
the second equation.

Other uses of sum types include variants and enumeration types, considered in Exer-
cises 2.6.1 and 2.6.2.

Exercise 2.6.1 A variant type is a form of labeled sum, bearing the same relationship
to sum types as records do to product types. A variant type defining a sum of types
o1, ..., 0 is written [€1: 07, .. ., £x: ok], where £, ..., £; are distinct syntactic labels. As
for records, the order in which we write the label/type pairs does not matter. For example,
[A:int, B: bool] is the same type as [B: bool, A: int].

Intuitively, an element of the variant type [£1:07, ..., £x: o¢] is an element of one of
the types o;, for 1 <i < k, tagged with label £;. More precisely, if M: o;, then the expres-
sion Zl{e“"‘"”'l""g"](Mi) is an expression of type [£1: 01, ..., £k ox]. The case function for

(€1:01, ..., £k or] has type
Caselétot okl P (g liiop] = (01— p) = ... —> (G = p) = p
and satisfies the equation

Caselt vt tokl 0 0. (MY) f1 .. fi= fi M;.

2.6 Variations and Extensions of PCF 125

(Although the label/type pairs are unordered in [£1: 01, . .., £: 0], the order of arguments
clearly matters for Casel %149 # y Following the pattern we use to treat records as
sugar for products (see Section 2.5.1), show how to treat variants as syntactic sugar for
sums. Illustrate this by translating an expression containing occurrences of two different
variant types into PCF with sums.

Exercise 2.6.2 Enumeration types appear in Pascal and some subsequent programming
languages. The elements of an enumeration type ({1, ..., £,) are the literals £;, ..., £,,
which are considered distinct values not equal to any values of any other type. (We do
not consider subranges or subtypes of enumeration types here.) Show how to regard the
enumeration type (€1, . .., £,) as syntactic sugar for the variant [£1: unit, ..., £;: unit] and
illustrate your technique by showing how to translate an expression containing enumera-
tion types and literals into a PCF expression with unit and variants.

Exercise 2.6.3 Prove the following consequences of the extensionality axiom for sum
types, using the equational axioms and inference rules of PCF as needed.

(a) Case x Inleft Inright = x.

(b) f(Case x (g o Inleft) (g o Inright)) = Case x (f o g o Inleft) (f o g o Inright).

(¢) f(Aif M then N else P)=if M then fN else fP, when desugared into
sum operations as described in this section.

d M=izz0+t.CasezN P :(0c + 1) > (0 + 1) is provable whenever Ax:o. M
(Inleftx) =N :0 — (0 + v) and Ay: T. M(Inright y) = P : T — (0 + 1) are both prov-
able and z is not free in N or P.

Exercise 2.6.4 This exercise asks you to show that the extensionality axiom for sums
is inconsistent with the equational axiom for fix, when combined with the rest of the
equational proof system of PCF. The first observation of this phenomenon is generally
credited to Lawvere [Law69].

(a) Define functions not: bool — bool and eq?: bool — bool — bool and show that when
we regard bool as sugar for unit 4 unit, we can prove the following three equations with
boolean variable x:

not (notx) =x
eq? x (not x) = false
eq?x x = true

You may use the results of Exercise 2.6.3.

126 The Language PCF

(b) Recall from Exercise 2.3.2 that every equation between well-formed terms of the same
type is provable from true = false by the axioms and inference rules of PCF. Use the three
equations proved in part (a) to prove true = false. You can do this by substituting a boolean
expression of the form fix B for x in two of the equations.

2.6.3 Recursive Types

In some programming languages, it is possible to define types recursively. An example
is ML, which has recursive datatype declarations (see Exercise 2.6.8). We may add
recursively-defined types to PCF, or any related language based on lambda calculus, by
adding type variables r, s, 7, . .. to the syntax of type expressions and a new form of type
expression, ut.o. Intuitively, ut.o is the smallest type (collection of values) satisfying the
equation

t=o,

where ¢ will generally occur in 0. As with recursive definitions in PCF, we could introduce
a fixed-point operator and write fix (Af. o) for a solution to the equation t = o. The syntax
ut.o could be considered sugar for fix (At. o). However, we will avoid lambda abstraction
in types by taking p as primitive. We consider the denotational semantics of recursive type
declarations in Section 7.4.

The operator p binds ¢ in pt.0, so we have both free and bound type variables in type
expressions. However, since no term constructs bind type variables, we only use closed
types in terms. More specifically, the type expressions of PCF with nat and bool eliminated
but unit, sum and recursive types added are the closed type expressions generated by the
following grammar:

o =t |unit|o+o|oxo|oc—>o0|uto

Since terms that contain types with free type variables lead to polymorphism, these are
discussed in Chapter 9. We consider type expressions that differ in the names of bound
variables equivalent.

With recursive types, we must consider the issue of type equality with some care. Al-
though intuitively p#.0 introduces a solution to the equation # = o, there are two possible
interpretations. One is that these are truly indistinguishable types. In this view, type equal-
ity becomes relatively complicated, since ¢ = o implies that 1 = [o/¢]o. Written using the
W syntax, this gives us the equation

ut.o =[ut.o/tlo (unfold)

Many other equations follow, including some that are not directly derivable from an axiom

2.6 Variations and Extensions of PCF 127

of this form [AC91]. While the type equality view has some appeal, this makes it more
difficult to determine whether terms are well typed. Specifically, we must consider type
equality in terms, allowing a term of one type to be used wherever a term of equal but
syntactically different type is required. We may avoid this by taking the second view of
type recursion.

The alternate view is to solve an equation ¢ = ¢ by finding a type ¢ that is isomorphic
to o. Isomorphic, in this context, means that there is a function from ut.o to [ut.o / tlo,
and one in the opposite direction, each the inverse of the other. We express this by writing

ut.o =fut.o/tlo

~

where = indicates an isomorphism. In the isomorphism view, ut.o is not equal to
[ut.o/t]o, but there are functions that allow us to “convert” a value of type ut.o to
[ut.o/t]o, and vice versa. With recursive types satisfying isomorphisms instead of equa-
tions, we may continue to use syntactic equality for type equality (except for renaming of
bound type variables). The price is that we must write the conversion functions between
wut.o and [ut.o/t]o in terms so that we know the syntactic type of each term exactly.

The term forms associated with recursive types allow us to convert a term of type ut.o
to type [ut.o/t]o, and vice versa.

If M:[ut.o/tlo thenup M: ut.o. (u Intro)
If M: ut.o thendn M: [ut.o/tlo. (u Elim)

These two functions are inverses, as stated by the following equational axioms.
dnupM)=M, up(dnM)=M. (up/dn)

Only the first axiom is traditionally used as a reduction rule (read left to right). While
the operations up and dn disambiguate the types of terms, these are often cumbersome
to write. In later chapters, we will occasionally omit up and dn from examples to improve
readability.

We will show that with recursive type definitions, unit and sum types, we can define nat,
numerals for 0, 1, 2, ..., and the successor, predecessor and zero-test functions. As shown
in Exercise 2.5.7, we may replace addition and equality test (Eq?) of PCF by successor,
predecessor and zero-test without changing the set of definable functions. Therefore, we
can translate any expression of PCF into the language with recursive type definitions, unit
and sum types.

A distinguishing feature of the natural numbers is that if we add one more element to the
set of natural numbers, we obtain a set that is in one-to-one correspondence, or isomorphic,
to the set of natural numbers. Since the sum unit + v has one more element than 7, we
therefore expect nat to satisfy the isomorphism

128 The Language PCF

nat = unit + nat
This leads us to the following definition of nar as a recursive type
nat & ut. unit +1t
Intuitively, this may be understood by considering the isomorphisms
nat = unit + nat

= unit + (unit + nat)

unit + (unit + (unit + nat))

e 1

1M

unit + (unit + (unit + (unit + (unit + ... + nat . . .))))

Since we can continue this expansion as long as we like, we can think intuitively of nat
as the disjoint union of infinitely many one-element types. We can think of the natural
number 0 as coming from the first unit in this sum, 1 from the second unit, and so on for
each natural number.

To avoid confusion between natural numbers and the terms that we use to represent
natural numbers, we will write [n] for the numeral (term) for n. Following the intuitive
picture above, we let the numeral [0] for natural number O be the term

[07 & up (Inleftx).
For any natural number n > 0, we may similarly define the numeral [n] by
[n] ¢ up (Inright up (Inright . ..up (Inleftx)...))

with n occurrences of Inright and n + 1 applications of up. The successor function just
applies up and Inright:

succ ¥ Ax:nat. up(Inright x)

We can check that this has the right type by noting that if x: nat, then Inright x belongs to
unit + nat. Therefore, up(Inright x): nat. The reader may verify that S[n] = [n + 1] for
any natural number n.

The zero-test operation works by taking x: nat and applying dn to obtain an element of
unit 4 nat, then using Case to see whether the result is an element of unit (i.e., equal to 0)
or not.

zero? & Ax:nat. Case" 4500l (qn x) (Ay: unit. true) (Az: nat. false)

2.6 Variations and Extensions of PCF 129

The reader may easily check that zero? [0] = true and zero? [n] = false for n > 0.

The final operation we need is predecessor. Recall that although there is no predecessor
of 0, it is conventional to take pred 0 = 0. The predecessor function is similar to zero?
since it works by taking x: nat and applying dn, then using Case to see whether the result
is an element of unit (i.e., equal to 0) or not. If so, then the predecessor is 0; otherwise, the
element of nat already obtained by applying dn is the predecessor.

pred * hx:nat. Case" "5l (dn x) (Ay: unit. 0) (Az: nat. z)

The reader may verify that for any x:nat we have pred(succx) = x. (This is part of
Exercise 2.6.5 below.)

A second illustration of the use of recursive types has a very different flavor. While most
common uses of recursive types involve data structures, we may also write recursive def-
initions over any type using recursive types. More specifically, we may define a function
fix, with the reduction property fix, —> Af:0 — o. f(fix, f) using only typed lambda
calculus with recursive types. The main idea is to use “self-application,” which is not pos-
sible without recursive types. More specifically, if M is any PCF term, the application M M
cannot be well-typed. The reason is simply that if M: t, then T does not have enough sym-
bols to have the form T — 1’. However, with recursive types, (dn M) M may be well-typed,
since the type of M could have the form ut.t — 1.

We will define fix,, using a term of the form dn M M. The main property we want for
dn M M is that

dn MM —> Af:0 —> 0. f(dn MM f).

This reduction gives us a good clue about the form of M. Specifically, we can let M have
the form

M & up(Ax:t.Af:0 > 0. f(dnxx f))

if we can find an appropriate type 7. Since we want dn MM : (6 — o) — o, the expres-
sion dnx x f in the body of M must have type o. Therefore, T must satisfy the isomor-
phism

121> (0 >0)—>o0.

We can easily achieve this by letting

T © utt—» (0 —>o0)—>o.

We leave it to the reader to verify that if we define fix, & dn MM, or more simply

fix, ® (Ax:t.Af:0 - o f(dnxx f)) (up(Ax:t.Af:0 — 0. f(dnxx f)))

130 The Language PCF

we have a well-typed expression with fix, —> Af:0 — 0. f(fix, f).

The fixed-point operator we have just derived is a typed version of the fixed-point
operator ® from untyped lambda calculus [Bar84]. As outlined in Exercise 2.6.7 below,
any untyped lambda term may be written in a typed way using recursive types.

Exercise 2.6.5 Using the definitions given in this section, show that we have the follow-
ing reductions on natural number terms.

(a) For every natural number n, we have S[n] —> [n 4 17.

(b) zero? [Q] — true and zero? [n] —> false for n > 0.

(c) If x is a natural number variable, then pred(succ x) —> x.

Exercise 2.6.6 We may define the type of lists of natural numbers using the following
recursive type:

list &8 pe. unit + (nat x t)

The intuition behind this definition is that a list is either empty, which we represent using
the element : unit, or may be regarded as a pair consisting of a natural number and a list.

(a) Define the empty list nil: list and the function cons: nat x list — list that adds a natural
number to a list.

(b) The function car returns the first element of a list and the function cdr returns the
list following the first element. We can define versions of these functions that make sense
when applied to the empty list by giving them types

car : list — unit + nat
cdr : list — unit + list

and establishing the convention that when applied to the empty list, each returns Inleft x.
Write terms defining car and cdr functions so that the following equations are provable:

car nil = Inleft
car (consx £) = x
cdr nil = Inleft
cdr(consx £) =¥

for x: nat and £: list.

(c) Using recursion, it is possible to define “infinite” lists of type lisz. Show how to use fix
to define a list L,, for any numeral n, such that car L, = n and c¢dr L,, = L,,.

2.6 Variations and Extensions of PCF 131

Exercise 2.6.7 The terms of pure untyped lambda calculus (without constant symbols)
are given by the grammar

U::=x|UU| .U

The main equational properties of untyped lambda terms are untyped versions of (a), (8)
and (7). We may define untyped lambda terms in typed lambda calculus with recursive
types using the type ut. ¢ — t. Intuitively, the reason this type works is that terms of type
ut.t — ¢t may be used as functions on this type, and conversely. This is exactly what we
need to make sense of the untyped lambda calculus.

(a) Show that if we give every free or bound variable type ut.t —> ¢, we may translate
any untyped term into a typed lambda term of type ur.t — t by inserting up, dn, and
type designations on lambda abstractions. Verify that untyped («) follows from typed
(o), untyped (B) follows from dn(up M) = M and untyped (8) and, finally, untyped (1)
follows from typed () and up(dn M) = M.

(b) Without recursive types, every typed lambda term without constants has a unique
normal form. Show that by translating (Ax. xx) Ax. xx into typed lambda calculus, we can
use recursive types to write terms with no normal form.

(c) A well-known term in untyped lambda calculus is the fixed-point operator
Y & Af.(0x. f(xx))(Ax. f(xx)).

Unlike ©, this term is only an equational fixed-point operator, iLe., Yf = f(Yf) but Y f
does not reduce to f (Y f). Use a variant of the translation given in part (a) to obtain a typed
equational fixed point operator from Y. Your typed term should have type (60 — o) — o©.
Show that although Y f does not reduce to f(Yf), Yf reduces to a term M such that
My—> f My

Exercise 2.6.8 The programming language ML has a form of recursive type declaration,
called datatype, that combines sums and type recursion. In general, a datatype declara-
tion has the form

datatype t=¢; of o] | ... | € of o

where the syntactic labels £y, . . ., £; are used in the same way as in variant types (labeled
sums). Intuitively, this declaration defines a type ¢ that is the sum of o1, . . . , ok, with labels
£y, ..., € used as injection functions as in Exercise 2.6.1. If the declared type ¢ occurs in
oj, ..., Ok, then this is a recursive declaration of type . Note that the vertical bar | is part of
the syntax of ML, not the meta-language we are using to describe ML. A similar exercise

132 The Language PCF

on ML datatype declarations, using algebraic specifications instead of recursive types and
sums, appears in Chapter 3 (Exercise 3.6.4).

The type of binary trees, with natural numbers at the leaves, may be declared using
datatype by

datatype tree =leaf of nat | node of tree X tree.
Using the notation for variants given in Exercise 2.6.1, this declares a type tree satisfying
tree = [leaf : nat, node: tree x tree)

(a) Explain how to regard a datatype declaration as a recursive type expression of the
form pt.[...] using variants as in Exercise 2.6.1. Illustrate your general method on the
type of trees above.

(b) A convenient feature of ML is the way that pattern matching may be used to de-
fine functions over declared datatypes. A function over trees may be declared using two
“clauses,” one for each form of tree. In our variant of ML syntax, a function over tree’s
defined by pattern matching will have the form

letrec fun f(leaf(x: nat)) =M
| f(node(t:tree, ty: tree)) = N
in P

where variables x: nat and f:tree — o are bound in M, ¢, t>: tree and f are bound in N
and f is bound in the the declaration body P. The compiler checks to make sure there is
one clause for each constructor of the datatype. For example, we may declare a function f
that sums up the values of all the leaves as follows.

letrec fun f(leaf(x:nat)) =x
| f(node(ty: tree, ty: tree)) = f(t1) + f(t2)
Explain how to regard a function definition with pattern matching as a function with
Case and illustrate your general method on the function that sums up the values of all the
leaves of a tree.

2.6.4 Lifted Types

Lifted types may be used to distinguish possibly nonterminating computations from ones
that are guaranteed to terminate. We can see how lifted types could have been used in PCF
by recalling that every term that does not contain fix has a normal form. If we combine
basic boolean and natural number expressions, pairs and functions, we therefore have a
language in which every term has a normal form. Let us call this language PCFy. In Sec-
tion 2.2.5, we completed the definition of PCF by adding fix to PCFp. In the process, we

2.6 Variations and Extensions of PCF 133

extended the set of terms of each type in a nontrivial way. For example, while every PCF
term of type nat reduces to one of the numerals 0, 1, 2, ..., PCF contains terms such as
fix (Ax:nat. x) of type nat that do not have any normal form and are not provably equal to
any numeral. This means that if we want to associate a mathematical value with every PCF
term, we cannot think of the values of type nar as simply the natural numbers. We must
consider some superset of the natural numbers that contains values for all the terms with-
out normal form. (Since it is very reasonable to give all nat terms without normal form
the same value, we only need one new value, representing nontermination, in addition
to the usual natural numbers.) An alternative way of extending PCFy with a fixed-point
operator is to use lifted types. Although lifted types are sometimes syntactically cumber-
some, when it comes to writing common functions or programs, lifted types have some
theoretical advantages since they let us clearly identify the sources of nontermination, or
“undefinedness,” in expressions.

One reason to use lifted types is that many equational axioms that are inconsistent
with fix may be safely combined with lifted types. One example, which is related to the
inconsistency of sum types and fix outlined in Exercise 2.6.4, is the pair of equations

Eq? x x = true,
Eq? x (n+ x) =false numeral n different from 0.

While these equations make good sense for the ordinary natural numbers, it is inconsistent
to add them to PCF. To see this, the reader may substitute fix (Ax: nat. 1 + x) for x in both
equations and derive true = false. In contrast, it follows from the semantic construction
in Section 5.2 that we may consistently add these two equations to the variant of PCF with
lifted types (see Example 2.6.10).

Another important reason to consider lifted types is that this provides an interesting and
insightful way to incorporate alternative reduction orders into a single system. In partic-
ular, as we shall see below, both ordinary (nondeterministic or leftmost) PCF and Eager
PCF (defined in Section 2.4.5) can be expressed in PCF with lifted types. This has an inter-
esting consequence for equational reasoning about eager reduction. The equational theory
of Eager PCF is not given in Section 2.4.5 since it is relatively subtle and has a different
form from the equational theory of PCF. An advantage of lifted types is that we may essen-
tially express eager reduction, and at the same time allow ordinary equational reasoning.
In particular, equational axioms may be used to “optimize” a term without changing its
normal form. This follows from confluence of PCF with lifted types [How92]. These ad-
vantages notwithstanding, the use of lifted types in programming language analysis is a
relatively recent development and some syntactic and semantic issues remain unresolved.
Consequently, this section will be a high-level and somewhat informal overview.

134 The Language PCF

The types of the language PCF, called “PCF with lifted types,” are given by the
grammar

o ::= bool |nat|o xo |o >0 |oL

These are the types of PCF, plus the form o which is read “o lifted.” Intuitively, the
elements of o are the same as the elements of o, plus the possibility of “nontermination”
or “divergence”. Mathematically, we can interpret o; as the union of ¢ and one extra
element, written L, which serves as the value of any “divergent” term that is not equal
to an element of type o.

The terms of PCF include all of the general forms of PCF, extended to PCF types.
Specifically, we have pairing, projection, lambda abstraction and application for all prod-
uct and function types. Since we can use if ... then ... else ... on all types in
PCF, we extend this to all PCF types. More specifically, if M then N else P is
well-formed whenever M: bool and N, P: o, for any o. However, the basic natural num-
ber and boolean functions of PCF (numerals, boolean constants, addition and equality test)
keep the same types as in PCF. For example, 5 4 x is a nat expression of PCF | if x: nat;
it is not an expression of type nat; . The equational and reduction axioms for all of these
operations are the same as for PCF. The language PCF also has two operations associated
with lifted types and a restricted fixed-point operator. Since both involve a class of types
called the “pointed” types, we discuss these before giving the remaining basic operations
of the language.

Intuitively, the pointed types of PCF | are the types that contain terms which do not yield
any meaningful computational value. More precisely, we can say that a closed term M: o
is noninformative if, for every context C[] of observable type, if C[M] has a normal form,
then C[N] has the same normal form for every closed N:o. (An example noninformative
term is fix(Ax:o.x); see Lemma 2.5.24.) Formally, we say a type o is pointed if either
0 =1y, 0 =0] X 02 and both o1, o7 are pointed, or 0 = 07 — 07 and o7 is pointed. The
reason 7| has noninformative terms will become apparent from the type of the fixed-
point operator. For a product o) X o2, we can write a noninformative term by combining
noninformative terms of types o and o>. If M: o is noninformative, and x: o is not free in
M, then Ax:o;. M is a noninformative term of type o1 — o02. The name “pointed,” which
is not very descriptive, comes from the fact that a pointed type has a distinguished element
(or “point”) representing the value of any noninformative term.

The language PCF has a fixed-point constant for each pointed type:

fix,: (0 - 0) > o o pointed

The equational axiom and reduction axiom for fix are as in PCF.

2.6 Variations and Extensions of PCF 135

The first term form associated with lifted types is that if M: o, then
|IM]:.0}. (L] Intro)

Intuitively, since the elements of o are included in o , the term | M] defines an element of
o, considered as an element of o . The second term form associated with lifting allows us
to evaluate expressions of g} to obtain expressions of type o. Since some terms of type o
do not define elements of o, this is formalized in a careful way. If M: o, and N: 1, with T
pointed and N possibly containing a variable x of type o, then

let |x:o|=M in N (L] Elim)

is a term of type 7. The reader familiar with ML may recognize this syntax as a form
of “pattern-matching” let. Intuitively, the intent of let |x:0| =M in N is that we
“hope” that M is equal to |M’] for some M’. If so, then the value of this expression is
the value of N when x has the value of M'.

The main equational axiom for | | and let is

let |x:0]=|M] in N =[M/xIN (let [)

This is also used as a reduction axiom, read left to right. Intuitively, the value of M: o is
either L oranelementof o.If M =1, thenlet |[x:0] =M in N will have value L;.In
operational terms, if M cannot be reduced to the form | M’|, then let |x:0]=M in N
not be reducible to a useful form of type t. If M is equal to some | M’], then the value of
let |x:0] =M in N isequal to [M'/x]N.

If we add a constant L;: T representing “undefinedness’ or nontermination at each
pointed type T, we can also state some other equational properties.

(et |x] =1, in M)=1,

Ml,=Nl, Mlx]=N|x]
M=N

xnotfreein M,N:o; — 1

Intuitively, the first equation reflects the fact that if we cannot reduce M to the form
[M’],then let |x] =M in N is “undefined.” The inference rule is a form of reasoning
by cases, based on the intuitive idea that any element of a lifted type o is either the
result of lifting an element of type o or the value L, representing “undefinedness” or
nontermination at type o. However, we will not use constants of the form L, or either of
these properties in the remainder of this section. In general, they are not especially useful
for proving equations between expressions unless we have a more powerful proof system
(such as the one using fixed-point induction in Section 5.3) for proving that terms are equal
to L.

136 The Language PCF

We will illustrate the use of lifted types by translating both PCF and Eager PCF into
PCF, . A number of interesting relationships between lifted types and sums and recursive
types are beyond the scope of this section but may be found in [How92], for example.
Before proceeding, we consider some simple examples.

Example 2.6.9 While there is only one natural way to write factorial in PCF, there are
some choices with explicit lifting. This example shows two essentially equivalent ways
of writing factorial. For simplicity, we assume we have natural number subtraction and
multiplication operations so that if M, N:nat, then M — N:nat and M * N:nat. Using
these, we can write a factorial function as fact; & fix,;_, pq , F1, Where

F, € \f:nat — nat).ix:nat.
if Eq?x0 then |1] else let |y|]=f(x—1) in |x*y]

In the definition here, the type of fact is nat — nat, . This is a pointed type, which is
important since we only have fixed points at pointed types. This type for fact, is also
the type of the lambda-bound variable f in Fj. Since f:nat — nat,, we can apply f to
arguments of type nat. However, the result f(x — 1) of calling f will be an element of
nat) , and therefore we must use let to extract the natural number value from the recursive
call before multiplying by x. If we wish to apply fact; to an argument M of type nat | , we
do so by writing

let |x|=M in fact;x
An alternative definition of factorial is fact, & fix,s _nar, F2, Where
F, & Af:naty — nat).Ax:nat;.let |z] =x in
if Eq?z0 then [1] else let |y]=flz— 1] in [z * Y]

Here, the type of factorial is different since the domain of the function is nat, instead of
nat. The consequence is that we could apply fact, to a possibly nonterminating expression.
However, since the first thing fact, does with an argument x: nat | is force it to some value
z:nat, there is not much flexibility gained in this definition of factorial. In particular, as
illustrated below, both functions calculate 3! in essentially the same way. The reason fact,
immediately forces x: nat| to some natural number z: nat is that equality test Eq? requires
a nat argument, instead of a nat | .

For the first definition of factorial, we can compute 3! by expanding out three recursive
calls and simplifying as follows:

(fix F1) 3

2.6 Variations and Extensions of PCF 137

—> if Eq?30 then [1] else let |y]=(fix F})(3—1) in [3%y]
—> let |y|=
let |y']=(fix F)(1) in [2%)']
in [3xy]
—> let |y]=
let [y'] =
let |y']=(fix F)O in [1x%y"]
in [2% Y|
in [3xy]

Then, once we have reduced (fix F1)0 —> | 1], we can set y” to 1, then y' to 1, then y
to 2, then perform the final multiplication and produce the final value 6.

For the alternative definition, we have essentially the same expansion, beginning with
|3] instead of 3 for typing reasons:

(fix F2) |3]
—>> let |z]=1]3] in
if Eq?z0 then |1] else let |yl=(fix F?)|z— 1] in |[z* V]
—>> let |ly|=
let |y'|=
let Ly"| =fix F2)10] in |1%y"]
in [2%y/]
in [3xy]

The only difference here is that in each recursive call, the argument is lifted to match the
type of the function. However, the body F> immediately uses let to “unlift” the argument,
so the net effect is the same as for fact;. n

Example 2.6.10 As mentioned above, the equations
Eq? x x = true,
Eq? x (n+ x) =false numeral n different from 0.

are consistent with PCF |, when x: nat is a natural number variable, but inconsistent when
added to PCF. We will see how these equations could be used in PCF | by considering the
PCF expression

letrec f(x:nat):nat =if Eq?xOthen | else
if Eq? f(x —1) f(x —1) then 2 else 3
in f3

138 The Language PCF

If we apply left-most reduction to this expression, we end up with an expression of the
form

if Eq?((fix F)3 — 1)) ((fix F)(3 — 1)) then 2 else 3

which requires us to simplify two applications of the recursive function in order to de-
termine that f(2) = f(2). We might like to apply some “optimization” which says that
whenever we have a subexpression of the form Eq? M M we can simplify this to rrue.
However, the inconsistency of the two equations above shows that this optimization cannot
be combined with other reasonable optimizations of this form.

We cannot eliminate the need to compute at least one recursive call, but we can elimi-
nate the equality test using lifted types. A natural and routine translation of this expression
into PCF} is

letrec f(x:nat):nat) =if Eq?x0 then [1] else
let |y]=f(x—1) in if Eq?yy then [2] else (3]
in f3

In this form, we have a subexpression of the form Eq? y y where y:nat. With the
equations above, we can replace this PCF expression by an equivalent one, obtaining
the provably equivalent expression

letrec f(x:nat):nat,=1if Eq?x0 then [l] else
let ly)=f(x—1) in [2]
in f3

The reason we cannot expect to simplify let |y| = f(x — 1) in [2] to [2] by any
local optimization that does not analyze the entire declaration of f is that when f(x — 1)
does not terminate (i.e., cannot be reduced to the form | M]), the two are not equivalent. m

Translation of PCF into PCF |

The translation of PCF into PCF has two parts. The first is a translation of types. We will
map expressions of type ¢ from PCF to expressions of type o in PCF, where o is the
result of replacing nat by nat | and bool by bool ; . More specifically, we may define o by
induction on types:

bool = bool |
nat =nat)
01 X 02 = 0] X02

0] > 02 = 0] —> 02

2.6 Variations and Extensions of PCF 139

It is easy to check that for any PCF type o, the type & is pointed. This gives us a fixed-point
operator of each type .

The translation of compound PCF terms into PCF | is essentially straightforward. The
most interesting part of the translation lies in the basic natural number and boolean op-
erations. If M:o in PCF, we must find some suitable term M of type & in PCF . The
translation 7 of a numeral n is | n| and the translations of rrue and false are similarly |true |
and |false]. It is easy to see these have the right types. For each of the operations Eg?, +
and conditional, we will write a lambda term of the appropriate PCF type. Since Eq?
compares two natural number terms and produces a boolean, we will write a PCF | term
Eq? of type nat | — nat| — bool | . The term for equality test is

Eq? = Ax:nat|.Ay:nat,.let |x'|=x in let |y'] =y in |Eq?xy|

An intuitive explanation of this function is that Eq? takes two arguments of type nat |,
evaluates them to obtain elements of type nat (if possible), and then compares the results
for equality. If either argument does not reduce to the form |M| for M:nat, then the
corresponding let cannot be reduced. But if both arguments do reduce to the form | M|,
then we are certain to be able to reduce both to numerals, and hence we will be able to
obtain |frue] or |false| by the reduction axiom for Eq?. The reader is encouraged to try a
few examples in Exercise 2.6.14.

The terms + for addition and cond for if ... then ... else ... are similar in
spirit to Eq?.

F =Xxinati.Ay:nat;.let |x'| =x in let |y']=y in |[x' +)]
condy = Ax:bool | . Ay:G.Arz:5.1et |x'| =x in if x’ then y else z

In the translation of conditional, it is important to notice that & is pointed. As a result, the
function body let |x’] =x in if x’ then y else z is well-typed.
For pairing and lambda abstraction, we let

(M,N) =(M, N)
o M=ixo.M

and similarly for application, projections and fixed points. Some examples appear in Exer-
cises 2.6.14 and 2.6.16.
The main properties of this translation are

(i) If M: o in PCF, then M:& in PCF .

140 The Language PCF

(ii) If M, N are syntactically distinct terms of PCF, then M, N are syntactically distinct
terms of PCF | .

(iii) If M — N in PCF, then M — N in PCF . Conversely, if M is a normal form in PCF,
then M is a normal form in PCF .

(iv) If M = N is provable in PCF, then M=Nis provable in PCF .

While there are a number of cases, it is essentially straightforward to verify these proper-
ties. It follows from properties (ii) and (iii) that if M, N are distinct normal forms of PCF,
then M, N are distinct normal forms of PCF | .

Translation of Eager PCF into PCF |
Like the translation of PCF into PCF, the translation of Eager PCF into PCF, has two
parts. We begin with the translation of types.

For any type o of Eager PCF, we define the associated type o. Intuitively, o is the type
of Eager PCF values (in the technical sense of Section 2.4.5) of type o. Since any Eager
PCF term will either reduce to a value, or diverge under eager reduction, an Eager PCF
term of type o will be translated to a PCF | term of type o | . After defining o by induction
on the structure of type expressions, we give an informal explanation.

nat =nat
bool = bool
g—>T=0—>71,

OXT =0XT

The Eager PCF values of type nat or bool correspond to PCF terms of type nat or
bool. An Eager PCF function value of type o — t has the form Ax:o. M, where for any
argument V, the body [V /x]M may either reduce to a value of type t or diverge under
eager reduction. Therefore, in PCF, the values of type o — t are functions from o to
T, . Finally, the Eager PCF values of type o x t are pairs of values, and therefore have
type o x t in PCF .

We translate a term M: o of Eager PCF with free variables xy: 01, ..., xx: of to a term

M:o | of PCF_ with free variables x1: 04, ..., X 0y, as follows:
X = |x]
n = |n]

true = | true]

2.6 Variations and Extensions of PCF 141

false = |false|
+ N =1let |x]=M in let |y]=N in |[x+y]
Eq"MN =1let |x|]=M in let |y|=N in |Eq?xy]

if M then N else P=1let |x|]=M in if x then N else P

MN =1let |f]=M in let |[x]=N in fx
Ax:o. M =|Ax:0. M}
fixg_q = fix(Af:((0 > 1) > (0 > 1)) > (0 = T).

Agi(o—>1)> (0> 1).g(Axia.let |h] = fg in hx))]

The translation of the fixed-point operator needs some explanation. As discussed in Sec-
tion 2.4.5, Eager PCF only has fixed-point operators on function types. The translation of
the fixed-point operator on type o — 7 is recursively defined to satisfy

fixg ., =xgi(c > 1)—> (0 > 1).8(Ax:0.1let |h]|=fix,_,, g in hx)

This is essentially the Eager PCF property “fix = Ag: (...). g(delay[fix g])” from Sec-
tion 2.4.5, where with delay[M] = Ax: (...). Mx, using the fact that

Mx=1let |f]=M in let |y]=|x] in fy

= let |f]l=M in fx

by axiom (let | }).

In the next two examples, we discuss the way that eager reduction is preserved by
this translation. A general difference between the eager reduction strategy given in Sec-
tion 2.4.5 and reduction in PCF is that eager reduction is deterministic. In particular, ea-
ger reduction of an application M N specifies reduction of M to a value (e.g., Ax: (...). M')
before reducing N to a value. However, from the point of view of accurately representing
the termination behavior and values of any expression, the order of evaluation between M
and N is not significant. When an application M N of Eager PCF is translated into PCF 1 , it
will be necessary to reduce both to the form |. . .J, intuitively corresponding to the transla-
tion of an Eager PCF value, before performing S-reduction. However, PCF allows either
the function M or the argument N to be reduced first.

Example 2.6.11 We may apply this translation to the term considered in Example 2.4.20.
Since this will help preserve the structure of the expression, we use the syntactic sugar

M.N & let |f|=M in let [x]=N in fx

142 The Language PCF

for eager application. For readability, we will also use the simplification
u+v=1let |x|=|ul in (Qet |y|=|v] in |x+y])=lu+v]

for any variables or constants # and v, since this consequence of our equational axioms
does not change the behavior of the resulting term. Applying the translation to the term

(fix (Ax: nat — nat. Ay:nat.y)) (Az:nat.z + 1) 2)

gives us

(fix - | Ax:nat — naty.|Ay:nat.|y]] D). (| Azznat.|z+ 1] |-[2])
A useful general observation is that

LM]} [N|]—>>MN

but that we cannot simplify a form M’ - N’ unless M’ has the form |[M] and N’ has the
form | N |. The need to produce “lifted values” (or, more precisely, the lifting of terms that
reduce to values) is important in expressing eager reduction with lifted types. We can see
that there are two possible reductions of the term above, one involving fix and the other
([Az:nat.|z+ 11} - [2]) => |2 + 1]. The reader may enjoy leftmost re(ﬂcing the entire
expression and seeing how the steps correspond to the eager reduction steps carried out in
Example 2.4.20. »

Example 2.6.12 We can see how divergence is preserved by considering the term

let f(x:nat):nat=3 in
letrec g(x:nat):nat=g(x+1) in f(g5)

from Example 2.4.21. After replacing let’s by lambda abstraction and application, the
translation of this term is
| Af:nat — nat,.|A\g:nat — nat .| f]-(g5) 1]
-l Ax:nat.|3] |
'(ﬁi' | Ag:nat — nat) .|Ax:nat.g(x + 1))
where for simplicity we have used |g] - [5]=g5and |g] - x+ D =|g] |x+1]=
g(x + 1). Recall from Examples 2.4.6 and 2.4.21 that if we apply leftmost reduction to the
original term, we obtain 3, while eager reduction does not produce a normal form. We can
see how the translation of Eager PCF into PCF | preserves the absence of normal forms by
leftmost-reducing the result of this translation.

Since the first argument and the main function have the form |...], we can apply 8-
reduction as described in Example 2.6.11. This gives us

2.6 Varnations and Extensions of PCF 143

LAg:nat — naty .| Ax:nat.|3)) - (g5)) - (fix- [G])

where G & Ag:nat — nat).[Ax:nat. g(x + 1)]. Our task is to reduce the argument (fix-
LG]) to the form |...]| before performing the leftmost S-reduction. We do this using the
that

SX gt nat = Lﬁxnat—ntatl F |-

L Ag: (nat — nat,) — (nat — nat). g(Ax:nat.let |h)=fix F g in hx))

where

F & (Af: ((nat > nat,) — (nat — nat,)) — (nat — nat).
Ag: (nat — nat)) — (nat — nat1).g(Ax:nat.let |h] = fg in hx))

However, we will see in the process that the application to 5 resulting from B-reduction
cannot be reduced to the form |. . .], keeping us from every reaching the normal form |3)
for the entire term.

The expansion of fix above gives us

fix |G| > fix FG

> G (Ax:nat.let |h)=fix F G in hx)

—> |Ax:nat.((Ax:nat.let |h)=fix F G in hx) (x +1))]

—> |Ax:nat.let |h]l=fix F G in h(x + 1))

When the function inside the | | is applied to 5, the result must be reduced to a form
L...] to complete the reduction of the entire term. However, this leads us to again reduce
fix F G to this form and apply the result to 6. Since this process may be continued indefi-
nitely, the entire term does not have a normal form.]

The main properties of the translation from Eager PCF into PCF | are:
(i) If M: o in Eager PCF, with free variables x1: o1, ..., x¢: ok, then M: o | in PCF; with
free variables xy: 0, ..., xx: 0y.
(ii) If M 25" N in Eager PCF, then M —> N in PCF;.

(iii) If M is a closed term of Eager PCF of type nat or bool and c is a numeral or true or
false, then M 285 ¢ in Eager PCF iff M —> |c] in PCF .

(iv) If we let =4, be operational equivalence of Eager PCF term, defined in the same
was as =, in Section 2.3.5 but using eager evaluation, and let =pc) be operational
equivalence in PCF, then for closed terms M, N we have M =,44¢r N ift M =pcr N.

It is largely straightforward to verify properties (i)—(iii). Property (iv), however, involves

144 The Language PCF

construction of fully abstract models satisfying the properties described in Section 5.4.2.
A proof has been developed by R. Viswanathan.

Exercise 2.6.13 Suppose that instead of having fix, for every pointed o, we only have
fixed-point operators for types of the form 7 . Show that it is still possible to write a term
with no normal form of each pointed type.

Exercise 2.6.14 Reduce the application of Eq? to the following pairs of terms. You
should continue until you obtain |true]| or |false| or it is apparent that one of the let’s
can never be reduced.

(@ [3+2]and [5].
(b) (Ax:nat;.x)[3+2]and |[(Ax:nat.x + 1)3].
() fix(Ax:nat;.x) and [19].

Exercise 2.6.15 Carry out the reduction of the term ﬁ__{ - |Ax:nat — naty .[Ay:nat.|y]]]
from Example 2.6.11.

Exercise 2.6.16 The fibonacci function may be written in PCF as fib & fix,,; s parF>
where

F & \f:nat — nat.\x:nat.
if (Eq?x0)or (Eq?x1) then 1 else f(x — D)+ f(x —2)

We assume for simplicity that we have natural number subtraction and a boolean or func-
tion.

(a) Translate the definition from (ordinary) PCF into PCF and describe the reduction
of fib3 in approximately the same detail as Example 2.6.9. (Subtraction and or should
be translated into PCF following the pattern given for + and Eq?. You may simplify
[M] — |N] to |[M — N|, or perform other simplifications that are similar to the ones used
in Example 2.6.11.)

(b) Same as part (a), but use the translation from Eager PCF into PCF | .

3 Universal Algebra and Algebraic Data Types

3.1 Introduction

The language PCF may be viewed as the sum of three parts: pure typed lambda calculus
with function and product types; the natural numbers and booleans; and fixed-point op-
erators. If we replace the natural numbers and booleans by some other basic types, such
as characters and strings, we obtain a language with a similar type structure (functions and
pairs), but oriented towards computation on different kinds of data. If we wish to make this
change to PCF, we must decide on a way to name basic characters and strings in terms, the
way we have named natural numbers by 0, 1, 2, ..., and choose basic functions for ma-
nipulating characters and strings, in place of +, Eq? and if ... then ... else
Then, we must write a set of equational axioms that characterize these functions. This
would define the terms of the language and give us an axiomatic semantics. Once we have
the syntax of expressions and axiomatic semantics, we can proceed to select reduction ax-
ioms, write programs, and/or investigate denotational semantics.

An algebraic datatype consists of one or more sets of values, such as natural numbers,
booleans, characters or strings, together with a collection of functions on these sets. A fun-
damental restriction on algebraic datatypes is that none of the functions may have function
parameters; this is what “algebraic” means. A expository issue is that in this chapter, we
use the standard terminology of universal algebra for the sets associated with an algebra.
Apart from maintaining consistency with the literature on algebra, the main reason for do-
ing so is to distinguish algebraic datatypes, which consist of sets and functions, from the
sets alone. Therefore, basic “type” symbols such as nat, bool, char and string are called
sorts when they are used in algebraic expressions. In algebraic datatype theory, the distinc-
tion between type and sort is that a type comes equipped with specific operations, while a
sort does not. This distinction is actually consistent with the terminology of Chapter 2,
since function types and product types come equipped with specific operations, namely,
lambda abstraction, application, pairing and projection.

Universal algebra, also called equational logic, is a general mathematical framework
that may be used to define and study algebraic datatypes. In universal algebra, the ax-
iomatic semantics of an algebraic datatype is given by a set of equations between terms.
The denotational semantics of an algebraic datatype involves structures called algebras,
which consist of a collection of sets, one for each sort, and a collection of functions, one
for each function symbol used in terms. The operational semantics of algebraic terms are
given by directing algebraic equations. Traditionally, reduction axioms for algebraic terms
are called rewrite rules. Some examples of datatypes that may be defined and studied using
universal algebra are natural numbers, booleans, lists, finite sets, multisets, stacks, queues,
and trees, each with various possible functions.

146 Universal Algebra and Algebraic Data Types

In this chapter, we will study universal algebra and its use in defining the kind of
datatypes that commonly occur in programming. While the presentation of PCF in Chap-
ter 2 centered on axiomatic and operational semantics, this chapter will be primarily
concerned with the connection between axiomatic semantics (equations) and denotational
semantics (algebras), with a separate section on operational semantics at the end of the
chapter. In studying algebra, we will cover several topics that are common to most logical
systems. The main topics of the chapter are:

* Algebraic terms and their interpretation in multi-sorted algebras,
* Equational (algebraic) specifications and the equational proof system,

* Soundness and completeness of the equational proof system (equivalence of axiomatic
and denotational semantics),

* Homomorphisms and initiality,
* Introduction to the algebraic theory of datatypes,

* Rewrite rules (operational semantics) derived from algebraic specifications.

The first four topics provide a brief introduction to the mathematical system of universal
algebra. The subsequent discussion of the algebraic theory of datatypes points out some
of the differences between traditional concerns in mathematics and the use of algebraic
datatypes in programming. In the final section of this chapter, we consider reduction on
algebraic terms. This has two applications. The first is to analyze properties of equational
specifications and the second is to model computation on algebraic terms. A pedagogical
reason to study universal algebra before proceeding with the denotational semantics of
typed lambda calculus is that many technical concepts appear here in a simpler and more
accessible form.

There are many additional topics in the algebraic theory of datatypes. The most im-
portant omitted topics are: hierarchical specifications, parameterized specifications, refine-
ment of one specification into another, and correctness of implementations. While we dis-
cuss problems that arise when a function application produces an error, we do not consider
some of the more sophisticated approaches to errors such as algebras with partial functions
or order-sorted algebras. The reader interested in more detailed investigation may consult
[EMS8S, Wir90].

3.2 Preview of Algebraic Specification

The algebraic approach to data abstraction involves specifying the behavior of each
datatype by writing a set of equational axioms. A signature, which is a way of defin-

3.2 Preview of Algebraic Specification 147

ing the syntax of terms, combined with a set of equational axioms, is called an algebraic
specification. If a program using a set of specified datatypes is designed so that the correct-
ness of the program depends only on the algebraic specification, then the primary concern
of the datatype implementor is to satisfy the specification. In this way, the specification
serves as a contract between the user and the implementor of a datatype; neither needs
to worry about additional details of the other’s program. This methodology is not specific
to equational specifications, but equations are the simplest specification language that is
expressive enough to be used for this purpose. The reader interested in specification and
software development may wish to consult [BJ82, GHM78, LG86, Mor90, Spi88], for
example.

When we view a set of equations as a specification, we may regard an algebra, which
consists of a set of values for each sort and a function for each function symbol, as the
mathematical abstraction of an implementation. In general, a specification may be satisfied
by many different algebras.

In program development, it is often useful to identify a “standard” implementation of a
specification. One advantage is that it is easier to think about an equational specification if
we choose a concrete, “typical” implementation. We can also use a standard implementa-
tion to be more specific about which implementations we consider acceptable. In datatype
theory and in practical tools using algebraic datatypes, the so-called initial algebra (de-
fined in this chapter) is often taken as the standard implementation. The main reasons to
consider initiality are that it gives us a specific implementation that can be realized auto-
matically and the initial algebra has some useful properties that cannot be expressed by
equational axioms. In particular, there is a useful form of induction associated with initial
algebras.

Initial algebras are defined in Section 3.5.2, while their use in datatype theory is dis-
cussed in Section 3.6. In addition to initial algebras, so-called final algebras have also
been proposed as standard implementations of an algebraic specification [Wan79]. Other
computer scientists prefer to consider any “generated” algebra without extra elements. A
short discussion of these alternatives appears in Section 3.6.2 and its exercises. For further
information, the reader may consult [Wir90] and the references cited there.

One limitation of the algebraic approach to datatypes is that some of the operations we
use in programming languages are type specific in some arguments, and type-independent
in others. For example, the PCF conditional if ... then ... else ... requires a
boolean as its first argument, but the next two arguments may have any type (as long as
both have the same type). For this reason, a discussion of the algebra of PCF nat and bool
values does not tell the whole story of PCF conditional expressions. Another limitation of
the algebraic approach is that certain types (such as function types) have properties that
are not expressible by equations alone. (Specifically, we need a quantifier to axiomatize

148 Universal Algebra and Algebraic Data Types

extensional equality of functions.) For this reason, it does not seem accurate to view all
types algebraically. However, it does seem profitable to separate languages like PCF into
an algebraic part, comprising basic datatypes such as nat, bool, string, and so on, and a
“higher-order” or lambda calculus part, comprising ways of building more complex types
from basic ones.

Some general references for further reading are [Gra68), a reference book on universal
algebra, and [EM85, Wir90], which cover algebraic datatypes and specifications. Some
historically important research articles are [Hoa72, Par72], on the relationships between
datatypes and programming style, and [LZ74, GHM78, GTW78] on algebraic datatypes
and specifications.

3.3 Algebras, Signatures and Terms

3.3.1 Algebras

An algebra consists of one or more sets, called carriers, together with a collection of
distinguished elements and first-order (or algebraic) functions

fiAIX...xAr— A
over the carriers of the algebra. An example is the algebra
NZ(N,O, 1g+9*>§

with carrier A the set of natural numbers, distinguished elements 0, 1 € A, and func-
tions +, * : N’ x N' — N. The difference between a “distinguished” element of a carrier
and any other element is that we have a name for each distinguished element in the lan-
guage of algebraic terms. As an economy measure, we will consider distinguished ele-
ments like 0, 1 € AV as “zero-ary” functions, or “functions of zero arguments.” This is not
a deep idea at all, just a convenient way to treat distinguished elements and functions uni-
formly.

An example with more than one carrier is the algebra

Apef =N, B,0,1,...,+, true, false, Eq?, ..)

where A is the set of natural numbers, B the set of booleans, 0, 1, ... are the natural
numbers, + is the addition function, and so on. These are the mathematical values that we
usually think of when we write basic numeric and boolean expressions of PCF. In studying
algebras, we will make the correspondence between the syntactic expressions of PCF and
the semantic values of this algebra precise.

3.3 Algebras, Signatures and Terms 149

3.3.2 Syntax of Algebraic Terms

The syntax of algebraic terms depends on the basic symbols and their types. This informa-
tion is collected together in what is called a signature. In algebra, as mentioned earlier, it
is traditional to call the basic type symbols sorts.

A signature ¥ = (S, F) consists of

¢ A set S whose elements are called sorts,

* A collection F of pairs {f, s; X ... X sf — §), with 51, ..., 5, s € § and no f occurring
in two distinct pairs.

In the definition of signature, a symbol f occurring in F is called a typed function symbol
(or function symbol for short), and an expression §; X ... X sg — § a first-order (or
algebraic) function type over S. We usually write f: 7 instead of (f,) € F.

A sort is a name for a carrier of an algebra, and a function symbol f:s1 x ... X s > s
is a name for a k-ary function. We allow & = 0, so that a “function symbol” f:s may be
a name for an element of the carrier for sort s. A symbol f: s is called a constant symbol,
and f:s; X ... x s — s withk > 1 is called a proper function symbol. The restriction that
we cannot have f:7 and f:7’ means that each constant or function symbol has a unique
sort or type.

Example 3.3.1 A simple signature for writing natural number expressions is Ty =
(S, F), where S = {nat} contains only one sort and F provides function symbols 0: nat, 1:
nat, +:nat X nat — nat and *: nat x nat — nat. A convenient syntax for describing sig-
natures is the following tabular format.

sorts:nat
fctns:0, 1 : nat
+, * : nat X nat — nat

In this notation, we often write several function symbols of the same type on one line. This
saves space and usually makes the list easier to read. n

The purpose of a signature is to allow us to write algebraic terms. We assume we have
some infinite set VV of symbols we call variables, and assume that these are different from
all the symbols we will ever consider using as constants, function symbols or sort symbols.
Since it is not meaningful to write a variable without specifying its sort, we will always list
the sorts of variables. A sort assignment is a finite set

I'={x1:81,..., Xk Sk}

150 Universal Algebra and Algebraic Data Types

of ordered variable: sort pairs, with no variable given more than one sort. Given a signa-
ture £ = (S, F) and sort assignment I" using sorts from S, we define the set Terms* (X, I')
of algebraic terms of sort s over signature £ and variables I' as follows

x € Terms* (T, M)if x:s € T,
fM.. .My € Terms*(Z,D)if f:s) X ... x s — s and
M; € Terms*(Z, M fori=1,...,n.
In the special case k = 0, the second clause should be interpreted as
feTerms* (T, T)if f:s.

For example, 0 € Terms"™ (Zpr, ¥) and +01 is a term in Terms"™ (Zps, @), since + is a
binary numeric function symbol of . It is also easy to see that +01 € Terms™ (s, I')
for any sort assignment I". To match the syntax of PCF, we may treat 0 4 | as syntactic
sugar for +01. When there is only one sort, it is common to assume that all variables
have that sort. In this case, we can simplify sort assignments to lists of variables. We write
Var(M) for the set of variables that appear in M.

In algebra, the substitution [N /x]M of N for all occurrences of x in M is accomplished
by straightforward replacement of each occurrence of x by N, since there are no bound
variables in algebraic terms. It is easy to see that if we replace a variable by a term of the
right sort, we obtain a well-formed term of the same sort we started with. This is stated
more precisely below. In the following lemma, we use the notation T, x:s’ for the sort
assignment

Fox:s' =T U{x:s")
where x does not occur in I".

Lemma 3.3.2 If M c Terms*(X,T,x:s") and N € Termss/(E, '), then [N/xIM €
Termss (X, IN).

A related property is given in Exercise 3.3.4.

Proof The proof is by induction on the structure of terms in Terms*(Z, I', x:s"). Since
this is the first inductive proof in the chapter, we will give most of the details. Subsequent
inductive proofs will give only the main points. Since every term is either a variable or the
application of a function symbol to one or more arguments, induction on algebraic terms
has one base case (variables) and one induction step (function symbols). In the base case,
we must prove the lemma directly. In the induction step, we assume that the lemma holds
for all of the subterms. This assumption is called the inductive hypothesis.

3.3 Algebras, Signatures and Terms 151

For the base case we consider a variable y € Terms*(Z, T, x:s'). If y is different from
x, then [N /x]y is just y. In this case, we must have y:s € T', and hence y € Terms* (X,).
If our term is the variable x itself, then the result [N /x]x of substitution is the term N,
which belongs to Terms*(X, I') by similar assumption. This proves the base case of the
induction.

For the induction step, we assume that [N /x]M; € Terms®i (2, T), for 1 <i <k, and
consider a term of the form f M| ... M. The result of substituting N for x in this term may
be written f[N/xIM;...[N/x]My. Since we assume fM;...M; € Terms* (X, T, x:s'),
the function symbol must have type s; x ... x sy — s. It follows that f[N/x]M;...
[N/xIM; € Terms* (X, '), which finishes the induction step and proves the lemma. [

Example 3.3.3 'We may write natural number and stack expressions using the signature
gk = (S, F) with S = {rat, stack} and F containing the function symbols listed below.

sorts:nat, stack

fctns:0, 1,2, ... : nat
+, * . nat X nat — nat
empty : stack
push : nat x stack — stack
pop : stack — stack
top : stack — nat

The terms of this signature include the expression push2(pushl(pushOempty)), which
would name a stack with elements 0,1 and 2 in the standard interpretation of this
signature. Using a stack variable, we can also write an expression pushl(pushQOs) €
Terms(Zgk, {s: stack}) which defines the stack obtained by pushing 0 and 1 onto s. n

Exercise 3.3.4 Use induction on terms to show that if M € Terms*(X, ") and " is a sort
assignment containing T, then M € Terms* (X,).

3.3.3 Algebras and the Interpretation of Terms

Algebras are mathematical structures that provide meaning, or denotational semantics, for
algebraic terms. To make the mapping from symbols to algebras explicit, we will use a
form of algebra that gives a value to every sort and function symbol of some signature. If
¥ is a signature, then a X-algebra A consists of

« Exactly one carrier A* for each sort symbol s € S,

152 Universal Algebra and Algebraic Data Types

* An interpretation map Z assigning a function
I(f): A x ... x A% — AF

to each proper function symbol f:s; X ... X s — s € F and an element Z(f) € A® to
each constant symbol f:s € F.

If X has only one sort, then we say that a X -algebra is single-sorted; otherwise, we say
an algebra is many-sorted or multi-sorted.

If A= ({A%}ses,Z) is a X-algebra, and f is a function symbol of X, it is often con-
venient to write f“ for Z(f). In the case that there are finitely many or countably many
function symbols, it is also common to list the functions, as in the example algebras A" and
Apcr given earlier. Combining these two conventions, we may write out the X xr-algebra

N as
N =W, 0N 1V, 4V Y,

This gives us all the information we need to interpret terms over X/, since the interpreta-
tion map Z is given by the way the functions of the algebra are named.

It is a relatively simple matter to say what the meaning of a term M € Terms(X, ')
is in any ¥-algebra. The only technical machinery that might not be familiar is the use of
variable assignments, or environments. An environment 7 for A is a mapping n: V — U A®
from variables to elements of the carriers of .A. The reason that we need an environment
is that a term M may have a variable x in it, and we need to give x a value before we can
say what M means. If someone asks you, “What is the value of x 4+ 17" it is difficult to
answer without choosing a value for x. Of course, an environment must map each variable
to a value of the appropriate carrier. We say an environment 7 satisfies I' if n(x) € A® for
eachx:seTl.

Given an environment 7 for A that satisfies I', we define the meaning A[M1]n of any
M € Terms(X, T') in n as follows

AllxTn = n(x)
ALfMy ... Midin = fAALM T,, ATMIn).

In the special case that f: s is a constant symbol, we have [fTn = f, since there are no
function arguments. It is common to omit .4 and write [M]in if the algebra A is clear from
context. If M has no variables, then A[MTln does not depend on 7. In this case, we may
omit the environment and write A[M] for the meaning of M in algebra A.

Example 3.3.5 The signature ¥ of Example 3.3.1 has a single sort, nat, and function
symbols 0, 1, +, . We may interpret terms over this signature in the ¥ xr-algebra N given

3.3 Algebras, Signatures and Terms 153

in Section 3.3.1. Let 5 be an environment for A/ with 7(x) = 0. The meaning of x + 1 in
n is determined as follows. (Remember that x + 1 is syntactic sugar for +x1.)

Lx + 117 = +V (LI, [1n)
=+M (), 1)
=+V N, 1Y)
=1]

Example 3.3.6 The signature X = (S, F) of Example 3.3.3 has sorts nat and stack,
and function symbols 0, 1,2, ..., 4, *, empty, push, pop and top. One algebra A, for
this signature interprets the natural numbers in the standard way and interprets stacks as
sequences of numbers. To describe the functions on stacks, let us write n: : s for the result
of adding natural number n onto the front of sequence s € N*. Using this notation, we
have

Agi = WL N* 041424, A A, empry?, push?, pop™, top™)
with stack functions determined as follows

emptyA =€, the empty sequence

pushA(n, s)y=n::s

popA(n: 1) =s§

popte) =¢

topA(n: 1s) =n

topA(e) =0

In words, the constant symbol empty is interpreted as empty, the empty sequence of
natural numbers, and the function symbol push is interpreted as pushA, the function that
adds a natural number onto the front of a sequence. The function pop™ removes the first
element of a sequence if the sequence is nonempty, as described by the first equation
for pop”. Since pop(empty) is a well-formed algebraic term, this must be given some
interpretation in the algebra. Since we do not have “error” elements in this algebra, we
let pop*(€) be the empty sequence. A similar situation occurs with top, which is intended
to return the top element of a stack. When the stack is empty, we simply return 0, which is
an arbitrary decision.

154 Universal Algebra and Algebraic Data Types

We can work out the meanings of terms using the environment n mapping variable
x:nat to 3 and variable s: stack to the sequence (2, 1) whose first element is 2 and second
element is 1.

[pop(push x s)1In =popA(pushA(|[x]]n, [s1n))
= pop™ (push™(3, (2, 1))

=pop™((3,2, 1))
=(2,1)

[top(push x s)1n = top™ (push (LxTn, [s1n))
= top™(push (3, (2, 1)))
=10p™((3,2, 1))
=3

It is easy to see from these examples that for any environment n mapping x to a natural
number and s to a stack, we have

[pop(push x s)1n = [sTn
[top(pushx s)lIn =[x1n =

One important property of the meaning function is that the meaning of a term M €
Terms® (X, T') is an element of the appropriate carrier A®, as stated in the lemma below.
This lemma should be regarded as a justification of our definitions, since if it failed, we
would change the definitions to make it correct.

Lemma 3.3.7 Let . Abe a X-algebra, M € Terms®(Z, I'), and n be an environment satis-
fying I'. Then [M]n € A®

Proof The proof is by induction on the structure of terms in Terms* (X, I').

The base case is to show that for any variable x € Terms*(X, ') and environment n
satisfying I', we have [x]ln € A®. From the definition of Terms®(X, '), we can see that
x:s € I'. By the definition of meaning, we know that [x]ln = n(x). But since 7 satisfies I',
it follows that (x) € A®. This proves the base case of the induction.

For the induction step, we assume that [[M;]ln € A%, for 1 <i <k, and consider a term
of the form f M ... M. The meaning of this term is

LfM;... Mdln = FAIM D, - . ., IMn)

3.3 Algebras, Signatures and Terms 155

From the definition of X-algebra, and the fact that f M, ... My € Terms*(Z, T'), we know
that £ is a function mapping a k-tuple in AS! x ... x A%, to the carrier A®. Therefore,

FAMM I, - .., IMDn) € A®.

This proves the lemma. The reader should verify that the argument given in the inductive
step applies to the special case k = 0.]

Another straightforward property is that the meaning of a term depends only on the
values of variables that appear in it.

Lemma 3.3.8 Let xj,..., x; be a list containing all the variables which occur in M €
Terms*(%, T'), and let 5y, n2 be environments satisfying I' with n(x;) = na(x;) for i =
1,...,k. Then [M1n, = [Mln>.

It follows from this lemma that if 7| and 7, agree on every variable in I', then for every
M € Terms*(Z,T), we have [M]n; = [M]n2. The reason is that every variable in M
must appear in I,

Progf The proof is by induction on terms whose variables are among xy, .. ., x;. For any
variable x;, it is clear that

[xi1n = ni(x) = n2(x) = Lxina.

For any term fM, ... My, we assume that the lemma holds for each M; and prove that
[fM;... M m =0 f M, ... MDna2. By the inductive hypothesis, we have [[M;]ln, =
[M;Qn,. Therefore

LfM,y... M= fAAM I, - .. [MEDn)
= fAIM I, - .., [IMcIn2)
=[fM... MIn.
This proves the lemma. =

Exercise 3.3.9 This exercise asks about the signature ¥, of Example 3.3.1 and the
algebra NV of Section 3.3.1. Let us write M x N as syntactic sugar for *xM N.

(a) Assuming n(x) =1 and n(y) = 2, calculate the meaning [(x + 1) * 2] in the same
level of detail as Example 3.3.5.
(b) Show that for any environment 7, we have [(x + y) * z]ln = [(x * 2) + (y * 2)]In.

Exercise 3.3.10 This exercise asks about the signature X;; of Example 3.3.3 and the
algebra Ay, of Example 3.3.6.

156 Universal Algebra and Algebraic Data Types

(a) Assuming n maps x:nat to 3 and s:stack to (2, 1), calculate the meaning [push
x(pop s)1In in the same level of detail as Example 3.3.6.

(b) Show that for any environment n mapping s: sfack to a nonempty sequence, we have
[push(top s)(pop s)In = [slln. What changes when n(s) = €?

3.3.4 The Substitution Lemma

A very important property of algebra, shared by first-order logic and typed lambda calcu-
lus, is the substitution lemma. Intuitively, this lemma says that substituting a term N for
a variable x in M has the same effect on the meaning of M as changing the environment
so that the value of x is the value of N. In other words, when we substitute a term for a
variable, what matters is the meaning of the term being substituted, not its syntactic form.
A consequence of this is that we may replace any subterm by an equivalent one. This is a
very useful property which we use often in reasoning informally and which will be central
to the equational proof system for algebraic terms.

In stating this lemma, we use the notation n[x + a] for the environment that is identical
to n on every variable except x, and maps x to a. We also assume Lemma 3.3.2, since
without this the statement of the following lemma would not make sense.

Lemma 3.3.11 (Substitution) Let M € Terms* (%, T, x:s") and N € Terms® (E,T), so
that [N/x]M € Terms* (X, I'). Then for any environment respecting n, we have

[IN/xIM1n = IMI(nl[x — al)
where a = [N]7 is the meaning of N at 7.

Proof The proof is by induction on the structure of M. If M is a variable, then there are
two cases, depending on whether M is the variable x or some other variable different from
x. The reader may verify that in each case, the proof is straightforward.

For the induction step, we consider a term of the form fM; ... M. The relevant sub-
stitution instance of this term is f[N/x]M; ...{N/x]My. From the definition of meaning,
we have

[FIN/xIM; ... IN/xIMiDn = fAWMIN/xIM D, - ..., [IN/x1Mi D)

By the inductive hypothesis, we have [[N/x]M;]In = [M;1(n{x —> a]) for 1 <i <k. Us-
ing the definition of meaning again, we have

FAAMIOIx > a), ... IMdGlx - a) = [f M ... MD(nlx = a),

and the lemma follows. "

3.4 Equations, Soundness and Completeness 157

Exercise 3.3.12 Show that the substitution rule

M = NI[T, x:s]

[P/xIM = [P/xINIT] P e Terms* (T, 1),

is semantically sound. In other words, assume that M, N € Termssl()i, I'x:s), Pe
Terms*(X,T) and [MIn' = ([N1n' for every environment 7’ satisfying T, x:s. Use
the Substitution Lemma to prove that for every environment n satisfying I', we have
[[P/xIMIn = L[P/x]IN]n.

3.4 Equations, Soundness and Completeness

34.1 Equations

The axiomatic semantics of an algebraic datatype is given by a set of equations between
terms over a signature. Together, a signature and set of equations (between terms over this
signature) is called an algebraic specification. From an algebraic specification, we may
either use the equational proof system to derive additional equations between terms, or
ask which algebras satisfy the requirements imposed by these equations. These two are
closely related: the equations we derive from a specification should hold in any aigebra
that satisfies the specification. This property is called soundness of the algebraic proof
system. The converse is that that every equation that holds in all algebras satisfying the
specification is provable from the specification. This is called completeness. The algebraic
proof system is presented in Section 3.4.3 and proved complete in Section 3.4.5. The
intervening sections develop the technical machinery needed for the proofs.

A minor generalization, from most treatments of algebra or first-order logic, is that we
allow empty carriers. The reasons we consider empty carriers are so that every specifi-
cation will have an initial algebra and because of the parallel with empty types in typed
lambda calculus. (In comparison with single-sorted first-order logic, it is worth mention-
ing that if there is only one sort, it makes sense to assume that the single sort is nonempty.
Otherwise, every formula of logic is true in the model.)

To see why empty carriers present a technical problem, recall that the meaning of a
term M € Terms*(X, ") is defined only with respect to an environment 7 satisfying T'.
Butif x:s € I' and A® =@ is empty, there cannot be any environment satisfying I'. As a
consequence, it is not clear whether we should say that every pair of terms in Terms* (X, T')
are equal (since none has a meaning), or that such an equation simply does not make sense.
The choice that gives us the simplest theory is to say that if AY is empty, then any pair of
terms involving x: s are equal. Since emptiness affects the truth of equations, and variables
can only be given values if their sorts are nonempty, the proof system will involve keeping

158 Universal Algebra and Algebraic Data Types

track of variables and their sorts explicitly. We will see how keeping track of variables
affects the proof system in Proposition 3.4.14.

An equation is a formula M = N[['] with M, N € Terms* (X, I') for some s. Note that
an equation has three parts: two terms and a set of typed variables. If n satisfies I', then we
say that an algebra A satisfies M = N[I'] at environment n, written

A,nkEM=NIT],

whenever [M1ln = [NIn. If A satisfies an equation at n, we also say the equation holds at
n. For terms containing variables, we are usually more interested in whether an equation
holds for all values of the variables than at a specific environment. We say A satisfies
M = N({T'], and write

A M=NIT],

if A,n = M = N[T'] for every n satisfying I". Satisfaction may also be extended to sets
of equations or algebras. If £ is a set of L-equations, then A satisfies £ if A satisfies
every equation in £. Similarly, if C is a class of algebras, then C = M = N[I'] if we have
Al M = N[I']forevery AeC.

Example 3.4.1 Let T be a signature with two sorts, a and b, and let .4 be a X-algebra
with A = {0, 1} and AP = . Since A“ has two elements, we have

Ab¥x =ylx:a, y:al.

More specifically, the equation x = y|x:a, y: a] fails at an environment mapping x > 0
and y — 1. However, if we add an additional variable condition, we have an equation

AEx=y[x:a,y:a,zb]
that holds vacuously since no assignment can give the variable z a value in A®.]

A standard concept in logic is validity. We say an equation M = N[I'] between X-terms
is valid, and write

E=M=N[I

if this equation is satisfied by every X-algebra. An example is the equation x = x[x:s],
which is valid since it holds in every algebra for any signature including sort s. The reader
is encouraged to understand why this equation is valid, even when s may be empty (see
Exercise 3.4.2). As we shall see, the valid equations are not very interesting, so we will be
primarily concerned with the equations that hold in specific algebras or classes of algebras.

3.4 Equations, Soundness and Completeness 159

We say a S-algebra A is trivial if A satisfies all equations over . A characterization of
trivial algebras is given in Exercise 3.4.3.

Exercise 3.4.2 Show that the equation x = x[x:s] is valid. More precisely, let ¥ =
(S, F) be any signature with s € S and let .4 be any X algebra. Show that for every
environment 7 respecting the sort assignment {x: s}, we have

A, nkEx =x[x:s].
Be sure to consider the possibility that A = (.

Exercise 3.4.3 Show that an algebra A is trivial iff each carrier A® is either empty or has
exactly one element.

Exercise 3.44 Let A= (A,-A KA) be a single-sorted algebra for the signature with
one binary operation -, which we will write in infix notation, and one constant symbol K.
Suppose A = (K - x) - y = x, where the sorts of the variables need not be specified since
there is only one sort.

(a) Show that if A has more than one element, then A must be infinite. (Hinz: Show that if
A is finite, then there is some a € A with KA A q = KA)

(b) Show that if A has more than one element, then - is not associative.
3.4.2 Term Algebras and Substitution

A useful fact about algebraic terms is that the collection Terms(X, I') of terms over any
signature and sort assignment gives us a X-algebra, called a term algebra. In the definition
of algebraic terms, we defined a set Terms’ (X, I') of terms for each sort s, which we may
take as the carrier for s in the algebra of terms. It remains to give an interpretation to each
function symbol f:s; X ... x sy — 5. To be precise about it, if £ = (S, F), we define the
Y-algebra

Terms(X,T) = ({Terms* (2,)}, I)
of terms over X and sort assignment I" by taking
THMy, ... M) = fM... M.

Since the definition is so simple, it is easy to see that Terms(X, I') is a X-algebra; see
Exercise 3.4.7.

The meaning of a term in a term algebra is easy to describe using substitution. If 77 is an
environment for Terms(%, I'), then 7 is a mapping from variables to terms, which is also
called a substitution. In general, if S is any substitution, then we write SM for the result of

160 Universal Algebra and Algebraic Data Types

simultaneously replacing each variable x in M by the term Sx. Since an environment 1 for
Terms(Z, T) is a substitution, we may write nM for the result of applying the substitution
ntoM.

Example 3.4.5 Let ¥ be the signature with sort # and function symbols f:u — u and
g:u X u — u. In the term algebra 7 = Terms(X, '), with ' = {a: u, b: u, c: u}, the carrier
of u will be the set of all terms of sort u over a, b, c and functions f and g, specifically,

T" =la,b,c, fa, fb, fc, gaa, gab, gac, ghb, ... g(f(fa))(f(ghc)), ...}

The interpretation f7 of function symbol f in the term algebra is the function mapping
any term M to fM and similarly for gZ. If we let 1 be the environment mapping variable
x toa and y to fb, then we have

TLe(fx)(fn=g(fa)(f(fb) .
We have the following lemma relating meaning and substitution.

Lemma 3.4.6 Let M € Terms(X, I') and let n be an environment for Terms(X, I') which
satisfies I'. Then [M]n =nM.

Proof We use induction on terms. For a variable x, we have [x]|n = nx by definition.
For a compound term f M ... My, we have

LfMy... Mlln = f™ (M, - ..., [MiDn)

by the definition of meaning in any algebra. By the induction hypothesis, we know
[[M;1n = nM; and since Terms(X, I') is a term algebra, we have

[fMy...Mylin=f(nMy) ... (nMy),
which is just the substitution n applied to M. .

Term algebras give us an easy way of seeing that an equation M = N[I'] is valid only if
M and N are actually the same term. This is the intent of Exercise 3.4.8.

Exercise 3.4.7 Explain the definition of Terms(X, I') as an algebra, and check that it
really satisfies the conditions for being an algebra.

Exercise 3.4.8 Use Lemma 3.4.6 to show that for the term algebra Terms(Z, '), we have
Terms(X,T) =M = N[I']iff M and N are syntactically identical.

Exercise 3.4.9 In applying a substitution S of many variables to a term P, we simultane-
ously replace each x in P by Sx. If P has variables x|, ..., x, then this is not necessarily

3.4 Equations, Soundness and Completeness 161

equivalent to substituting Sx; for x1, followed by Sx; for x5, and so on. The simultaneous
substitution mapping x; — M; is commonly written {My, ..., My /xy, ... xg].

(a) Find expressions M, N, P such that [M, N/x, y]P #[M/x](IN/y]P).

(b) Let V be an infinite set of variables. Show that for any simultaneous substitution
My, ..., My/xy,...x¢], there is a sequence of single-variable substitutions [N;/y;],
[Na/y2], ..., [N¢/ye] that has the same effect when applied to any term not containing
variables in V. In symbols, show

My, ..., Mi/xy, ... x P =[Ni/»11([N2/y21(. ..., ([Ne/yel P)))
for any P not containing variables in V.
3.4.3 Semantic Implication and an Equational Proof System

A pair Spec = (Z, £) consisting of a signature X and a set £ of T-equations is called an
algebraic specification. We generally think of an algebraic specification Spec = (X, £) as
specifying a set of algebras, namely, the set of X-algebras that satisfy £. This leads us to
the notion of semantic implication.

A set £ of equations over signature X semantically implies another X-equation M =
N[T'], written

£=M=NI[T]

if every X -algebra A satisfying £ also satisfies the equation M = N[I']. It is easy to see
that the equations that hold in all algebras satisfying a specification Spec = (X, £) are the
T -equations semantically implied by £.

A set of equations closed under semantic implication is called a theory. More precisely,
a set £ of equations is called a semantic theory if £ =M = N[I'] implies M = N[T'] € £.
The theory Th(A) of an algebra A is the set of all equations which hold in A. As the
reader may easily verify, the theory of an algebra is a semantic theory. The proof is
Exercise 3.4.16.

The rest of this section is devoted to an algebraic proof system for semantic impli-
cation. As mentioned earlier, two important properties of a proof system are soundness
and completeness. Soundness means that if an equation is provable from a set £ of hy-
potheses, then £ semantically implies the equation. Completeness is the converse, namely,
that if £ semantically implies an equation, then this equation is provable from £. We will
show soundness of the proof system for algebra in this section and completeness in Sec-
tion 3.4.5.

Some properties of equality are “universal” and do not depend on particular properties
of algebras. Specifically, semantic equality is always an equivalence relation. This means

162 Universal Algebra and Algebraic Data Types

that every instance of the reflexivity axiom
M = M[T], (ref)

is valid and that equality is symmetric and transitive. The latter two properties are formal-
ized by the inference rules

M = N[I'] (sym)

N = M|T'] ’

M= NI[I'}, N = P[I'] (trans)
M= P[T]

The next inference rule allows us to extend sort assignments in equations. This rule is
not very interesting, but it is necessary. The reason for the rule is that we can consider
extra variables as occurring “vacuously” in terms. Therefore, we need a way to derive
M = N[T, x:s] from M = N[I"]. The rule

M = NI[TI']

——————— xnotinT (add var)
M = NI[T, x:5]

allows us to add a variable to any sort assignment. By repeated application, we can add any
finite number of variables. It is easy to verify that if an algebra A satisfies the hypothesis
of this rule, A must also satisfy the conclusion.

The final rule is called substitutivity of equivalents and, intuitively, it says that we can
substitute equals for equals. Without mentioning sort assignments, the substitution rule is
simply that if M = N and P = Q, then the result of substituting P for x in M is the same
as substituting Q for x in N. Written out more formally, the rule is

M = N[T, x:s], P = Q[T]

[P/x]M =[Q/xIN[T] P, Q € Terms' (%, T), (subst)

where I', x:s =T U {x:s}. In writing I, x:s, as mentioned earlier, we assume that x
does not occur in ', An apparent limitation of this rule is that we cannot substitute P
and Q containing x into an equation M = N|[I", x:s], since the sort assignment for P
and Q is assumed not to contain x. However, this is not really a problem, as shown in
Exercise 3.4.18.

We say M = N[I'] is provable from a set £ of equations, and write

EHM=NI[I']

if we can derive M = N{[I'] from the equations in £ and instances of the axiom (ref) using
the inference rules (sym), (trans), (subst) and (add var). More formally, a proof of E from

3.4 Equations, Soundness and Completeness 163

£ is a sequence of equations such that each equation is either an axiom, an equation from
&, or follows from one or more equations that occur earlier in the sequence by a single
inference rule. A useful form of reasoning about proofs is by induction on the length of
the proof of E from £.

If £ is closed under provability, then we say £ is a syntactic theory. Put another way, £
is a syntactic theory if £ = M = N[T'] implies M = N[I'] € £. If £ is any set of equations,
the syntactic theory of &£, written Th(£), is the set of all equations provable from &.
By proving completeness, we will show that syntactic and semantic algebraic theories
are the same. But until then it is useful to have both definitions. A set £ of equations
is semantically consistent if there is some equation M = N{[I'] that is not semantically
implied by &€ and syntactically consistent if there is some equation M = N[I'] that is not
provable from &.

Example 3.4.10 (Continuation of Examples 3.3.3 and 3.3.6.) The signature X =
(S, F) of Example 3.3.3 has sorts nat and stack, and function symbols 0, 1,2, ..., +, %,
empty, push, pop and top. The algebra Ay, for this signature, given in Example 3.3.6,
interprets the natural numbers in the usual way and interprets stacks as sequences of num-
bers. Two equations that hold in Ay are

top(push x s) = x[s: stack, x: nat]
pop(push x s) = s[s: stack, x: nat]

We can use these to prove the equation
top(push 3 empty) =3

between X, terms, as follows:

top(push x s) = x[s: stack,x: nat], empty = empty[x: nat]
top(push x empty) = x[x: nat] 3=3[]
top(push 3 empty) =3[]

This proof uses two instances of axiom (ref), one of the stack axioms, and two applications
of the (subst) rule. Another stack proof is given in Example 3.4.11, using a derived proof
rule discussed below.]

A derived rule of a proof system is an inference rule

antecedent
consequent

such that for any instance of the antecedent, we can derive the corresponding instance of

164 Universal Algebra and Algebraic Data Types

the consequent using the axioms and other proof rules of the system. For example,

M =NI[T'],N = P[T'], P = Q[T’]
M = Q[T']

is a derived rule of the algebraic proof system since, from any three equations of the form
M=N,N=P,P=Q, wecan derive M = Q by two uses of the transitivity rule. If we
show that a rule is derivable, then we may use it as if it were a proof rule of the system.
Therefore, if we were to do a large number of proofs, it would make sense to build up a
library of derived proof rules.

An example of a derived rule is the following “congruence” rule. Intuitively, congruence
means that “equals applied to equals produce equals.”

Mi=Ni[T'],..., My =NeIT'] f:5) x ... x s > s and
fMi.. M= fNi...N[] MiNicTermsi(%,0)

(cong)

We show that (cong) is a derived rule using (add var), (ref'), and (subst) as follows. From
the hypotheses, we may use (add var) to derive equations

M; = Ni[T, xi:81, ..., Xi: Sk}

where x1, . .., xi are fresh variables not occurring in I". By (ref), we also have the equation
fxt.oooxk=fxp.ooox D, xpesy, - oo, Xk se).

Using (subst) repeatedly, we may replace the left-hand occurrence of x; by M; and the
right-hand occurrence by N;. This gives us the consequent of (cong),

fMp... M= fN;...NT]
Although (cong) is subsumed by the other proof rules, it is a handy derived rule.

Example 3.4.11 (Continuation of Example 3.4.10.) We can use the derived congruence
rule to prove the equation

top(pop(push x (push 3 empty))) = 3[x: nat],

from the stack axioms given in Example 3.4.10. To prove this equation, we begin with a
stack axiom and an instance of (ref), apply (subst) and then the derived (cong) rule:

pop(push x s) = s[s: stack, x: nat], push3 empty = push 3 empty[x: nat)

pop(push x (push 3 empty)) = push 3 empty[x: nat]
top(pop(push x (push 3 empty))) = top(push 3 empty)[x: nat}

’

From the equation proved in Example 3.4.10, we can use (add var) to obtain

3.4 Equations, Soundness and Completeness 165

top(push 3 empty) =3[]
top(push 3 empty) = 3[x: nat]’

Putting these together with (trans) yields

top(pop(push x (push 3 empty))) = 3[x: nat]. L]

Example 3.4.12 The following rule allows us to eliminate redundant variables from the
sort assignment of any equation. Essentially, a sort assignment I' in an equation M = N[I']
serves two purposes. First, it says what the sorts of the variables in M and N are, so that
we can see that these terms are well-formed. The second role is to keep track of which
carriers we assume are nonempty. If a variable x does not occur in M or N, and we know
(by some other means) that s is not empty, then x:s serves no purpose in an equation
M = NI[T, x: 5]. Since the carrier for s must be nonempty if we can name an element of s
by writing a term P € Terms® (X, I'), the following inference rule makes semantic sense.

M = NI[T, x:s]

B xnotin M, N; Terms*(Z, T') not empty

We can show that this is a derived rule using (ref) and (subst). Since Terms*(Z,T') is
not empty, we have the reflexivity axiom P = P[I'] for some P € Terms*(X,T"). Com-
bining this with our hypothesis M = NIT’, x: 5], we may use (subst) to prove the equation
[P/x]M = [P/x]N[I']. But since x does not occur in M or N, the substitution has no
effect, and we have M = N[TI']. u

The main theorem of this section is that the proof system for equations is sound, which
means that if we can prove an equation E from a set £ of equational hypotheses, then £
semantically implies E.

Theorem 3.4.13 (Soundness) If£+ M = N[I'],then£ =M = N[T"].

Proof We prove soundness by induction on the length of the proof. More specifically,
suppose there is a proof of E from £. We show then £ |= E by induction on the length of
the proof of E from &.

The base case of the induction is a proof of length 1, which is either an axiom or an
equation from £. In either case, it is easy to see that any algebra satisfying .A must satisfy
this equation as well.

For the induction step, we assume that E follows from equations Ej, ..., E, by a single
proof rule, and E|, . .., E, are provable by shorter proofs. By the inductive hypothesis, we
may assume that if A = £, then A satisfies E|, ..., E,. It therefore suffices to show that if
A satisfies the antecedents of the last rule used, then A satisfies E. This leads us to a case

166 Universal Algebra and Algebraic Data Types

analysis on the set of proof rules. Rather than show each case, we will give the proof for
the substitution rule and leave the others to the reader.

We assume A= M = N[T,x:s] and A= P = Q[I']. We must show that A &=
[P/xIM =[Q/x]N[T]. To do this, we let n be any environment satisfying I". We must
show that [[P/x]M1n =1[Q/x]IN1n.

Let a = [PIln = [Q1n, and note that n[x — a] satisfies T, x:s. By the Substitution
Lemma (Lemma 3.3.11), we have

[[P/xIM1n = IMI(nlx — a])

and similarly

[LQ/xIN1n = IN1L(n[x = al).
But since A = M = N[T'], we also have

IMI(x = a]) = [N1(nlx — a]).
It follows that [[P/x]M]In and [[Q/x]N]In are equal, which proves the lemma. [

We can use this theorem to show why it is essential to keep track of variables in equa-
tions.

Proposition 3.4.14 There is an algebraic theory £ and terms M and N without x free
suchthat E- M = N[, x:s]but £/ M = N[TI']

Proof Let X be the signature with sorts a and » and function symbols f:a — b and
¢,d:b. Let £ be the theory consisting of all equations provable from fx = c[x:a] and
fx =d[x:a] and consider the equation ¢ = d[x: a]. This clearly follows from the equa-
tions in £ by transitivity. However, we can see that the equation ¢ = d[@] is not provable,
by the following semantic argument.

Consider a X-algebra with the carrier for a empty but ¢ and d denoting two distinct
elements of the nonempty carrier for b. The equations fx = c[x:a] and fx =d[x:a]
are true in this model, since there is no possible value for x:a. However, the equation
¢ = d[#] does not hold in this model. Therefore, by soundness of the equational proof
system, ¢ = d[@] is not provable from £. n

The soundness theorem not only shows that the proof system is semantically correct,
but also, as in the proof of Proposition 3.4.14, may be used to show that an equation is
not provable from some set of equations. Specifically, if we can find an algebra satisfying
£ but not satisfying an equation E, then £ does not semantically imply E. It follows by
soundness there cannot be a proof of E from £. In cases where we do not know if an

3.4 Equations, Soundness and Completeness 167

Table 3.1
Algebraic specification of stacks.

sorts: nat, stack

fetns: 0,1,2,...:nat
+, * : nat X nat — nat
empty : stack
push : nat x stack — stack
pop : stack — stack
top : stack — nat

eqns: [s: stack, x: nat]
0+0=0,0+1t=1, ...
0x0=0,0x1=0, ...
top (pushx s) =x
pop (pushxs)=s

equation E follows from a set of equations £, we generally try both to prove E from
£ and find an algebra satisfying £ but not E. It follows from the completeness theorem
that, in principle, one of these is possible. However, it is important to realize that there
is a significant difference between searching for a proof and searching for an algebra that
demonstrates that there is no proof. The difference is that there is an effective and routine
method for enumerating all proofs. Therefore, if there is a proof of E from &, a routine
method will eventually find it. However, there is no routine method for finding an algebra
to show that there is no proof.

Example 3.4.15 This example presents some equations, written using the stack signature
of Example 3.3.3, that are not provable from the equational axioms of Example 3.4.10. For
easy reference, the signatures and equational axioms from these examples are collected in
a tabular form of specification in Table 3.1. In the notation used in this figure, the sort of
each variable is given at the beginning of the list of equations. This may be regarded as a
shorthand for writing the same sort assignment as part of each equation.

An algebra Ay, satisfying this specification is given in Example 3.3.6. We can see that
the equation

push(top s)(pop s) = s[s: stack]

is not provable from the stack specification by observing that this equation does not hold
in the algebra Ay;. Specifically, this equation fails at an environment mapping s to the
empty sequence.

A related but more complicated fact is that we cannot prove any equation of the form

168 Universal Algebra and Algebraic Data Types

top empty = M[I'],

assuming the term M of sort nat does not contain empty. This may be demonstrated using
algebras that are almost the same as A, but differ in the interpretation of the function
symbol zop. For any n € N/, let A, be the algebra that is the same as Agy, but with
top™(¢) = n. (This gives us Agx = Ag.) Note that if 5 is an environment for A that
satisfies T, then 7 is also an environment for any .A,, again satisfying I'. We will show
that for any M of sort nat that does not contain empty, we can find an environment 7 so
that A;[M1n = A;[M]n for all i and j. The main idea is that as long n maps all the
variables of sort stack that appear in M to large enough stacks (long enough sequences),
the meaning of M will be independent of the value given to top empty.

We begin by showing that if P is a term of sort stack containing only stack variables
X1, ..., Xj, natural number variables yq, ..., ¥ and not containing empty, then for any
number £, there is a minimum number m such that as long as environment 7 sends each
stack variable x; to a stack with at least m elements, A,[[PTln has at least £ elements (for
every n). We use induction on the structure of P. If P is a stack variable x;, then clearly
we can choose 7 so that n(x;) will have as many elements as we like. If P is push P P,,
then the meaning of P will have at least £ elements as long as the meaning of P, has at
least £ — 1 elements. By the inductive hypothesis, this is achievable. Finally, if we want
pop P to have at least £ elements, it similarly suffices to find an environment giving P at
least £ + 1 elements.

The second step is to show that if M is a term of sort nat that does not contain empty,
then there is an environment (for A and therefore for each A,) such that A,[M]n =
A [M1In for all n. This is proved by a straightforward induction on the structure of M,
using the fact that for a term of the form fop N, we can choose 7 so that neither A,[[N]n
nor A ;[N7 is the empty stack.

We conclude the argument by observing that if M is a term of sort nat that does not
contain empty, the equation top empty = M|[I'] fails in some .4, at some environment.
Specifically, et n be an environment such that A, [[Mn = A [[M1n for all n. Then since
A, [[top empty]ln depends on n, we must have A,[[top empty]n # Apl[M]n for some n.
Therefore, the equation top empty = M[I"] cannot be proved from the axioms for stacks.

|]

Exercise 3.4.16 Show that for any algebra 4, the set Th(A) of all equations that hold in
A is a semantic theory.

Exercise 3.4.17 Show that a set £ of equations is semantically consistent iff there is a
nontrivial algebra A4 = €.

3.4 Equations, Soundness and Completeness 169

Exercise 3.4.18 Show that

M =N[T,x:s], P = Q[I'"]
[P/xIM =[Q/xIN[T"UT"]

P.Q € Terms* (L, T),

is a derived rule. Be sure to consider the case where x occurs in ', P and Q. Note
that in writing [P/x]M = [Q/xIN[I" UT"’], we assume that I' U I’ is a well-formed sort
assignment, so that no variable is given two different sorts.

Exercise 3.4.19 Let us call a substitution S a (T", ['')-substitution if S maps every x with
x:s € T, to some term Sx € Terms*(X, I'’). Show that the rule

M = NI (T, I")-substitution S
—————— an , I'")-substitution
sM=snir] W

is a derived rule. In other words, show that from M = N[I'], we may prove every equation
of the form SM = SN[I'’]. (Hint: see Exercise 3.4.9.)

Exercise 3.4.20 Consider the specification of multisets, natural numbers and booleans
in Table 3.2. (In this specification, if u then x else y is used as syntactic sugar for
cond u x y.) In case you are not familiar with multisets, a multiset is similar to a set except
that an element may occur more than once. Therefore, the membership test (called count)
returns a natural number instead of a boolean. Parts (b) and (c) use variables x, y: nat and
m: mset.

(a) Prove the equation
count 3(insert 5 (insert 3 empty)) = 1

from this specification.

(b) Show that for any numerals a,b and c the equation
count a (insert b (insert c m)) = count a (insert c (insert bm))

is provable from this specification

(c) Show that the equation
insert x(insert y m) = insert y(insert x m)

is not provable from this specification by finding an algebra that satisfies all of the equa-
tions in the specification but does not satisfy this one.

170 Universal Algebra and Algebraic Data Types

Table 3.2
Algebraic specification of multi-sets, nat and bool.

sorts: mset, nat, bool
fetns: 0,1,2,...:nat
—+:nat X nat — nat
Eq?:nat x nat — bool
true, false : bool
empty : mset
insert : nat x mset — mset
count : nat X mset — nat
condy : bool x nat x nat — nat
condy, : bool x bool x bool — bool

condy, : bool x mset x mset — mset

eqns: x,y:nat, m,m’:mset, u, v :bool

0+0=0,0+1=1,...,5+7=12, ...
Eq?x x = true
Eq?01 =Eq?02=... = false

count x empty =0

count x (insert ym) = if Eq?xy then (countxm)+ 1 else countxm
condg truex y = x

condg falsexy =y

condptrueuv =u

condp falseuv =v

condm truemm’ =m

condm false m m' =m’

Exercise 3.4.21 An algebraic specification of trees is given in Table 3.3. Intuitively, the
sort tree consists of binary trees with atoms stored at the leaves. (If £ is a leaf, then labell
is the atom stored at this leaf.) Prove the following consequences of this specification.

(a) Isub(node(rsub(node(leaf a)(leaf b)))(leaf c¢)) = leaf b.

(b) label(lsub M) = label(rsubM), where M = node(leaf a)(leaf a).

(c) Show that if M is any variable-free term over the signature in Table 3.3, with sort tree
and beginning with the function symbol leaf or node, then the equation

is_leaf? M = is_leaf ?(cond(is_leaf ? M)(leaf a)M)

is provable.

(d) Construct an algebra satisfying the specification to show that the equation

3.4 Equations, Soundness and Completeness 171

Table 3.3
Algebraic specification of trees.

sorts: atom, tree, bool

fetns: a.b,c,d,...:atom
leaf : atom — tree
label : tree — atom
node : tree X tree — tree
true, false : bool
is_leaf ? : tree — bool
Isub : tree — tree
rsub : tree — tree
condg : bool x atom x atom — atom
condy, : bool x bool x bool — bool
condy : bool X tree X tree —> tree
eqns: [x, y:atom, t,1' :tree. u, v : bool
is_leaf Wleaf x) = true
is_leaf Anode t t'y = false
label(leaf x) =x
Isub(node t t') =1
rsub(node 1 'y =1
condgtruexy = x
condg falsex y =y
condp trueuv =u
condp falseuv =v
cond; truett' =1

condy falsett’ =t/

label(node t t') = label(node t' t),

for variables ¢, t': tree, is not provable from the specification.

(e) Show that if term M: tree does not contain the function leaf, then the equation
Isub(leaf x) = M|T", x: atom]

is not provable. (Hint: look at Example 3.4.15.)

3.4.4 Forms of Completeness

Before developing the technical machinery used for proving completeness, we will discuss
three forms of completeness that apply to various logical systems. The weakest form

172 Universal Algebra and Algebraic Data Types

is when every valid formula is provable. For algebra, this kind of completeness is too
weak to be interesting: all valid equations are instances of axiom (ref). The next form,
called deductive completeness, holds when every semantic implication is derivable in the
proof system. More specifically, for equations, deductive completeness is the property that
whenever £ =M = N[I'], we have £ = M = N[I']. A stronger form of completeness
may be called least model completeness. This holds when every syntactic theory (set of
formulas closed under provability) is the semantic theory of some “least” model. For
algebras, least model completeness would imply that every syntactic theory is Th(.A) for
some algebra .A. What may be slightly confusing about the name is that “least models” are
least when we order models by containment of their theories, not the size of their carriers.

Least model completeness is related to a semantic condition we might call the least
model property: every semantic theory is the theory of a single model (algebra). If we have
soundness and least model completeness, then every semantic theory is a syntactic theory,
and so the least model property holds. The contrapositive is that when the least model
property fails, we cannot have least model completeness for any sound proof system.

We will prove deductive completeness for algebra in the next section. In the remain-
der of this section, we show that the least model property fails for algebras that may have
empty carriers. It follows that we cannot have least model completeness with empty car-
riers. In Section 3.4.6, we show that if empty carriers are ruled out either by fiat or by
restricting signatures, we can prove least model completeness for multi-sorted algebras.

In general, the least model property fails when logical formulas can express “disjunc-
tive” information. While we do not ordinarily think of equations as disjunctive, the possi-
bility of empty carriers introduces a form of disjunction. To see why, consider the equation

E & x=ylx:a,y:a,zb]

discussed in Example 3.4.1. We will see that any algebra satisfying E must satisfy one of
the following equations

E1 ¥ x=ylx:a,y:al, E; & z=w[z:b, w:b].

However, E does not semantically imply either E; or E;.

There are two ways that E might be satisfied. One is that the carrier for a does not have
two distinct elements, forcing x and y to have the same value. The other case is that the
carrier for b is empty, which makes the equation hold vacuously. Using the notation |s| for
the cardinality of the carrier for s, we can see that E “says”

E =~ (la]l <1or|b|=0)

When |a| < 1, the equation E| without the variable z: b must hold, while E; must hold

3.4 Equations, Soundness and Completeness 173

when |b| = 0. Thus any algebra for the signature with sorts a, b which satisfies E must
satisfy one of these other equations. However, it is easy to see that neither equation is
semantically implied by E. Thus the semantic theory consisting of all equational conse-
quences of E cannot be the theory of a single algebra. This causes the least model property
to fail.

3.4.5 Congruence, Quotients and Deductive Completeness

The main result of this section is the deductive completeness theorem for multi-sorted
algebras that may have empty carriers. The proof of this theorem uses congruence relations
and quotient algebras, which we develop first.

Many readers will be familiar with the general notion of an equivalence relation, a re-
flexive, symmetric and transitive binary relation. It is easy to see from the proof rules that
provable equality is an equivalence relation. In addition, the derived rule (cong) demon-
strates that every function preserves provable equality. An equivalence relation with this
additional property is called a congruence relation.

For a single-sorted algebra A = (A, flA, f2“4, ...,) acongruence relation is an equiva-
lence relation on the carrier A such that, for every k-ary function f A from A, ifa; ~ b;
fori=1,...,k then fA(al, ce, ap) ~ fA(bl, ..., br). In words, a congruence relation

is an equivalence relation with the added property that every function of the algebra maps
related arguments to related results. An example is the relation “equivalence modulo k”
on the single-sorted algebra (N, 0, I, +). It is easy to see that this is an equivalence rela-
tion. The additional requirements for a congruence are that 0 =0 mod &, 1 = 1 mod k and
whenever n = n’ mod k and m = m’ mod k, we have n +m = n’ + m’ mod k. These are
easily verified, as many may remember from secondary school.

For a multi-sorted X-algebra A = ({A®}, T), a congruence relation is a family ~= {~;}
of equivalence relations ~;C A® x A®, one for each sort, such that for every f:sy x ... x
sk — s and sequences of arguments ay, ...,ax and by, ..., by with a; ~;, b; € A%, we
have fA(al, cey Q) fA(bl, ..., bx). An example that we will use is the relation of
provable equality (from any set of equations) on the term algebra. It is easy to see that this
is a congruence relation since we have an axiom and proof rules to make provable equality
an equivalence relation, and (cong) is a derived inference rule.

Given any congruence relation ~ on A, we may construct an algebra .4/~ called the
quotient of A modulo ~. The intuitive idea behind .4/~ is that we “collapse” related
elements a ~ a’ from A into one element of A/~.

If ~ is a congruence relation on A and a € A®, then the equivalence class [a]~ of a with
respect to ~ is defined by

[al~={a' € A® | a~ad'}.

174 Universal Algebra and Algebraic Data Types

Another common notation for the equivalence class of a is a/~. We often leave off the
symbol ~ and write [a] when the congruence relation ~ is clear from context. The quotient
X -algebra A/~ is defined by taking (A/~)° to be the set

A’)~ = {[al~, | a € A}.

of all equivalence classes from A®. A function f A from A determines a function f A/~
satisfying

A, . la) =, ... a)]

for all ay, . .., ay of the appropriate carriers. In other words, the function value f A~ (a1,
..., [ax]) on a sequence of equivalence classes is the equivalence class of fA(al, e, R).
It is not completely obvious that this definition makes sense, since the value f A/ “([a11,
..., [ax]) must depend only on the sets [aj], ..., [ax] and not on the representatives
ai,...,a; we have chosen in writing this down. This problem is addressed in Exer-
cise 3.4.26.

For the congruence relation “equivalence modulo £ on the single-sorted algebra
(N, 0, 1, +), the reader may verify that the quotient algebra is the familiar structure of
integer addition modulo k. For example, if £ =5, then the sum of equivalence classes [3]
and [4] is the equivalence class [3 4+ 4] = [7]. Since [7] = [2], this is the same as what is
more commonly written 3 4+ 4 = 2 mod 5. More details are given in Exercise 3.4.25.

The meaning of a term M in a quotient algebra A/~ has an easy description, based
on the meaning of M in A. If M has no variables, then the meaning of M in A/~ is the
equivalence class of the meaning of M in A. If M has variables, then we need to pick an
environment 7 for A and relate this to some environment for A/~.

If n is an environment for A and ~ is a congruence relation, we define the environment
n~ for A/~ by

n~(x) = [n(x)]~.

We can also choose an 4-environment corresponding to any .4/~-environment. If 7’ is
a mapping from variables to elements of A/~, then we can define an environment n for
A by choosing an arbitrary element n(x) € n’(x) for each variable x. This gives us an
environment 5 with n~ =7’

Using the correspondence between environments for .4 and .A/~, we have the following
description of the meaning of a term in a quotient algebra.

Lemma 3.4.22 Let ~ be a congruence relation on X-algebra A, term M € Terms(Z, ')
and 7 an environment satisfying [". Then the meaning (A/~)[M]n~ of M in environment
n~ for the quotient algebra A/~ is given by

3.4 Equations, Soundness and Completeness 175

(A/)IM 1~ = [AIM]In]~.

Proof We use induction on the structure of M. The base case follows easily from the
definition of n.. For the induction step, we have

A/ My Ml = FA7 A/~ IM D - (A~ EMEDn-)
= A AIM D), ..., TATM,Dn])
= [FAALM T, . . ., ATMDI)]
= [ALfM; ... Mi]In].

The first equation is just the definition of meaning in .A/~. After that, we use the inductive
hypothesis and the interpretation of a function symbol in a quotient algebra. u

As the final step toward proving the completeness theorem, we will show that any set
of equational hypotheses determines a congruence relation on the algebra of terms. For
any set £ of X-equations, and any sort assignment I', we define the relation ~¢ - on the
algebra Terms(X, I') by taking

M~gr NiftEEM = N[TI'].
This is a congruence relation, as shown by the following lemma.

Lemma 3.4.23 Let £ be a set of X-equations and let Terms(X, I') be a term algebra over
signature Y. The relation ~¢ r determined by provability from £ is a congruence relation
on Terms(%, I).

Proof It is easy to see that ~¢ 1 is an equivalence relation on each sort, since we have
axiom (ref) and inference rules (sym) and (¢rans). To simplify notation, let us write 7" for
the algebra Terms(X, I'). It follows easily from the derived rule (cong) that

FTMy, o M) ~er FT(NL ... Np)
whenever M; ~¢ r N;. =

Theorem 3.4.24 (Completeness) Let £ be any set of X-equations, and E be a single
¥-equation. If £ = E, then £+ E.

Proof Suppose the equation My = Ny[['g] is not provable from £. We will prove the
deductive completeness theorem by showing that there is an algebra satisfying £ but not
satisfying this equation. We will use the quotient algebra A = Terms(X, 'og)/~¢ r,. To
simplify notation, let us write ~ for the congruence relation ~¢ r, and 7 for the term

176 Universal Algebra and Algebraic Data Types

algebra Terms(Z, I'g). We must show that A satisfies every equation in £, but not the
equation My = Nyg[[o].

It is easier to see that A does not satisfy My = Ng[T'g] since this requires only one
environment. Let be the environment for the term algebra 7 mapping each variable x
to itself. Then by Lemma 3.4.6, we know the meaning 7 [[Mo]ln of My at this environment
is simply Mp. Consequently, by Lemma 3.4.22, we have

Al Molln~ = [Mo]

and similarly for Ny. But by hypothesis, we know [Mp] # [No], so the equation My =
No[To] does not hold at environment 7~..

It remains to show that A = €. Suppose M = N[I'] € £. As noted in the discussion
just above Lemma 3.4.22, every environment for .4 may be written 7~ for some envi-
ronment 1 for the term algebra 7. Specifically, suppose we are given some 7 for A.
For each variable x, we choose some P € 7(x) and let n(x) = P. Then we have n~ = 1.
Therefore, it suffices to show that A[M]n~ = A[N]n~ for every such 7 environment n
satisfying I'.

For any 7 environment 7 satisfying ', we have A[M]n~ = [7[M]n]~ by Lemma
3.4.22, and so by Lemma 3.4.6 it follows that

AlMIn~ = [TIMInl~ = [nM]-~.

Since the same reasoning applies to N, we have A[N]ln~ = [nN]~. Now, using rules (ref)
and (subst), we can show that £ = nM = nN|[I'] (see Exercise 3.4.19). But this means that
[nM]~ = [nN]~, and so we conclude that M and N have the same meaning in .A. This
proves the theorem. [

The completeness theorem shows that syntactic and semantic theories are identical.

Exercise 3.4.25 Let T be the single-sorted algebraic signature

sorts:nat
fctns:0, 1 : nat

+ : nat X nat — nat

and let A be the T algebra whose carrier A" = N is the set of natural numbers and with
function symbols 0, 1, + interpreted as the usual natural numbers and addition function.

(a) Show that ordinary “congruence modulo n,” for any natural number »n > 0, is a con-
gruence relation on .A. In other words, let =, be the relation i =, j iff n divides |i — j|
and show that =, is a congruence relation on A.

3.4 Equations, Soundness and Completeness 177

(b) Describe the quotient structure .4/ =,. How many elements does the carrier A"/ =,
have?

(c) If we extend the signature with a multiplication symbol, and extend the algebra 4 to
interpret this symbol in the usual way, is =, still a congruence relation on A? What if we
add a unary function symbol p, interpreted so that p(i) is the least prime greater than i?

Exercise 3.4.26 Show that the equation defining f**/~ actually determines a function
from equivalence classes to equivalence classes. This means that you should show that
if [a;]=1[b;] for i =1,...,k, then [f(aj,...,ar)] =[f(b1, ..., br)]. What would go
wrong if ~ were an equivalence relation but not a congruence? What if ~ were not
transitive?

Exercise 3.4.27 1If signature £ = (S, F), a partial congruence relation over X-algebra
Ais afamily ~= {~; |s € S} of symmetric and transitive relations ~;C A® x A° such that
for every f:s1 X ... X s — s in F and sequences of arguments ay, ..., a; and by, ..., b
with a; ~;, b; € A%, we have fA(al, e, ap) ~y fA(bl, ..., by). The difference between
this and an ordinary congruence relation is that a partial congruence relation does not
have to be reflexive. If x ~ x, then we define the “equivalence class” of x as for a total
congruence relation, and define the partial quotient structure A/ ~ by letting the carrier
A*/ ~ be the set of all nonempty equivalence classes. Show that A/ ~ is an algebra with
the property that if # is an environment for .4 with n(x) ~ n(x) for each x in M, then

(A/~)[MIn~ = [AM]n]~.
3.4.6 Nonempty Sorts and the Least Model Property

For algebras without empty carriers, we have least model completeness. There are two
ways of eliminating empty carriers:

(i) Assume that no algebra has any empty carriers, and add a corresponding inference rule
to the proof system;

(ii) Consider signatures which yield variable-free terms of each sort. Since these terms
must have values, this eliminates empty carriers.

In either of these cases, essentially the same construction used in the proof of Theo-
rem 3.4.24 may be used to prove least model completeness.

A completeness theorem covering both cases of nonemptiness may be stated using the
inference rule

M = NI[T, x:s]

notin M, N nonem
M= NI (pry)

178 Universal Algebra and Algebraic Data Types

which allows us to eliminate assumptions about any variables which do not occur in the
equation. We will see below how this rule is derivable for certain signatures. If we know
that the carrier for s is not empty, then it is easy to see that this rule is sound. Specifically,
if the top equation is satisfied in some algebra 4, and 7 is an environment satisfying I we
can find some environment 7’ satisfying ', x: s which is identical to on all variables in
. By Lemma 3.3.8, terms M and N have the same meaning in 7’ as in 7, and so the rule
is sound. The following theorem shows that the rule gives us least model completeness.

Theorem 3.4.28 Let &£ be any syntactic theory closed under rule (nonempty). There is an
algebra A with all carriers nonempty such that £ = Th(A).

The proof is outlined at the end of this section.

We may use this theorem to show completeness of the ordinary proof system without
(nonempty) in the case that our signature forces every carrier nonempty. To put this pre-
cisely, we use the following definition. A sort s is X-nonvoid if signature X contains a
constant symbol of sort s, or ¥ has a function symbol f:s; X ... x s — s and sorts
1, -..,5; are X-nonvoid. It is easy to see that if 5 is X-nonvoid, then there is a term
M € Terms® (X, @) without variables, and so the carrier for s cannot be empty in any X
algebra. As described in Example 3.4.12, we may eliminate extraneous variables by sub-
stitution when all sorts are nonvoid, and so (nonempty) becomes a derived rule.

Corollary 3.4.29 If ¥ is a signature with every sort £-nonvoid, then for every syntactic
Y -theory &, there is an algebra A with £ = Th(A).

Proof of Theorem 3.4.28 Suppose £ is a syntactic E-theory closed under inference rule
(nonempty). To avoid some technical details about the names of variables, let us assume
we have an infinite set I'oo Of pairs of the form x: s, providing infinitely many variables
for each sort of X, and suppose that all the terms we are interested in belong to some
Terms(X, ') for I' € I'o. There is no loss of generality in this, since 'y has plenty of
variables, and renaming variables has no effect on whether an algebra satisfies a given
equation. It is easy to see that the definition of a term algebra Terms(Z, ') does not depend
on I" being finite, and so we may let 7 be the term algebra 7 = Terms(X, ['y,). We let ~
be the binary relation on 7 given by M ~ N iff £+ M = N[I'] for some finite I" C I'y.
It is easy to check that ~ is a congruence relation on 7. It remains to show that for the
quotient algebra A = 7 /~, we have £ = Th(A). The steps of the argument are essentially
the same as in the proof of Theorem 3.4.24. "

Exercise 3.4.30 Show that least model completeness implies deductive completeness.
Conclude that with rule (nonempty), we have soundness and deductive completeness for
multi-sorted algebras without empty carriers.

3.5 Homomorphisms and Initiality 179

Exercise 3.4.31 Finish the proof of Theorem 3.4.28 by completing the argument that
E =Th(A).

3.5 Homomorphisms and Initiality

3.5.1 Homomorphisms and Isomorphisms

A homomorphism is a structure-preserving map from one algebra to another. We will
use homomorphisms primarily as a way of defining initial algebras, developing some
additional properties in the exercises.

For multi-sorted algebras, a homomorphism h: A — B from -algebra A to T-algebra
B is a family of maps & = {h® | s € S} indexed by sorts such that

hs(fA(al, ce,) = fB(hslal, L h%ay)

for every function symbol f:s1 X ... x s — s of X. Intuitively, we may think of a homo-
morphism % from A to BB as a way of “translating” from values of .A to values of B. This
intuition is supported by the way homomorphisms preserve meanings of terms, discussed
below.

A trivial example of a homomorphism is the identity map from A to .A. For an algebra
with more than one sort, the identity homomorphism Id 4 from A to A is a family of
functions Id 4 = {id’} with id®*: A — A® the identity function on the carrier for sort s.
Two more examples are the homomorphism from natural numbers to natural numbers
modulo k, and the meaning function for the term algebra to any algebra, discussed in
Examples 3.5.1 and 3.5.2.

Example 3.5.1 The function from natural numbers to natural numbers modulo % that
sends each n € A to the integer #» mod k is a homomorphism. More specifically, let N' =
(N, 0, 1, 4) be the usual natural numbers with 0, 1, + and let ~ be equivalence modulo k.
Then the map / sending n € N to its equivalence class [n]~ is a homomorphism from N
to N/ ~ since we have

h(0) = 0N/~ =[0]
h(n +m) = h(n) +N/~ h(m) = [n + m]

In general, there is a homomorphism from any algebra A to any of its quotients .4/ ~,
defined in exactly this way. For a general statement, see Exercise 3.5.7. .

Example 3.5.2 The meaning function is a homomorphism from the term algebra to any
algebra. More specifically, let .4 be any X algebra and let 7 = Terms(X, I") be any term

180 Universal Algebra and Algebraic Data Types

algebra over X. If n is an .4 environment satisfying I", then we can define a homomor-
phism 2: T — A by

h(M) = A[M]1n

It is easy to see that this is a homomorphism since the definition of the meaning of a term
in an algebra gives us

R(fMy ... M) =ALfM, ... Min = fAAIM D, . .., ATMDIn)
= fARMY), ..., h(My))

by definition. More generally, we can define a homomorphism from the quotient Terms
(Z,T')/ ~¢r to an algebra A4 satisfying £ by similar means. This will be used in the proof
of Proposition 3.5.11.

To state the connection between homomorphisms and meaning precisely, we need a
“translation” of environments. If h: A — B and 7 is an environment for A, then we define
the B-environment 5" by

n"(x) = h(n(x))
for any variable x. It is easy to see that if 7 satisfies some sort assignment I", so does n”.

Lemma 3.5.3 Let #: 4 — B be any homomorphism and 5 any environment for A satis-
fying sort assignment I". Then for any term M € Terms®*(%, I'), we have

h(AIM1n) = BIMTn"

A special case is that if M does not contain any variables, then B[M In" does not
depend on the environment n" and A (A[MT]) = B[M] is uniquely determined.

Proof The proof is a straightforward induction on terms. The variable case follows
from the definition of 7”. For a compound term f M), ... My, we assume inductively that
h(AIM;1n) = B[MTn". By the definition of homomorphism, we must have

RALf M, ... MiDln) = fE(R(ATM D), ..., R(ATMTIn))
= fBBIM 7", ..., BIMIn").
This proves the lemma. -

If h: A — B and k: B — C are homomorphisms of X-algebras, then the composition
koh: A— C is the family of maps (k o h)* = k° o h® obtained by composing maps for

3.5 Homomorphisms and Initiality 181

each sort. A useful fact is that the composition of two homomorphisms is always a homo-
morphism.

Lemma 3.5.4 If h: A — B and k: B — C are homomorphisms of X-algebras, then the
composition k o h: A — C is a homomorphism.

The proof is Exercise 3.5.5 below.

A bijective (one-to-one and onto) homomorphism is called an isomorphism; when there
is an isomorphism from A to B, we say A and B are isomorphic and write A = B. In-
tuitively, an isomorphism just “renames” elements without changing the algebraic struc-
ture. Consequently, we think of isomorphic algebras as “essentially the same.” Using
Lemma 3.5.3, it is easy to show that isomorphic algebras satisfy the same equations, as
outlined in Exercise 3.5.6 below.

Exercise 3.5.5 Show that the composition of two homomorphisms is a homomorphism.

Exercise 3.5.6 Use Lemma 3.5.3 to prove the following connections between homomor-
phisms and equations.

(a) If h is a surjective homomorphism from A to B, i.e., for every b € B® there is some
a € A® with h*(a) = b, then Th(A) C Th(B).

(b) If A and B are isomorphic, then Th(A) = Th(B).

(c) Show that “surjective” is essential in part (a) by finding algebras 4 and B for the
same signature with homomorphism % from A to B, but such that Th(A) is not a subset
of Th(B).

Exercise 3.5.7 Prove that there is a surjective homomorphism from .4 to B (see Exer-
cise 3.5.6 above) iff B is isomorphic to A/~ for some congruence relation ~. Use the
result of Exercise 3.5.6 to conclude that Th(A) C Th(A/~) for any congruence ~ on A.

3.5.2 Initial Algebras

Initial algebras are important in the study of algebraic data types because they often coin-
cide with the “intended” or “standard” implementation of an algebraic specification. If C
is a class of X-algebras and A € C, then A is initial for C if, for every B € C, there is a
unique homomorphism h: A — B. If we regard a homomorphism h: A — B as a “trans-
lation” from .A to B, then an initial algebra is “typical” in that we may translate from the
initial algebra to all other algebras in the class. An initial algebra has as few nonempty
sorts as possible, since every element of an initial algebra must correspond (via some ho-
momorphism) to an element of every other algebra. Subject to this condition, an initial
algebra satisfies as few equations as possible, by Lemma 3.5.3. The main results of this

182 Universal Algebra and Algebraic Data Types

section are Proposition 3.5.11, which states that quotients of term algebras are initial, and
Proposition 3.5.14 describing the equational theory of an initial algebra.

Example 3.5.8 Consider the signature Xy with single sort nat, for natural numbers, and
function symbols 0:nat and S:nat — nat, for successor. Let C be the class of all Xy
algebras. An initial algebra for C is the term algebra 7 = Terms(Xy, ¥) whose carrier is
the collection of variable-free terms 0, SO, S(S0), ..., sko, The single proper function
of this algebra, S, maps S¥0 > S¥*10. This algebra has only as many elements as are
minimally required to interpret all function symbols, and satisfies as few equations as
possible between these elements.

The first step in showing that 7 is initial in C is to show that there is a homomorphism
from the term algebra to any other algebra in C. However, as shown in Example 3.5.2,
the meaning function A[[-] is a homomorphism from 7 to any other X-algebra A. The
remaining step in proving that 7 is initial is to show that this is the only homomorphism.
But if 4 is any homomorphism from 7 to Z-algebra A, then by Lemma 3.5.3, 4 is identical
to the meaning function. Note that this argument fails for a term algebra containing terms
with variables.

Before proceeding, we show that all initial algebras of any class are isomorphic. Since
isomorphic algebras are essentially the same, this means that the initial algebra of any
class, if it exists, is unique.

Lemma 3.5.9 Suppose #: A — B and k: B — A are homomorphisms with 4 o k = Idg
and k o h = Id 4. Then A and B are isomorphic.

Proof The proof only uses the fact that 4 and k are sort-indexed families of functions,
and does not really depend on 4 and & being homomorphisms. We simply show that for
each sort s, the function #* is bijective. Clearly ~ must be onto, since k* maps every x € B®
back to some y € A* with 4°(y) = x. By similar reasoning, we can see that 4° must be
one-to-one.]

Proposition 3.5.10 If 4 and B are initial algebras for some class C, then A and B are
isomorphic.

Proof Suppose A and B are initial algebras in class C. This means that there exist
homomorphisms #: A — B and k: B — A. By Lemma 3.5.9, it suffices to show that 4 o
k=Idgandkoh =1d 4.

By Lemma 3.5.4, 4 o k and & o h are both homomorphisms. In addition, by initiality,
these are the only homomorphisms from 4 to A and B to B. But the identity maps are also

3.5 Homomorphisms and Initiality 183

homomorphisms from A to A and B to B, so both compositions must produce identity
homomorphisms. .

In writing the symbols nat, 0:nat and S:nat — nat, as in Example 3.5.8, we usu-
ally think of the natural numbers, the number 0, and the successor function. This is the
“intended model” of the signature. Although the phrase “intended model” is often used
in logic, it has no technical meaning. Rather, it is a description of how we think about
some formal syntax. From Example 3.5.8, we see that the initial algebra for signature
X is isomorphic to the intended model of this signature. This is a coincidence we will
often observe for initial algebras. Although it is difficult to say precisely why initial al-
gebras often turn out to be our intended models, we will see that they are generated
inductively from the symbols of the signature. Since many familiar structures, such as
the integers, are defined inductively, these structures are initial algebras. The reader fa-
miliar with mathematical logic will recognize that since the natural numbers cannot be
characterized by any set of first-order formulas, initiality is not a first-order property.
The natural translation of initiality into formal logic is second-order, since the initial al-
gebra is defined by quantifying over all algebras, and hence all possible carriers and
functions.

If £ is a set of T-equations, we say A is initial for € if A is initial in the class of all
X -algebras satisfying £. We may show that for any set £ of X-equations, the algebra
Terms(X, §)/ ~¢ .y of variable-free terms modulo provable equality is initial. It follows
that every algebraic specification has an initial algebra.

Proposition 3.5.11 Let £ be any set of X-equations and let A = Terms(Z, #)/ ~¢ g be
the algebra of variable-free terms, modulo provable equality. Then A is an initial algebra
for £.

In the special case that £ is the empty set of equations, it is easy to see that Terms
(2, 8)/ ~¢.4 is isomorphic to Terms (X, @). It follows that the term algebra is initial in
the class of all ¥ algebras.

Proof 1t is easy to see, by properties of term algebras and quotients, that every equation
provable from £ holds in 4. It remains to show that there is a unique homomorphism from
A to any other algebra satisfying £.

Let B be any algebra satisfying £. For any equivalence class [M] in A, let h(M) be the
meaning B[M]] of variable-free term M in B. Since B satisfies £, this map is well defined.
It also easy to check that 4 is a homomorphism. By Lemma 3.5.3, any other homomor-
phism A': A — B must have the same value as h, and so 4 is the unique homomorphism
from A to B. =

184 Universal Algebra and Algebraic Data Types

The following example contains an extended discussion of natural numbers as an initial
algebra. Additional examples may be found in Section 3.6.

Example 3.5.12 Consider the signature X; with single sort nat, for natural numbers, and
function symbols 0: nat, S: nat — nat and +: nat x nat — nat. (This is an extension of
the signature ¥(of Example 3.5.8.) Let £ be the set of equations

x+0 =x
x+(8y) = S(x +y),

where we omit sort assignments since there is only one sort. Let C be the class of all %
algebras satisfying £.

The initial algebra of C may be described using some facts about £. It is easy to show
that for any terms of the form S¥0 and $¢0, we can prove S¥0 + S0 = §*¥*¢ from £. This
may be established by induction on the natural number £. It follows that for any variable-
free term M over this signature, we can prove M = S*0 for some natural number . Since
£ is satisfied by the standard model of the natural numbers with 0, S, 4+, we can also see
that no equation S¥0 = S0 is provable from £, unless k = £. Therefore, each equivalence
class of variable-free terms contains exactly one term of the form S0.

Since we have a bijective correspondence between equivalence classes and terms of
the form S*0, we can think of the carrier of the initial term algebra as the collection of
variable-free terms 0, S0, S(S0), ..., S0, This is the same as the initial algebra in
Example 3.5.8. It is easy to see that in this algebra, the function S maps S¥0 > $¥+10, and
+ maps (5%0, 5¢0) > S**+€0. Thus the initial algebra is isomorphic to the standard model
for this signature, the usual natural numbers with successor and addition.

The initial algebra for this specification may be contrasted with algebras that have more
or fewer elements. Generally speaking, we would expect algebras with more elements to
have what is sometimes called “junk,” since the additional elements would not be definable
by terms, and therefore would not arise in computation over the algebra. An algebra with
fewer elements would have what is sometimes called “confusion” since distinct elements
that are not provably equal would be identified. We illustrate both of these possibilities by
specific algebras. The proof that the algebras below are not initial is left as Exercise 3.5.15.

An example of an algebra with more elements than the initial algebra is the algebra,
Z, of positive and negative integers. Another example may be constructed by adding
“infinite” integers to . This second example is a little more general, since we can also
construct non-initial algebras for list, set, tree and other specifications by including infinite
lists, sets or trees. For X1, the non-initial algebra 4 = (A", 04, SA, +A) has

A™ = ({0} x M) U ({1} x 2)

3.5 Homomorphisms and Initiality 185

where N is the set of natural numbers and Z is the set of positive and negative integers.
Intuitively, A"® contains one “copy” of the natural numbers, each in the form of a pair
(0, n), and one “copy” of the positive and negative integers, each in the form of a pair
(1, n). We can visualize this set by arranging all of the natural numbers in an infinite line
to the left of the integers.

0,1,2,3,... ...,-3,-2,-1,0,1,2,3,...

We think of the natural numbers on the left as “small” or “finite” numbers, and the integers
on the right as “large” or “infinite” numbers since they are considered larger than all of the
finite natural numbers. We interpret 0 as the zero at the far left. The successor of any
number is the number to its right in this picture. If we add two numbers from the same
part, then we get the standard result (either finite or infinite). If we add a finite number to
an infinite one, the result is infinite. This is given formally by the following definitions:

04 =0, 0)
SAi, n) =(i,n+1)

(i, n) +A4 (j, m) = (max(i, j),n + m)

We leave it to the reader to check that the axioms hold for this algebra. The reason why we
might consider the subset ({1} x Z) of A" “junk” is that this set of “infinite” numbers is
not needed to satisfy the axioms, and none are definable by variable-free terms. Since the
initial algebra only contains elements definable by variable-free terms, such elements do
not appear in the initial algebra.

An example of an algebra with fewer elements than the initial algebra is the natural
numbers modulo k for any natural number k. This algebra was discussed in Exercise 3.4.25
and Example 3.5.1. The reader may easily check that the axioms of our specification
hold in this algebra. The reason we might consider the integers modulo k to have some
“confusion” is that distinct numerals that are not provably equal in the specification are
given the same value. In contrast, we will see that two variable-free terms have the same
value in the initial algebra only if they are provably equal. n

It is important to realize that the initial algebra for a set £ of equations may satisfy
additional equations not provable from £. Intuitively, the reason is that adding elements
to an algebra may cause an equation with variables to become false, since a new element
may conflict with a property shared by all the other elements. Since the carrier of an initial
algebra is as small as possible (given the signature), the initial algebra for £ is likely
to satisfy some equations that do not hold in other algebras satisfying £ that have more
elements. A trivial example occurs with a signature having only one sort and two constants

186 Universal Algebra and Algebraic Data Types

a and b. The initial algebra satisfying a = b will have only one element. Consequently, the
initial algebra satisfies the equation x = y. However, the equation x = y with variables is
not semantically implied by the equation a = b between constants since there are larger
algebras satisfying @ = b but not x = y. A more natural example is given below.

Example 3.5.13 The equation saying that + is commutative holds in the initial algebra
described in Example 3.5.12, even though commutativity is not provable from the set of
equations given there. It is easy to see that addition is commutative in the initial algebra,
since for any variable-free terms M and N, we have £~ M = S0 and £ - N = §%0 for
some k, £, and so £+ M + N = S¥0 = N 4+ M. However, the equation x + y = y + x is
not provable from £. This may be demonstrated by giving an algebra that satisfies £, but
has a non-commutative interpretation of +. Rather than give a term algebra, we will use an
algebra whose elements are functions. This gives some illustration of the range of algebras
satisfying the axioms for successor and addition.

Let X be any set with at least two elements, and let A" be the collection of all functions
f:X — X. Let 04 be the identity function on X, let S be the identity map on functions
in A" and let +* be function composition. It is easy to check that the algebra A =
(Anat, 04, SA, +A) satisfies £. In particular, we have

SAf+4g) =fog=foSAg) =f+15%0)

since $4 is the identity map on functions. However, the commutativity axioms for + fails
in this algebra since function composition is not commutative. More specifically, since X
has at least two elements, we can find two functions f, g: X — X suchthat fog#go f.

A variable-free term is often called a ground term. If S is a substitution mapping every
variable in I" to a ground term over X, we say S is a X, ['-ground substitution. If M €
Terms*(2,T) and S is a ¥, ["-ground substitution, we say SM is a ground instance of
M. Similarly, if M = N[I'] is an equation between terms of Terms*(X,T), and S is a
%, I'-ground substitution, we say SM = SN[@)] is a ground instance of M = N[I']. The
following proposition characterizes the equations that hold in an initial algebra.

Proposition 3.5.14 Let £ be a set of X-equations and A be the initial algebra for £. For
any X-equation M = N[I'], the following three conditions are equivalent:

(i) Asatisfies M = N[[],

(i) A satisfies every ground instance of M = N[['],

(iii) Every ground instance of M = N[I'] is provable from &£.]

3.5 Homomorphisms and Initiality 187

Proof We assume, without loss of generality, that the initial algebra A is Terms
(Z,0)/ ~¢c.p. We will use the fact that a X, I'-ground substitution is exactly the same
as a7 = Terms(X, ¥) environment 7 satisfying T.

Consider any equation M = N[I']. This equation is satisfied in A iff, for every 7
environment n satisfying ', we have A[M]n~ = A[N]n~. But by Lemmas 3.4.6 and
3.4.22, this is equivalent to

MM~ = [T[M]In]~ =[T[N]n]l~ = [nN]-~.

Since these equivalence classes of terms are determined by provability from £, we have
A, n~ =M= NI[T']iff £+ nM = nN. This shows that (i) and (iii) are equivalent.

We can see that (if) and (iii) are equivalent by noting that if § is any X, I'-ground
substitution, then A[SM] does not depend on any environment. Therefore A[SM] =
[SM]~, and similarly for N. Reasoning as above, it follows that .4 satisfies every ground
instance of M = N|I'] iff every ground SM = SN is provable from £.

Exercise 3.5.15 Let A; be the standard, initial algebra of natural numbers for signature
%1 of Example 3.5.12, let A, be the algebra (described in Example 3.5.12) with infinite
integers added and let A3 be the algebra of natural numbers modulo &, for some & (also
discussed in Example 3.5.12). Show that neither A3 nor A3 is initial by showing there is
more than one homomorphism .A; — .4 and no homomorphism .43 — Aj.

Exercise 3.5.16 Consider the signature X, with single sort nat, for natural numbers, and
function symbols 0: nat, S: nat — nat and +, *: nat x nat — nat. (This is an extension of
the signature £ of Example 3.5.12.) Let £ be the set of equations

x+0 =x,
x+ (Sy) =8x +y),
x %0 =0,

x*x(Sy) =xxy+x,

where we omit sort assignments since there is only one sort. Let C be the class of all £,
algebras satisfying £.

(a) Show that for any variable-free term M over this signature, we can prove M = S0
from £, for some natural number k.

(b) Use Soundness (Theorem 3.4.13) and part (a) to show that if we equate terms provably
equal from &, each equivalence class of variable-free terms contains exactly one term of
the form S%0.

188 Universal Algebra and Algebraic Data Types

(c) Give a description of the initial algebra for class C, along the lines of the description
given in Example 3.5.12. Do not make any unsupported assertions.

(d) Show that given an equation E over signature X, it is co-r.e. to determine whether
E holds in the initial algebra satisfying £. (In other words, show that there is a proce-
dure which halts with output “no” whenever E does not hold in the initial algebra. This
procedure does not have to halt if E is satisfied by the initial algebra.)

3.6 Algebraic Data Types

3.6.1 Specification and Data Abstraction

In discussing natural numbers and boolean expressions in PCF, we generally have the stan-
dard mathematical structures of the natural numbers and booleans in mind. For most of us,
it is hard to regard a set of axioms as “defining” the natural numbers; we know too much
about natural numbers already. However, this is not the case for many other datatypes in
programming. For priority queues and symbol tables, for example, there is no standard
mathematical construction, and no single standard computer implementation. Many differ-
ent implementations are used in practice. Since we commonly describe these datatypes by
listing the operations and describing their behavior, these structures are defined axiomati-
cally, rather than by mathematical construction. The advantage of an axiomatic approach
in practice, whether or not we write our axioms in a formal language, is that we may
specify precisely what we want from every implementation, without biasing our think-
ing towards one implementation or another. Moreover, as mentioned in Section 3.2, a
specification provides useful guidelines when we implement a datatype. A well-written
specification tells an implementor exactly what is assumed in the rest of the program, with-
out otherwise constraining implementation decisions.

Recall that a pair Spec = (£, £} consisting of a signature ¥ and a set £ of L-equations
is called an algebraic specification. Some general properties of algebraic specifications
may be illustrated using the example of natural numbers and booleans in PCF. Without
saying how PCF is actually implemented, the algebraic specification in Section 2.2.2 tells
us which numeric and boolean expressions must have equal values. From these equational
axioms, we may prove equations between other PCF expressions, such as functions. The
equational axioms also determine a set of reduction rules, which let us simulate an inter-
preter using only substitution and symbol manipulation. Although it is difficult to say when
we have “enough” axioms about an arbitrary datatype, there is some comfort in the case of
natural numbers and booleans. The reader familiar with mathematical logic will know that
no first-order (let alone equational) axioms characterize the natural numbers exactly. How-

3.6 Algebraic Data Types 189

Table 3.4
A Specification for set, nat and bool.

sorts: set, nat, bool

fetns: 0,1,2,...:nat
+ : nat X nat - nat
Eq?:nat x nat — bool
true, false : bool
empty : set
insert : nat x set — set
union : set X set — set
ismem? : nat x set — bool
condy, : bool x nat x nat — nat
condy, : bool x bool x bool — bool
condy : bool x set x set — set
eqns: [x,y:nat, s, s’ :set, u,v:bool]
0+0=0,0+1=11+1=2,...
Eq? x x = true
Eq?01 = false, Eq?02 = false, . ..
ismem? x empty = false
ismem? x (insert ys) = if Eq?xy then true else ismem?xs
union emptys = s
union (insert y s) s’ = insert y (unions s’
condptruexy =x
condp falsexy =y
condp trueuv=u
condp falseuv =v
conds trues s’ =s

cond falses s’ = s’

ever, the initial algebra for the PCF specification is the standard algebra of natural numbers
and booleans. This may be interpreted as meaning that we have “enough” axioms. A re-
lated way of seeing that we have enough axioms is to examine the reduction rules and
show that every algebraic term for a natural number that does not contain variables may be
simplified to one of the numerals 0, 1, 2, 3, Further discussion of this property appears
in the section on algebraic rewrite rules. In the remainder of this section we will discuss
some general aspects of the axiomatic approach to datatypes.

A convenient example is the datatype of finite sets with membership test, union and an
insert operation. We may extend PCF with sets by adding a set sort to the multi-sorted
algebra of nat and bool. A specification is given in Table 3.4.

190 Universal Algebra and Algebraic Data Types

Intuitively, a set is either empty, or obtained by inserting a natural number into a set.
We test whether a natural number x is an element of a set s using ismem?xs. In keep-
ing with the syntax of PCF, we regard x 4 y as syntactic sugar for +xy, the expression
if M then N else P assyntactic sugar for cond,MN P if N and P are natural num-
ber expressions, and similarly for boolean and set conditionals. In the context of PCEF, it is
natural to think of the set part of this specification as defining sets from natural numbers
and booleans. Almost any programming language would allow us to read and write natural
numbers and booleans, referring to them by their standard names. However, finite sets do
not have a standard print representation, and are not as likely to be used as input or output
values. Since our only access to elements of this datatype is through the functions empty,
insert and ismem?, we do not really care how sets are represented internally. Except for
efficiency, it does not matter whether sets are implemented using bit vectors, arrays, linked
lists, or any of a number of other data structures (c.f. [AHUS83]). All we really care about is
the behavior of sequences of operations that give natural number or boolean results. This
suggests that our ser datatype is abstract, in the sense of “defined axiomatically.” Some
general principles of data abstraction are listed below.

» An abstract datatype is defined by its specification. A program using a datatype should
only depend on properties guaranteed by the specification, and not on properties of any
particular implementation.

» Only the functions that are given as part of the datatype definition may be applied to
elements of the datatype. (This principle can be violated only by writing programs that
are not well-typed.) Consequently, all that matters about a datatype are the properties we
may observe by applying combinations of functions to produce “observable” values like
booleans or natural numbers.

» For many common examples, the functions of a data type may be partitioned into con-
structors, operators and observers. Intuitively, a constructor is a function that builds a new
element of a datatype, an operator is a function on the datatype that produces no new ele-
ments, and an observer returns elements of some other datatype. We may reason about the
datatype using induction on the constructors.

* There are criteria for determining whether an implementation correctly satisfies a spec-
ification. However, there are several approaches, and we will not go into this topic in any
detail.

In the set example of Table 3.4, the set constructors are empty and insert, since every
set may be produced by adding elements to the empty set. However, union is an operator,
since the result of any set union could have been produced by inserting elements into the
empty set; union does not produce any “new” sets. The function ismem? is an observer,

3.6 Algebraic Data Types 191

since this function produces boolean values from sets. The classification of functions into
constructors, operators and observers may seem a little fuzzy, but may be made precise
using initial algebras. We will discuss this in the next section and give a precise argument
in Example 3.6.1.

3.6.2 Initial Algebra Semantics and Datatype Induction

Several forms of “semantics” appear in the literature on algebraic specification. Put for-
mally, each “semantics” consists of a condition saying when an algebra models a specifi-
cation. The most general semantics, often called loose semantics, is the standard mathe-
matical view considered so far in this chapter: the algebras that model a specification are
exactly the algebras that satisfy the set of equations given in the specification. The most
commonly used alternative is called initial algebra semantics. In the initial algebra seman-
tics, the algebras that model a specification are all of its initial algebras. Since these are all
isomorphic, initial algebra semantics essentially gives a unique “standard” model for each
specification. While there are good reasons to consider more than the initial algebra, it is
often insightful to examine the initial algebras for a specification. In particular, initial al-
gebras give us a direct way of understanding a useful form of induction. Some alternative
semantics are given in Exercises 3.6.5 and 3.6.6.

Intuitively, the initial algebra for an algebraic specification is an algebra that contains
only as many elements as are minimally required. For example, the initial algebra for
natural number and boolean expressions of PCF contains only elements that are named
by the numerals, O, 1,2, ..., and the boolean constants true and false. In contrast, an
arbitrary algebra for this specification might have “extra” elements such as integers that
behave as if they are “infinite.” The second important property of an initial algebra is that it
satisfies all of the logical consequences of the equational axioms, and no other “accidental”
equations between the elements of the algebra. The initial algebra cannot be axiomatized
equationally, since we cannot derive inequations as logical consequences of equations.
This is an advantage of the initial algebra approach since we want any implementation
of integer arithmetic to satisfy the inequation 0 # 1, for example. The two main properties
of initial algebras are summarized by the slogans

* No junk, meaning that there are no extra elements which cannot be named by algebraic
terms.

* No confusion, meaning no elements are identified unless this is required by the specifi-
cation.

Since we have proved that the term algebra Terms(X,)/ ~¢ 4 is initial for specification
(X, &), we can explain the intuitive slogans above in more precise terms.

192 Universal Algebra and Algebraic Data Types

* No junk: the initial algebra contains only elements definable by ground terms.

* No confusion: the initial algebra satisfies only the provable equations between ground
terms.

An important consequence is that the initial algebra supports a form of induction on the
constructors of the datatype. This is called datatype induction. In the remainder of this
section we illustrate datatype induction by example.

Before proceeding, we should make the distinction between constructors and other func-
tions more precise. Formally, a set Fy of function symbols from Spec = (X, &) is a set
of constructors if Fy is a set of function symbols such that every equivalence class of
Terms(X, 0)/ ~¢ g is the equivalence class of some variable-free term over only the func-
tion symbols in Fp. It is easy to see that we may prove properties of an initial algebra
by induction on constructors, since every element of the algebra is covered in this way. Al-
though our induction will be simpler if we choose the smallest set of constructors possible,
there is no harm in considering more constructors than necessary. This means that in the
absence of any insight, we can use induction on all terms to prove properties of the initial
algebra for some specification.

Example 3.6.1 This example discusses the set specification in Table 3.4, which appears
in Section 3.6.1. In discussing this specification, we claimed informally that the functions
empty and insert are constructors, union is an operator, and ismem? is an observer. With a
precise definition of constructor, we are now in a position to prove that empty and insert
form a set of constructors.

We must show that every equivalence class of terms of sort set in the initial algebra has
an element (term) written using only insert, empty, and constants of sort nat. We prove
this by induction on the structure of terms. To be strictly correct we should simultaneously
prove that every equivalence class of terms of sort bool or nat in the initial algebra contains
true, false or one of the nat constants 0, 1, 2, However, since the argument for these
other sorts does not involve any additional ideas, we will do the induction for terms of sort
set only. The base case is the term empty which is one of the constructors. For the induction
step, assume that M and N are terms of sort set expressible with constructors, and that
A and B are terms of sort nat and bool. Then we can create more complex set terms in
three ways. The term insertAM is expressible using constructors and constants since M
is, and A is expressible by one of the nat constants. The term cond; BMN is provably
equivalent to either M or N, depending on whether B is equivalent to true or false, and
hence expressible by the inductive hypothesis. The union case is the most difficult. Let
P be the term unionM N. Since M is expressible with constructors, M is either provably
equivalent to empty or insertaQ, where a is a nat constant and Q is a set. In the former

3.6 Algebraic Data Types 193

case, P is equivalent to N, which is expressible. In the latter case, P is equivalent to
inserta(unionQ N). Now, unionQ N is a simpler term, so by the induction hypothesis this
term, and hence P, must be expressible by constructors. This establishes that empty and
insert are constructors for set.

To give an example of datatype induction, we can prove the simple property that every
set in the initial algebra has only finitely many elements. To be precise, we say that a set s
is finite if ismem? x s = true for only finitely many atoms x.

Since every set element of the initial algebra is representable by a term constructed from
empty and insert, we use induction over the structure of such terms to show that for any
set s the expression ismem? x s will evaluate to true for only finitely many atoms x. In the
base case, ismem xempty is false for all x. For the induction step, assume that ismem? x s
is true for at most n atoms x; then ismem? x (insert a s) will be true for at most n + 1 atoms
x. This concludes the proof. u

Exercise 3.6.2 This question is about the ser datatype specified in Table 3.4 and dis-
cussed in Example 3.6.1. Show that the equation

. . !
union s s’ = union s’ s[s: set, s': set]

does not hold in the initial algebra. You may assume that the rewrite rules obtained by
directing each of the equational axioms from left to right are confluent. Confluence implies
that two terms are provably equal iff they reduce to a common term.

Exercise 3.6.3 This exercise analyzes the algebraic specification of multisets given in
Table 3.2, extended with an intersection operation defined by the axioms

intersect empty m = empty
intersect (insert x m)m’' = if mem?xm’ then insert x (intersect mm’) else intersectmm’

(a) Show that empty and insert are constructors for multisets.

(b) Show that the equation
insert x(insert y m) = insert y (insert x m)

does not hold in the initial algebra. You may assume, as in Exercise 3.6.2, that the rewrite
rules obtained by directing each of the equational axioms from left to right are confluent.

(¢) Show, by constructing an algebra, that if we add the equation
insert x (insert y m) = insert y (insert x m)

as an axiom, the specification remains consistent.

194 Universal Algebra and Algebraic Data Types

Exercise 3.6.4 The ML programming language has a datatype declaration which is
used to define datatypes generated by typed constructors. For example, the ML declaration
for binary trees with integers at the leaves looks something like this:

datatype tree = leaf of nat|node of tree x tree

This declaration “says” that a tree is either the result of applying leaf to a natural number,
or node to a pair of trees. The functions leaf and node are called “constructors” in the ML
documentation, since every tree is either a leaf or constructed from a pair of trees using the
function node. For typographical reasons, Standard ML actually uses the ASCII character
«* for cartesian product, instead of x. Another exercise on ML datatype declarations, using
recursive types instead of algebraic specifications, appears in Chapter 2 (Exercise 2.6.8).

A convenient feature of ML is the way that pattern matching may be used to define func-
tions over declared datatypes. A function over trees may be declared using two “clauses,”
one for each constructor. Using a slight modification of the ML syntax, we may declare a
function f which sums up the values of all the leaves as follows.

letrec fun f(leaf (x: nat)) =X
| f(node(ty: tree, tr: tree)) = f(t1) + f(t2)
In general a function over frees defined by pattern matching will have the form

letrec fun f (eaf (x: nat)) =M
f f(node(ty: tree, ty: tree)) =N
in P

where variables x: nat and f:tree — o are bound in M, t1, t;: tree and f are bound in N
and f is bound in the the declaration body P. The compiler checks to make sure there is
one clause for each constructor of the datatype.

(a) We may consider the ML datatype definition for trees to be a declaration of an initial
algebra generated by leaf and node, with additional functions isleaf?, label, Isub and rsub.
An algebraic specification for this signature is given in Table 3.3. Show that in the initial
algebra for this specification, every tree is named by an expression of the form leaf (n), for
some natural number 7, or node(t1, t2), where t1 and ¢, are tree expressions of this form.

(b) Show how to translate a function declaration of the form

letrec fun f(leaf (x: nat)) =M
[f(node(ty:tree, ty: tree)) =N
in P

into an expression of the form

letrec f(t:tree):o0 =M’ in P

3.6 Algebraic Data Types 195

in the language PC F,ee of PCF over nat, bool and tree, assuming that M, N and P have
the correct types and are already expressions of this language.

(c) One obvious advantage of the ML syntax is that it is succinct and easy to read. There
is also a technical advantage. Specifically, suppose that in writing axioms in part (a)
above, you considered two possible axioms of the form Isub(leaf n) = T;, for two tree
expressions Ty and 7>. Show that in general (for some choice of Ty and T3), it is possible
to write a PC Fyye expression M: bool with value true if Isub(leaf n) = T} and value false
if Isub(leaf n) = T5. Therefore, the behavior of programs using this datatype will depend
on properties of trees that do not follow from the specification.

Now consider expressions written using the pattern matching syntax of ML, and without
using functions isleaf?, label, Isub and rsub directly. Is it possible to write a function which
translates into a P C Fj.. function applying Isub to a leaf? Give an example or explain why
not. This finesses a problem with specifications and error elements discussed in the next
section.

Exercise 3.6.5 An alternative to loose and initial algebra semantics is the generated or
reachable semantics. (Some authors call this the loose semantics.) In this approach, the
models of a specification are all the generated algebras that satisfy the specification, where
a X-algebra A is generated (also called reachable or term-generated) if, for every element
a € A, there is a variable-free term M over ¥ with a = A[[M]]. This exercise asks you to
demonstrate some connections between generated algebras and the initial algebra.

(a) Show that if generated X-algebra A satisfies £, then there is a surjective homomor-
phism from the initial algebra 7 = Terms(XZ, #)/ ~¢ g onto A.

(b) Use Exercise 3.5.6 to show that if generated X-algebra A satisfies £, then Th(A)
contains the theory of the initial algebra for specification (X, £).

(c) Show that an equation M = N[I'] holds in all generated X-algebras satisfying & iff
M = N[I'] holds in the initial algebra for specification (X, £).

Exercise 3.6.6 An alternative called final algebra semantics, motivated by a problem
with initial algebras described in [GHM78], are developed in [Wan79]; some other ref-
erences are [BT83, Kam83]. The final algebra in a class is the “opposite” of the initial
one: an algebra A € C is final in C if there is a unique homomorphism from every B € C to
A. This degenerates (as shown in (b) below) if C is the class of all algebras satisfying some
specification, but it is a useful concept in cases where the interpretations of some sorts are
fixed and others might vary. This situation arises when, for example, we have “already
defined” natural numbers and booleans and want to use these to specify sets (of natural
numbers). We will use the specification of sets in Table 3.4 as an illustrative example in
this exercise.

196 Universal Algebra and Algebraic Data Types

(a) Show that if algebras .4 and B are both final in any class C of algebras, then A = B.

(b) LetC be the class of all algebras satisfying the specification in Table 3.4. Show that the
algebra with one element in each carrier is final in C. (Your argument should not depend
on any particular properties of this specification.)

(c) Let C be the class of all algebras A4 satisfying the specification in Table 3.4 with the
additional property that the “restriction”

Anat bool = (A", Abool gA 1A A Eq™M, trueA,falseA, condnA, condbA)

of A to natural numbers and booleans is isomorphic to the standard algebra of natural
numbers and booleans with these operations. Show that every algebra B in this class must
have more than one element in B%’.

(d) Exercise 3.6.2 shows that the initial algebra for the set specification does not satisfy
the equation

unions s’ = union s’ s[s: set, s’ set]

Let C' be the set of all generated algebras (see Exercise 3.6.5) that are in the class C of part
(c). Show that an algebra B with B*¢ the collection of finite sets of natural numbers is final
in the class C’ and conclude that the (desirable) equation above holds in the final algebra
for C'. (Hint: for s € B*', consider {n | ismem?B n s = true}.)

3.6.3 Examples and Error Values

A problem that often arises in programming is that certain expressions are not meaningful,
It is clear that a call to a nonterminating function does not return a value. However, this is
not the only situation in which expression values are “undefined.” For example, the typing
rules of most programming languages specify that for every x, y: real, the quotient x/y is
areal number. However, division is only a partial function on real numbers since the result
of division by zero is undefined. This is different from nontermination, since we can test
for division by zero before we attempt to compute a quotient, whereas testing a function
for termination on a given argument is not algorithmically possible. If we want to specify
that division by zero produces an error, for example, then we must add error terms to the
signature.

Error-producing operations cause problems in algebraic specification, since the frame-
work is constrained so that every well-formed term will have a value in every algebra for
the signature. We will explore three possible approaches. Roughly speaking, these are:
“don’t say anything,” “make an arbitrary decision,” and “specify exactly what you want
very carefully.”

An illustrative example is the specification of lists in Table 3.5. Intuitively, a list is
either empty, or obtained by adding an element to a list. Following Lisp nomenclature,

3.6 Algebraic Data Types 197

Table 3.5
A specification for list, atom and bool.

sorts: list, atom, bool
fetns: a,b,c,d,...:atom
true, false : bool
nil : list
cons : atom x list — list
car : list - atom
cdr : list — list
isempty? : list — bool
condg : bool x atom x atom — atom
condy, : bool x bool x bool — bool
cond) : bool x list x list — list

eqns: {x,y:atom, 1,1 :list, u,v: bool]
car (consxl) = x
cdr (consx 1) =1
isempty? nil = true
isempty? (cons x |) = false
condgtruex 'y =x
condg falsexy =y
condptrueuv =u
condp falseuv =v
condy truell’ =1
cond, faisell' =1’

the empty list is called nil in Table 3.5, and the operation for adding an atom to a list is
called cons. A nonempty list may be separated into an atom (the first atom in the list),
and a list of remaining atoms. The function returning the first element is called car, and
the function returning the list of remaining elements is called cdr. (These names come
from the machine instructions on an early computer used in the development of Lisp.)
The straightforward equations describing the results of various operations are listed in
Table 3.5.

The problem is that it does not make sense to ask for the first element of the empty
list; there simply isn’t one. Therefore, carnil has no “natural” value. While we could say
the list cdr nil of “remaining” elements is empty, this does not make much sense either.
In the equational specification given in Table 3.5, the problem has been addressed by
leaving out equations for car nil and cdr nil. This choice may be justified by saying that
since these expressions do not make sense, we do not want to say they are equal to any
meaningful value. If we use the equational axioms as reduction rules, the net effect is

198 Universal Algebra and Algebraic Data Types

to halt execution at car nil or cdr nil, since no reduction rule applies. However, if we
consider the “standard meaning” of a specification to be the initial algebra, then we see
some drawbacks of leaving function values unspecified. This could be taken as a problem
with errors in algebraic specifications, or a reason to deemphasize initial algebras. In the
initial algebra A, we will have elements car nil € A%™ and cdr nil € A"™', since car nil
cannot be proved equal to any of the atom constants a, b, ¢, ... and cdr nil cannot be
proved equal to any list constructed using only cons and nil. However, the “extra” elements
do not stop here. Once we have the atom car nil, we may add this element to lists, as in
cons (car nil) nil. Similarly, we may test whether the extra list cdr nil is empty by applying
isempty?(cdr nil). This produces an extra boolean value not provably equal to either true or
false. By applying functions to car nil and cdr nil, we generate infinitely many elements of
the initial algebra. These invalidate reasoning by induction on the intended list constructors
nil and cons, and create similar problems for atom and bool.

There are two other alternatives within the framework of algebraic specifications. A con-
venient but questionable one is simply to make arbitrary decisions. For example, we could
specify that car nil = a, for some arbitrary atom a, and let cdr nil = nil. This restores
datatype induction over the expected constructors. However, the decision that carnil = a
seems a bit arbitrary. It also destroys the property that if two lists have the same car and
cdr, then they must be the same list, for car nil = car(cons a nil), and similarly for cdr.
While arbitrary decisions may work well in certain contexts, it does not always seem rea-
sonable to define errors away by giving “meaningful” values to erroneous expressions. In
the case of real arithmetic, for example, postulating 1/0 = 3 seems ridiculous.

A more direct treatment of errors involves explicit error values and equational axioms
for them. This leads to more reasonable initial algebras and allows us to include “error-
handling” functions that test for error conditions and attempt to repair them. However, we
shall see that the axioms are more complicated than one might expect. The rest of this
section is devoted to the axiomatic treatment of error values.

A naive attempt to add error elements to the list datatype would add constant symbols
errory: atom and error;: list and equations car nil = error, and cdr nil = error;. However,
once we add two error elements, we are led to add a third, since asking whether the error
list is empty seems to be an error. In other words, we are led to introduce an error element
errory, of sort boolean and let isempty? error; = errorp. Having added constants to each
sort, we must say how each function behaves on the new arguments. For most of the
functions of this example, we will simply say that a function applied to an error value
returns error of the appropriate sort. An exception is conditional, which we will allow to
return a meaningful value if the error branch is not taken. This is a bit arbitrary, since it also
seems plausible to say that any cond,, true a error, = error,, for example. The additional

function symbols and equational axioms in our first attempt to add error values are given
in Table 3.6.

3.6 Algebraic Data Types 199

Table 3.6
Naive treatment of error values for list, atom and bool.

fetns: errory : list
errorg @ atom

errory, : bool

eqns: [x, y:atom, [, Uslist, u, v: bool]
car nil = errorg
cdr nil = error;
cons errorql = error|
cons x, errory = error|
car errory = errorg
cdr errory = errory
isempty? error; = errory,
condg errorp x y = errorg
condyp errorp u v = errory,

cond; errorp 11" = error;

While the combined signature and equational axioms of Tables 3.5 and 3.6 may seem
reasonable at first glance, there is a serious problem with them. In writing the original
axioms for car and cdr on nonempty lists, we did not consider the possibility of error
values. In other words, the equational axiom

car(cons x l) = x [x: atom, [: list]

assumes implicitly that any list equal to consx ! for some atom x and list / will be a
sensible list with first element x. However, the axiom

cons x error; = error;[x: atom]
violates this assumption. In fact, putting these two equational axioms together gives us
X = car(cons x error|) = car error; = error, [x: atom]

Semantically, this equation says that every algebra satisfying the combined specification of
Tables 3.5 and 3.6 may have only one atom. Similar reasoning shows that there can only
be one list and only one boolean. Thus, the naive treatment of errors leads to inconsistent
specifications.

This problem may be repaired by making explicit assumptions about function argu-
ments. If we were to extend the language of algebra to include negation and other logical
connectives, we could write an axiom

200 Universal Algebra and Algebraic Data Types

Xx # errorg N1 # error; D car(consx 1) =x [x:atom, I list]

that explicitly assumes the function arguments are not error values. By adding a few
more functions to our signature, we may achieve the same result within the framework
of algebraic specifications. The general approach is taken from [GTW78].

For each sort s, we add a function OK;:s — bool which tells whether its argument is
errorg or not. We write axioms to say which elements are OK, and use conditional to
test for error values in equations. For the signature of Table 3.5, we add function symbols
OK,, OKp, OK; and axioms such as

OK,a=true, OK,b =true, ..., OK, error, = false

to make every non-error value “OK” and every error value not. We then use OK and
conditional to revise the axiom for car of a nonempty list as follows. (As usual, we write
if ... then ... else ... as syntactic sugar for cond.)

car(consxl) =if OK,x then (if OK;l then x else error,) else error,
[x: atom, L: list]

Intuitively, this axiom says that if we have a list constructed by adding a non-error atom

x to a non-error list /, then the first element of this list is x. Otherwise, the result is
errorg. Since we will keep the axiom cons x error; = error;, we may derive the equa-
tion car error; = error, from the revised axiom with conditional. A full specification of
lists using explicit error values and “OK” predicates is given in Table 3.7. The initial
algebra for this specification is analyzed using rewrite-rule techniques in Section 3.7.7.
The main results of the analysis are that the specification is consistent and that each
carrier of the initial algebra has one error element and distinct non-error elements as in-
tended.

Exercise 3.6.7 In an important early paper, Guttag [Gut77] gave the following specifica-
tion for queues,

sorts:queue, item, bool
fetns:new: queue
add: queue X item — queue

front: queue — item

remove: queue — queue

is_empty?: queue — bool

3.6 Algebraic Data Types 201

Table 3.7
A specification for list, atom and bool with error values.

sorts: list, atom, bool

fctns: a,b,c,d,...:atom
true, false : bool
nil : list
cons : atom X list — list
car : list — atom
cdr : list — list
isempty? : list — bool
condg : bool x atom x atom — atom
condy, : bool x bool x bool — bool
cond) : bool x list x list — list
errorg: atom, errorp: bool, errory: list
OK 4: atom — bool, OKp:bool — bool, OK;: list — bool

eqns: [x,y:atom, I, :list, u, v : bool]
car errory = errorq
carnil =errorg
car (consxl) =if OKgx then (if OK;l then x else errorg) else errorg
cdr errory = error|
cdrnil = error;
cdr (consxl) =if OKgx then (if OK;l then | else error;) else error;
isempty? error) = errory,
isempty? nil = true
isempty? (cons x 1) = if OKgx then (if OK;l then false else errorp) else errory
cons x error] = error|
conserrorgl = error)
condg truex y =x
condgfalsexy=y
condg errorp x y = errorg
(similarly for condy, and cond))
OKga=true, OKgb=true OKqc =true, ...
OK gerrorq = false
OK, true = true, OK, false = true
OK, errorp, = false
OK | nil = true
OK;(consxl)=1if OKgx then (if OK|l then true else false) else false

202 Universal Algebra and Algebraic Data Types

eqns:[q: queue, i: item]
is_empty? new = true
is_empty? (add q i) = false
front new = error
front(add g i) =i
remove new = error
remove (add q i) = q

with the informal comment that “error is a distinguished value with the property that the
value of any operation applied to an argument list containing error is error.” Assume that
boolean constants are true and false, with conditional on each sort, as usual. Also assume
that there are constants a, b, c, . .. of sort item.

(a) Write additional equations reflecting the informal description of the result of applying
any function to error. Use error constants error,, error; and errorp of each sort. Show that
if combined with the equations above, the result will be an inconsistent specification.

(b) Rewrite the axioms for is_empty?, front and remove applied to queues of the form
add q i in the manner described in this section. Show that the resulting specification (in-
cluding the equations you wrote for part (a) and the original equations that you did not
change) is consistent by constructing an algebra.

Exercise 3.6.8 Devise a specification of trees with an explicit treatment of errors using
OK functions as outlined in this section. A specification without error elements is given in
Table 3.3.

3.6.4 Alternative Approaches to Error Values

One completely different approach to errors allows functions to be partial, rather than total.
Instead of treating car nil as an expression of sort atom which must be given a value in
any algebra, we may simply say that this expression is “undefined,” and give it no value
whatsoever. (This is not the same as calling an extra element | “undefined,” as is done
in Scott semantics. The use of L in Scott domains resembles the introduction of explicit
error elements.) With partial functions, and car nil undefined, we may have lists generated
only by nil and cons. This is the primary advantage. A disadvantage of partial functions
is that we cannot discuss error-handling functions, since an undefined expression does
not produce any value that could be passed to another function. In addition, we cannot
have “lazy” functions that do not depend on whether their arguments are defined. This is

3.7 Rewrite Systems 203

because an expression with an undefined subexpression cannot be given a value in any
reasonable (i.e., compositional) way. Finally, algebra with partial functions is somewhat
more complicated than ordinary algebra with only total functions. For these reasons, it
is not clear whether partial functions are worth the effort. Since programming language
semantics using partial functions is a current research area, the trade-offs may be better
understood in the future.

Another method that has several advantages is the system of order-sorted algebra, pro-
posed by Goguen [Gog78]. For information on order-sorted algebra, the reader may con-
sult [SNGM89, Wir90].

3.7 Rewrite Systems

3.7.1 Basic Definitions

There are two main uses for rewrite systems, which are reduction systems for algebraic
terms. The first is that a rewrite system may provide a useful model of computation (or
evaluation) for algebraic terms. This is emphasized in the discussion of the rewrite rules
for PCF natural number and boolean expressions in Section 2.2.2. The second common ap-
plication is in automated theorem proving. If we begin with a set of equational hypotheses,
then these may be used to formulate a set of rewrite rules. If the resulting rewrite rules are
confluent, as discussed in Section 3.7.2, then the consequences of the equational hypothe-
ses may be characterized using the rewrite system. One advantage of this characterization
is that it provides a simple algorithm (namely, reduction) for seeing if an equation is prov-
able. Although this algorithm may not always terminate, it does for terminating rewrite
systems. In addition, it may terminate in failure, showing that an equation does not follow
from the hypotheses. This is useful, since the only other straightforward way of showing
that an equation does not follow from some hypotheses is to construct an algebra (as in
Example 3.4.15), and this is not easily automated. More specifically, the only way to au-
tomate search for algebras contradicting an implication seems to be brute enumeration of
finite algebras, and this seldom produces useful results. In addition to studying proper-
ties of rewrite systems, this section illustrates general problems with reduction systems for
non-algebraic terms using algebraic examples.

A rewrite system is a reduction system for algebraic terms given by a set of directed
equations called rewrite rules. More formally, a rewrite system R over L is a set of rewrite
rules L — R, where L, R € Terms®*(%, T") are terms of the same sort, L is not a variable,
and Var(R) C Var(L). A rule L — R lets us simplify any substitution instance SL to SR,
anywhere inside a term. The two main uses of rewrite systems are to analyze equational
axioms and to model computation on algebraic terms.

204 Universal Algebra and Algebraic Data Types

The careful reader may wonder about the restriction Var(R) C Var(L) on variables.
One intuitive justification is that rewrite rules are intended to simplify expressions. Since
L — R lets us replace a substitution instance SL by the corresponding instance SR, a
variable occurring only in R could be replaced by any term. For example, the rule a — x
lets us rewrite a to any term. This does not seem like much of a simplification. (See
Exercise 3.7.4 for the effect of such a rule on termination). A more technical reason has
to do with sorts. With Var(R) € Var(L), we will see that rewriting preserves the sort of a
term. However, this fails without the restriction on variables.

The one-step reduction relation — 1, determined by R is the least relation on terms such
that

[SL/xIM - [SR/xIM

for every rule (L — R) € R, term M with single occurrence of x, and substitution S such
that [SL/x]M € Terms(X, T'). The relation —> g is the reflexive and transitive closure
of —>x. We will omit subscripts when this does not seem likely to be confusing. It is
easy to see that systematically renaming variables in any rule (L — R) € R does not
change the relation — 5. Consequently, we may assume whenever convenient that no
variable appears in more than one rewrite rule. This is useful when comparing pairs of
rules.

Example 3.7.1 [KB70, Example 3] The signature

sorts:nat
fetns:0 : nat
— > nat — nat
+ : nat X nat — nat

for writing natural number expressions includes only 0, unary minus, and addition. Some
reasonable rewrite rules over this signature are

x+0—>x
x+(—x)—>0
x+y)+zox+(+2)

Using these rules, we can carry out the following rewrite (reduction) steps, where the
underlined subterm is the one rewritten to obtain the subsequent term:

X+ +E)=>x+@+H(=y)—>x+0—x.

3.7 Rewrite Systems 205

Notice that a reduction step may be done by matching the entire term against the left-hand-
side of one of the rewrite rules, or by matching any subterm. Although there is only one
possible rewrite at each step, in this example, there are terms where several subterms may
match the left-hand-side of a rule. For example, the term (x + 0) + y may be reduced to
either x + y, by the first rule, or x 4+ (0 + y) by the second. Note that neither of these terms
can be reduced further. n

A straightforward fact is that reduction preserves sort.

Lemma 3.7.2 Let R be a rewrite system over X. If M € Terms*(X,T") and M —->7 N,
then N € Terms* (X,).

The proof is Exercise 3.7.6.

Two important properties are confluence and termination. Let us write N «— M if
M —> N and M —»> o <« N if there exists a term P with M —> P «— N. We say —>>
is confluent if N <« M —> P implies N —> o <« P. A relation — is terminating if
there is no infinite sequence Mo — M) — M> ... of one-step reductions. A rewrite system
R is confluent if —> 5 is confluent and terminating if —x 1s terminating. As in lambda
calculus, a normal form is a term that cannot be reduced.

Rewrite systems that are confluent and terminating are often referred to as canonical.
While canonical rewrite systems are often desirable, non-canonical systems are also use-
ful, particularly if the rules are at least confluent on some subset of terms. As we shall see
in Section 3.7.6, termination may make it easier to determine whether a rewrite system is
confluent.

A useful relation is an undirected version of reduction called conversion. Terms M, N €
Terms® (%, I') are convertible, written M <>x N [I'], if M and N are identical, or there
is some M’ € Terms* (X, T") with M’ < N [T'] and either M —>xg M’ or M’ —> M.
In other words, M < N [I'] iff there is a sequence of terms My, ..., My € Terms*(X, T")
with

M —>> My «— My —>> M3... My << N,

where the directions of arrows need not be regarded as significant. (In fact, by the reflex-
ivity and transitivity of —>, this picture is completely general.) In the next section, we
will see that for any rewrite system, conversion coincides with equational provability. If a
system is confluent, then we will see that M or N [T]iff M —> o «— N.

A few definitions will be useful when we analyze reductions more closely. Since two
subterms may be syntactically identical, we will need some way to refer to a specific
occurrence of a subterm. Intuitively, a position in a term is the location of a particular
subterm. We will identify a position by a finite sequence of natural numbers that tells us

206 Universal Algebra and Algebraic Data Types

how to “walk” down the parse tree of a term. To illustrate this method by example, the
parse tree of f(gx(hab))(gba)x is drawn below.

f

e

g X

AN
s

To find the position named by sequence 1, 2 for example, we start at the top of the tree.
The number 1 means we look for our subterm by taking the first (i.e., the leftmost) branch
down from the root. This places us at the top of the tree for gx(hab). The number 2 now
points to the second subterm, so position 1, 2 is occupied by the subterm zab. To be more
precise, we define the subterm of M at position 1 by induction on the length of a sequence

n=ny,...,n; If € is the empty sequence, then the subterm M at position € is the entire
term M. If M has the form f(My,..., M) and i =i, ny,...,ng with 1 <i <k, then
the subterm at position 7 is the subterm of M; named by ny, ..., ny. For example, the

subterm of f(gx(hab))(gha)x at position 1, 2,1 is the first occurrence of the symbol
a, read from left to right. The subterm at position 2 is gba, while there is no subterm at
position 3, 2.

If 71 is a position in M, we write M|; for the subterm of M at position 7 and [N /rn]M
for the term obtained by substituting N for the subterm at position 7. Using this nota-
tion, we may characterize one-step reduction by M —x N iff there is some position
7 in M with M|; = SL and N = [SR/n]M. One straightforward property of positions
is that M|; is a subterm of M|; iff n is a subsequence of the sequence p of nat-
ural numbers. It is sometimes useful to refer to the first function symbol of a term
as its principal function symbol. For example, f is the principal function symbol of
f(My, ..., My).

Exercise 3.7.3 Consider the algebraic term f(gxy)(f (gu(huv)))(f(g(gxy)z))

(a) Write out the subterm at position 2, 1, 2.

(b) Describe the positions of gxy by sequences of natural numbers.

Exercise 3.7.4 Show that if R contains a rule L — R, where either L is a variable or R
contains one variable not in L, then the system R is not terminating.

3.7 Rewrite Systems 207

Exercise 3.7.5 Let R be any rewrite system and let R°” be the set of “opposite” rules
R — L with (L — R) € R. Show that the rewrite system R U R is confluent but not
terminating.

Exercise 3.7.6 Prove Lemma 3.7.2.
3.7.2 Confluence and Provable Equality

Confluent rewrite systems are very useful for analyzing provable equality. The main rea-
son is that for confluent systems, an equation is provable precisely when both terms reduce
to a single term. In proving this theorem, we will also show that equational provability co-
incides with conversion, even if confluence fails. While the results are stated for algebra,
essentially the same proofs apply to reduction and provable equality in many other equa-
tional systems, including typed and untyped lambda calculus.

If R is a set of rewrite rules, we let £ be the set of corresponding undirected equations.
Using this notation, the main result of this section may be written

ErEM =N[T]iff M > o «—x N,

for confluent R. As a corollary, confluence allows us to demonstrate consistency by find-
ing two distinct normal forms. If — is both confluent and terminating, then reduction also
provides a decision procedure for £z: we may decide whether £ = M = N[I'] simply by
reducing both terms to normal form and comparing for syntactic equality. In reading the
remainder of this section, the reader may wish to think of the rewrite system R consisting
of all the algebraic rewrite rules of PCF (i.e., the rules for natural numbers and booleans),
with £ the corresponding set of equational axioms for PCF.
We begin by showing that provable equality is closed under reduction.

Lemma 3.7.7 LetM € Terms*(Z,T). If M —> N, thenEgr =M = N[T].

Proof If M -5 N, then we have M =[SL/x]P and N = [SR/x]P for some term
P € Terms(Z, (T, x:5)), and rewrite rule L — R € R. We may assume without loss of
generality that x does not occur in SL or SR. By rule (subst), we have Er - SL = SR[T].
Since P = P[T, x:s] by reflexivity, we have Eg = M = N[I'] by (subst). For multi-step
reduction M —>x N, the lemma follows by induction on the number of reduction steps. m

The next goal is to show that reduction is closed under substitution. More precisely, we
will establish that if M — M’ and P —> P’, then [M/x]P —> [M’/x]P’. Rather than
prove this directly, we will break it into simpler lemmas.

Lemma 3.7.8 If P — P/, then for any term M we have [M/x]P — [M/x]P’.

208 Universal Algebra and Algebraic Data Types

Proof The basic idea is that if P — P’ by rewrite rule L — R, we may use L — R to
reduce [M/x]1P — [M/x]P’.If x does not occur in the subterm of P that is rewritten, then
this is straightforward. Otherwise, we must use a substitution instance of L with x replaced
by M. This is worked out in the next paragraph.

Since P — P’, there is some term Q with P ={SL/y]Q and P’ =[SR/y1Q. We are
free to choose Q so that y does not occur in M, P or P’. Consequently, [M/x]P =
[M/x1([SL/y1Q) = ((IM/x]1SL)/y1([M/x]1Q) by Exercise 2.2.6. If we let S’ be the sub-
stitution {M/x] o S and Q’ be the term Q' =[M/x]Q, then we see that [M/x]P has
the form [M/x]P = [S’L/y]Q’. By similar reasoning, we have [M/x]P' =[S'R/y]Q’.
Therefore, [M/x]P — [M/x]P’. n

Lemma 3.7.9 If M — M/, then for any term P we have [M/x]P —> [M'/x]P.

Proof The proof uses induction on the number of occurrences of x in P. The lemma
clearly holds when x does not occur in P, so we move on to the induction step. If there
are n + 1 occurrences of x, then let Q be a term obtained from P by substituting a fresh
variable y for all but one occurrence. Then [M/x]P =[M/yl(IM/x]Q) and [M'/x]P =
[M’'/y1([M'/x]1Q). We will show that [M/x]Q — [M'/x]Q.

Since M — M’, there is an position 7 in M of the form SL, and M’ = [SR/n]M.
Since x occurs exactly once in Q, we have Q|7 = x for some 7. Therefore, the position
mn of [M/x]Q has the form SL and {M’/x]1Q = [SR/mnl((M/x]1Q). Thus [M/x]Q0 —
M'/x1Q.

We now have [M/yl(IM/x]1Q) — [M/yl(IM'/x]Q) by Lemma 3.7.8, and {M/y]
(M’ /x1Q) —> [M’'/y1({M'/x]Q) by the inductive hypothesis. Thus

[M/x]P =[M/yl(IM/x]Q) —

(M/y1(IM'/x1Q) —> [M'/y1(M’/x1Q) = [M'/x]P.
This proves the lemma. n
Lemma 3.7.10 If M — M'and P -—>> P’, then {M/x]1P —> [M’'/x]P’.

Proof By induction on the length of the reduction sequence P —> P’, we have [M /x]P
~> [M/x]P’ by Lemma 3.7.8. It remains to show that {M/x]P’ —> [M’'/x]P’. For this
we use induction on the length of the reduction M —> M’ and Lemma 3.7.9.]

These lemmas allow us to show that conversion is equivalent to provable equality.
Lemma 3.7.11 For any rewrite system, we have M < N [T']iff Eg = M = N[TI'].

Proof Suppose M < N [T']. Then there is a sequence of terms My, ..., M; € Terms®
(%, T') with M = My, N = M and either M; —> M, or M;1| —> M; for 0 <i < k. By

3.7 Rewrite Systems 209

Lemma 3.7.7, we have Eg - M; = M;[TI"] for each i. So straightforward induction on k
shows that Er = M = N[T"].

To prove the converse, we show that the convertibility relation contains all the axioms
and is closed under the proof rules. Reflexivity is straightforward. If M = N[I'] € £ is
a nonlogical axiom, then either M — N or N — M is a rewrite rule of R. So clearly
Mo N [TL

It is easy to see that convertibility is closed under symmetry, transitivity and (add
var). The only difficult case is (subst), but most of the work was already done proving
Lemma 3.7.10. We will show that if M < N [T, x:s]and P < Q [I'] for terms P, Q of
sort s, then [P/x]M < [P/x]N [I'] and [P/x]N < [Q/x]N [T']. By definition of con-
version, we have

M=My—>> My «—My—>> M;...«— M, =N
and similarly
P=Py—>> Pl «—P,—>> P3... <« P, =Q.

Since —> is reflexive, we may assume without loss of generality that k = £. Therefore, by
Lemma 3.7.10, we have

[P/xIM = [Po/xIMo —> [P1/xIM} < [P2/x]M2 —>> [P3/x]M3. ..

«— [Pe/xIMk =[Q/xIN.
This proves the lemma. .
Lemma 3.7.12 If —> is confluent, then M < N [I']iff M —> o <« N.
Proof Suppose M <> N [I']. Consider any sequence of terms My, ... M such that
M—>> M) «—My—> M3 <— ... «— My=N.

By reflexivity and transitivity of —> we may always express M <> N [I'] in this form,
with the first sequence of reductions proceeding from M —> Mj, and the next in the
opposite direction. If k = 2, then the lemma holds. Otherwise, we will show how to shorten
the sequence of alternations. By confluence, there is some term P with My —> P <« M3,
By transitivity of —>, this gives us a shorter conversion sequence

M—>> P «—My—> ...« M, =N.
By induction on k, we conclude that M —> o «— N. =

Theorem 3.7.13 For any confluent rewrite system R, we have Ex - M = N[I'] iff
M —>>po<«—p N.

210 Universal Algebra and Algebraic Data Types

Proof By Lemma 3.7.11, we know Egr = M = N[I'] iff M < N [I']. By Lemma
3.7.12, confluence implies M <»g N [[']iff M > o << N.]

Corollary 3.7.14 If —>5 is confluent and there exist two distinct normal forms of sort
s, then £x is consistent.

3.7.3 Termination

There are many approaches to proving termination of rewrite systems. Several methods
involve assigning some kind of “weights” to terms. For example, suppose we assign a
natural number weight wys to each term M and show that whenever M — N, we have
wy > wy. It follows that there is no infinite sequence My — M; — M — ... of one-step
reductions, since there is no infinite decreasing sequence of natural numbers.

While this approach may seem straightforward, it is often very difficult to devise a
weighting function that does the job. In fact, there is no algorithmic test to determine
whether a rewrite system is terminating. Nonetheless, there are reasonable methods that
work in many simple cases. Rather than survey the extensive literature on termination
proofs, we will just take a quick look at a simple method based on algebras with ordered
carriers. More information may be found in the survey articles [DJ90, HO80, Klo87] and
references cited there.

The method we will consider in this section uses binary relations that prohibit infinite
sequences. Before considering well-founded relations, also used in Section 1.8.3, we re-
view some notational conventions. If < is a binary relation on a set A, we will write <
for the union of < and equality, and > for the complement of <. In other words, x < y iff
x <yorx=yandx >y iff =(y < x). Note that in using the symbol < as the name of
a relation, we do not necessarily assume that < is transitive or has any other properties
of an ordering. However, since most of the examples we will consider involve order-
ing, the choice of symbol provides helpful intuition. A binary relation < on a set A is
well-founded if there is no infinite decreasing sequence, ag > a; > az > ..., of elements
of A. The importance of well-founded relations is that if we can establish a correspon-
dence between terms and elements of a set A with well-founded binary relation <, we
can use this to show there is no infinite sequence of reductions My > M; — M, — ...
An example well-founded relation is the standard ordering of natural numbers. Another
example is pairs of natural numbers ordered lexicographically, i.e., {m{, m2) < (ny, na)
iff either m1 < ny or both m1 = n1 and ma < ny. Some other examples are given in Exer-
cise 1.8.15.

There are several ways to map terms to sets with well-founded relations. Since we
have already studied the interpretation of terms in algebras, we will take advantage of the

3.7 Rewrite Systems 211

semantic structure of algebra. An algebra A = (AS!, A®2, ..., flA, f;“, ...} is well-founded
if

(i) There is a well-founded relation < on each carrier A°*.

(ii) For each n-ary function symbol f,if x| <y, ..., x, <y, and x; < y; for some i with
1 <i <n, then
FAG) < FAGL).

A simple example is to let each carrier be the set of natural numbers A, with the usual
ordering, and define each function f* by a nonconstant polynomial with positive coeffi-
cients.

If A is a well-founded algebra and M and N are terms of sort s, the we write

AneEM<N

if [MIln <; [N1n and, similarly, A =M < N if A, n = M < N for every environment n
giving variables values of the appropriate sorts.
The reason for defining well-founded algebras is given by the following lemma.

Lemma 3.7.15 Let R be a rewrite system on X terms and let A be a well-founded X-
algebra. If A |= L > R foreach rule L — R in R, then R is terminating.

Proof The proof uses the substitution lemma and other facts about the interpreta-
tion of terms. The only basic fact we must prove directly is that for any term M €
Terms(XZ, T, x: s) containing the variable x, and any environment n, if a > b € A®, then

[MInlx — al = IM1nlx — b].

This is an easy induction on M that is left to the reader.

To prove the lemma, it suffices to show that if M — N, then for any environment 7, we
have [M1n > [N1#n, since no well-founded carrier has any infinite sequence of “decreas-
ing” elements. In general, a single reduction step has the form [SL/x]M — [SR/x1M,
where x occurs exactly once in M. Therefore, we must show that for any environment 7
satisfying the appropriate sort assignment,

[(SL/xIM1n > LISR/xIM1n.

Let 5 be any environment and let a = [SL]ln and b = [SR]ln. By the substitution
lemma, we have a = [L]ln’ and b = [R]’, for some environment 7’ determined by 7 and
the substitution S. Therefore, by the hypothesis of the lemma, a > b. It follows (by the
easy induction mentioned in the first paragraph of the proof) that

212 Universal Algebra and Algebraic Data Types

[MIn[x — a] > [MInix — b].
The lemma follows by the substitution lemma. n

It is important to realize that when we prove termination of a rewrite system by inter-
preting terms in a well-founded algebra, the algebra we use does not satisfy the equations
associated with the rewrite system. The reason is that reducing a term must “decrease’ its
value in the well-founded algebra. However, rewriting does not change the interpretation
of a term in any algebra satisfying the equations associated with the rewrite system.

An essentially trivial termination example is the rewrite system for stacks, obtained by
orienting the two equations in Table 3.1 from left to right. We can easily see that this
system terminates since each rewrite rule reduces the number of symbols in the term. This
argument may be carried out using a well-founded algebra whose carriers are the natural
numbers. To do so, we interpret each function symbol as a numeric function that adds one
to the sum of its arguments. Since the meaning of a term is then found by adding up the
number of function symbols, it is easy to check that each rewrite rule reduces the value of
a term.

It is easy to see that when the conditions of Lemma 3.7.15 are satisfied, and each carrier
is the natural numbers, the numeric meaning of a term is an upper-bound on the longest
sequence of reduction steps from the term. Therefore, if the number of rewrite steps is a
fast-growing function of the length of a term, it will be necessary to interpret at least one
function symbol as a numeric function that grows faster than a polynomial. The following
example uses an exponential function to show that rewriting to disjunctive normal form
always terminates.

Example 3.7.16 (Attributed to Filman [DJ90].) Consider the following rewrite system
on formulas of propositional logic. As usual, we write the unary function — : bool — bool
as a prefix operator, and binary functions A, V : bool x bool — bool as infix operations.

—TX > X
—(x Vy) = (-x A—y)
(X AY) > (mx VoY)
XAV xAY)V(XAZ
YVDAX—> (YAX)V (ZAX).

This system transforms a formula into disjunctive normal form.
We can prove that this rewrite system is terminating using a well-founded algebra of
natural numbers. More specifically, let A = (A%, orA, and*, not*) be the algebra with

3.7 Rewrite Systems 213

carrier the AP = N — {0, 1}, the natural numbers greater than 1, and
orA(x,y) =x+y+1

andA(x, Y)=Xxx%xy

not(x) =2%

It is easy to see that each of these functions is strictly monotonic on the natural numbers
(using the usual ordering). Therefore, A is a well-founded algebra.

To show that the rewrite rules are terminating, we must check that for natural number
values of the free variables, the left-hand side defines a larger number than the right. For
the first rule, this is obvious since for any natural number x > 1, we have 22° > x. For the
second rule, we have 20+Y+1) = 2¥2Y2 > 2%2¥ for any x, y > 1. The remaining rules rely
on similar routine calculations. .

Example 3.7.17 In this example, we will show termination of a rewrite system derived
from the integer multiset axioms given in Table 3.2. For simplicity, we will omit the rules
for conditionals on multisets and booleans, since these do not interact with any of the other
rules. Specifically, let us consider the signature with sorts mset, nat, bool, constants for
natural numbers, the empty multiset and true, false, and functions 4+ and Eq? on natural
numbers, insert and mem? on multisets, and cond,,, conditional for natural numbers. The
rewrite rules are

0+40—-0,0+1—>1,...

Eq?x x — true

Eq?01 — false, Eq?702 — false, . ..

mem? x empty — 0

mem? x (insert ym) — if Eq?xy then (mem?xm)+ 1 else mem?xm
cond, truexy — x

cond,falsexy — 'y

We will interpret this signature in an algebra A with A" = A™¢! = Abool C A, We
must choose strictly monotonic functions for each function symbol so that the meaning of
the left-hand side of each rule is guaranteed to be a larger natural number than the meaning
of the right-hand side. For most of the functions, this may be done in a straightforward
manner. However, since the second membership rule does not decrease the number of

214 Untversal Algebra and Algebraic Data Types

symbols in a term, we will have to give more consideration to the numeric interpretation
of mem?.

An intuitive way to assign integers to terms is to give an upper bound on the longest
possible sequence of reductions. For example, the longest sequence from a term of the
form cond,M|M;M; reduces all three subterms as much as possible, then (assuming
M reduces to true or false) reduces the conditional. Therefore, a reasonable numeric
interpretation for cond,, is

cond;;‘xyz=l+x—|—y+z.

Following the same line of reasoning, we are led to the straightforward interpretations of
all the other functions, except mem?.

+Axy =l4x+y

Eq?Axy =l4+x+y

insert* xm=1+x+m

For technical reasons that will become apparent, we will interpret
Anat — gmset — pbool _ a7 {0, 1}

rather than using all natural numbers. Therefore, we interpret each constant symbol as 2.
For mem?, we must choose a function so that the left-hand side of each mem? rule will

give a larger number than the right-hand side. The first mem? rule only requires that the

function always have a value greater than 2. From the second rule, we obtain the condition

mem?Ax(y +m)y>5+x+y+2x% (mem?Axm).

We can surmise by inspection that value of mem?* x m should depend exponentially on its
second argument, since mem? x (y + m) must be more than twice mem?* x m, for any
y > 2. We can satisfy the numeric condition by taking

mem? x m = x * 2™,

With this interpretation, it is straightforward to verify the conditions of Lemma 3.7.15 and
conclude that the rewrite rules for multisets are terminating. The only nontrivial case is
mem?. A simple way to see that

x 200 (54 x 4 y4+xx2") 50

is to verify the inequality for x = y = m = 2 and then check the derivative with respect to
each variable. -

3.7 Rewrite Systems 215

Exercise 3.7.18 Consider the following rewrite system on formulas of propositional
logic.
——x = x
(X Vy)— (mx ATy)
“(xAY) = (X VvV Ty)
XVIAZD)=>xVY)A(KXVZ)
YAZ)VX—=>(yVX)A(ZVX).

This is similar to the system in Example 3.7.16, except that these rules transform a formula
into conjunctive normal form instead of disjunctive normal form. Show that this rewrite
system is terminating by defining and using a well-founded algebra whose carrier is some
subset of the natural numbers. (This is easy if you understand Example 3.7.16.)

Exercise 3.7.19 Show that the following rewrite rules are terminating, using a well-
founded algebra.

(a)

0+x - X

Sx)+y—> Sx+y)

(b) The rules of part (a) in combination with

Oxx —0

(Sx)xy—> (x*xy)+y

(¢) The rules of parts (a) and (b) in combination with
fact0 — 1

fact (Sx) — (Sx) * (fact x)

Termination for a more complicated version of this example is proved in [Les92] using a
lexicographic order.

Exercise 3.7.20 An algebraic specification for set, nat and bool is given in Table 3.4. We
may derive a rewrite system from the the equational axioms by orienting them from left to
right.

(a) Show that this rewrite system is terminating by interpreting each of the function sym-
bols as a function over a subset of the natural numbers.

(b) We may extend the set datatype with a cardinality function defined by the following
axioms.

216 Universal Algebra and Algebraic Data Types

card empty =0
card(insert x 5) = cond (ismem? x s)(card s)((card s) + 1)

Show that this rewrite system is terminating by interpreting each of the function symbols
as a function over a subset of the natural numbers.

3.7.4 Critical Pairs

We will consider two classes of confluent rewrite systems, one necessarily terminating and
the other not. In the first class, discussed in Section 3.7.5, the rules do not interact in any
significant way. Consequently, we have confluence regardless of termination. In the second
class, discussed in Section 3.7.6, we use termination to analyze the interaction between
rules. An important idea in both cases is the definition of critical pair, which is a pair of
terms representing an interaction between rewrite rules. Another general notion is local
confluence, which is a weak version of confluence. Since local confluence may be used to
motivate the definition of critical pair, we begin by defining local confluence.

A relation — is locally confluent if N < M — P implies N —> o <« P. This is
strictly weaker than confluence since we only assume N —> o <<— P when M rewrites to
N or P by a single step. However, as shown in Section 3.7.6, local confluence is equivalent
to ordinary confluence for terminating rewrite systems.

Example 3.7.21 A simple example of a rewrite system that is locally confluent but not
confluent is

a—>b,b—a
a— ap, b— by

Both a and b can be reduced to ap and bg. But since neither ap nor by can be reduced
to the other, confluence fails. However, a straightforward case analysis shows that R is
locally confluent. A pictorial representation of this system appears in Figure 3.1. Another
rewrite system that is locally confluent but not confluent, and which has no loops, appears
in Example 3.7.26. »

In the rest of this section, we will consider the problem of determining whether a rewrite
system TR is locally confluent. For rewrite systems with a finite number of rules, we may
demonstrate local confluence by examining a finite number of cases called “critical pairs.”
Pictorial representations of terms and reductions, illustrating the three important cases, are
given in Figures 3.2, 3.3 and 3.4. (Similar pictures appear in [DJ90, Hue80, K1087].)

Suppose we have some finite set R of rewrite rules and a term M that can be reduced
in two different ways. This means that there are rewrite rules L — R and L’ — R’ and

3.7 Rewrite Systems 217

ag ————a b————» by

Figure 3.1
A locally confluent but non-confluent reduction.

substitutions S and S’ such that the subterm of M at one position, 7, has the form SL and
the subterm at another position, m, has the form S’L’. It is not necessary that L — R and
L’ — R’ be different rules. However, if we may rename variables so that L and L’ have no
variables in common, then we may assume that S and S’ are the same substitution. There
are several possible relationships between 7 and 7. In some cases, we can see that there is
essentially no interaction between the rules. But in one case, the “critical pair” case, there
is no a priori guarantee of local confluence.

The simplest case, illustrated in Figure 3.2, is if neither SL nor SL’ is a subterm of the
other. This happens when neither 7 nor 7 is a subsequence of the other. In this case, it
does not matter which reduction we do first. We may always perform the second reduction
immediately thereafter, producing the same result by either pair of reductions. For exam-
ple, if M has the form fSL SL’, the two reductions produce fSR SL’ and fSL SR/,
respectively. But then each reduces to fSR SR’ by a single reduction.

The second possibility is that one subterm may contain the other. In this case, both
reductions only effect the larger subterm. For the sake of notational simplicity, we will
assume that the larger subterm is all of M. Therefore, we assume 7 is the empty sequence,
so M = SL, and SL’is a subterm of SL and position m. There are two subcases.

A “trivial” way for SL’ to be a subterm of SL is when § substitutes a term containing
S L’ for some variable in L. In other words, if we divide SL into symbol occurrences that
come from L and symbol occurrences that are introduced by S, the subterm at position
m only contains symbols introduced by S. This is pictured in Figure 3.3. In this case,
reducing SL to SR either eliminates the subterm SL’, if R does not contain x, or gives us
a term containing one or more occurrences of SL’. Since we can reduce each occurrence
of SL’' to SR’, we have local confluence in this case.

The remaining case is the one we must consider in more detail: SL’ is at position m of
SL and L|; is not a variable. Clearly, this may only happen if the principal (first) function
symbol of L’ occurs in L, as the principal function symbol of L|z;. If we apply the first

218 Universal Algebra and Algebraic Data Types

SL SL'

SR SR’

Figure 3.2
Disjoint reductions

rewrite rule, we obtain SR. The second rewrite rule gives us the term [SR’/m]SL with
our chosen occurrence of SL’ replaced by SR’. This is pictured in Figure 3.4. Although
we may have SR —> o «— [SR’/m]SL “accidentally,” there is no reason to expect this in
general.

Example 3.7.22 Disjoint (Figure 3.2) and trivially overlapping (Figure 3.3) reductions
are possible in every rewrite system. The following two rewrite rules for lists also allow
conflicting reductions (Figure 3.4):

cdr(consx £) = £
cons(car £')(cdr €'y — ¢’

We obtain a disjoint reduction by writing a term that contains the left-hand sides of both
rules. For example,

3.7 Rewrite Systems 219

SL

SL

/

SL SR

SR’ s sU

SR

SR’ SR’

Figure 3.3
Trivial overlap

cond B(cdr(cons x £))(cons(car €')(cdr ')

may be reduced using either rewrite rule. The two subterms that may be reduced inde-
pendently are underlined. A term with overlap only at a substitution instance of a variable
(Figure 3.3) is

cdr(cons x(cons(car £)(cdr £')))

which is obtained by substituting the left hand side of the second rule for the variable ¢
in the first. Notice that if we reduce the larger subterm, the underlined smaller subterm
remains intact. Finally, we obtain a nontrivial overlap by replacing x and £ in the first rule
by car £’ and cdr ¢’

cdr(cons(car £')(cdr £'))

220 Universal Algebra and Algebraic Data Types

SL' { E

/\ SL 279
- SR
SR’{ \

Figure 3.4
Critical pair

If we apply the first rule to the entire term, the cons in the smaller subterm is removed
by the rule. If we apply the second rule to the smaller subterm, cons is removed and the
first rule may no longer be applied. However, it is easy to see that the rules are locally
confluent, since in both cases we obtain the same term, £.

A system where local confluence fails due to overlapping rules appears in Exam-
ple 3.7.1. Specifically, the term (x + 0) 4+ y may be reduced to either x + y or x + (0 + y),
but neither of these terms can be reduced further. Associativity (as in the third rule
of Example 3.7.1) and commutativity are difficult to treat by rewrite rules. Techniques
for rewriting with an associative and commutative equivalence relation are surveyed in
[DJ90], for example. =

It might appear that for two (not necessarily distinct) rules L — R and L’ — R/, we
must consider infinitely many substitutions S in looking for nontrivial overlaps. However,
for each term L, position 7 in L, and term L', if any substitution S gives SL’ = SL|z,
there is a simplest such substitution. More specifically, we may choose the minimal (most
general) substitution S under the ordering § < §' if there exist $” with §' = §” o . Using
unification, we may compute a most general substitution for each L’ and non-variable
subterm L|;, or determine that none exists. For many pairs of rewrite rules, this is a
straightforward hand calculation.

Intuitively, a critical pair is the result of reducing a term with overlapping redexes, ob-
tained with a substitution that is as simple as possible. An overlap is a triple (SL, SL’, m)
such that SL’ occurs at position m of SL and L|; is not a variable. If § is the sim-

3.7 Rewrite Systems 221

plest substitution such that (SL, SL’,m) is an overlap, then the pair (SR, [SR'/m]SL)
is called a critical pair. In Example 3.7.22 the two nontrivial overlaps give us critical pairs
(¢,¢) and {Sx + (y + 2), S(x 4+ y) + z), since the simplest possible substitutions were
used.

A useful fact to remember is that a critical pair may occur only between rules L — R
and L’ — R’ when the principal function symbol f of L’ occurs in L. Moreover, if f
is applied to non-variable terms in both L’ and the relevant occurrence in L, then the
principal function symbols of corresponding arguments must be identical. For example,
if we have arule f(gxy) — R/, then this may lead to a critical pair only if there is a rule
L — R such that either fz or a term of the form f(gP Q) occurs in L. A subterm of the
form f(h...) does not give us a critical pair, since there is no substitution making (h...)
syntactically identical to any term with principal function symbol g.

In general, it is important to consider overlaps involving two uses of the same rule. For
example, the rewrite system with the single rule f(fx) — a is not locally confluent since
we have an overlap (f(f(fx)), f(fx),1) leading to a critical pair (fa, a). (The term
f(f(fx)) can be reduced to both fa and a.) It is also important to consider the case
where two left-hand sides are identical, since a rewrite system may have two rules, L — R
and L — R’, that have the same left-hand side. (In this case, (R, R’) is a critical pair.)
Since any rule L — R results in overlap (L, L, €), where € is the empty sequence, any
rule resuits in a critical pair (R, R) of identical terms. We call a critical pair of identical
terms, resulting from two applications of the a single rule L — R to L, a trivial critical
pair.

Proposition 3.7.23 [KB70] A rewrite system R is locally confluent iff M —»>g 0 «—x
N for every critical pair (M, N).

If a finite rewrite system R is terminating, then this lemma gives us an algorithmic pro-
cedure for deciding whether R is locally confluent. We will consider this in Section 3.7.6.

Proof The implication from left to right is straightforward. The proof in the other di-
rection follows the line of reasoning used to motivate the definition of critical pair. More
specifically, suppose M may be reduced to two subterms, N and P, using L — R and
L’ — R’. Then there are three possible relationships between the relevant subterms SL
and SR of M. If these subterms are disjoint or overlap trivially, then as argued in this
section, we have N —> o <« P. The remaining case is that N and P contain substitu-
tion instances of a critical pair. Since the symbols not involved in the reductions M — N
and M — P will not play any role in determining whether N —> o <« P, we may sim-
plify notation by assuming that there is some critical pair (SR, [SR'/m]SL) of R with

222 Universal Algebra and Algebraic Data Types

N = S(SR) and P = S'([SR'/m]SL). However, by the hypothesis of the lemma, we have
SR —> o <« [SR’/m]SL. Therefore, since each reduction step applies to any substitution
instance of the term involved (see Lemmas 3.7.10 and 3.7.11), we have N —> o <<~ P. m

Exercise 3.7.24 Using the signature of Example 3.7.1, we may also consider the rewrite
system

0+ x - X
(—x)+x —-0
x+y+z-o>x++2

You may replace infix addition by a standard algebraic (prefix) function symbol if this
makes it easier for you.

(a) Find all critical pairs of this system.
(b) For each critical pair (SR, [SR’'/m]SL), determine whether SR —> o <« [SR’/m]SL.

Exercise 3.7.25 A rewrite system for formulas of propositional logic is given in Exam-
ple 3.7.16. You may translate into standard algebraic terms if this makes it easier for you.

(a) Find all critical pairs of this system.
(b) For each critical pair (SR, [SR'/m]SL), determine whether SR —>> o <« [SR'/m]SL.

3.7.5 Left-linear Non-overlapping Rewrite Systems

A rewrite system is non-overlapping if it has no nontrivial critical pairs. In other words, the
only way to form a critical pair is by using arule L — R to reduce L to R twice, obtaining
the pair (R, R). Since trivial critical pairs do not effect confluence, we might expect every
non-overlapping rewrite system to be confluent. However, this is not true; a counterexam-
ple is given in Example 3.7.26 below. Intuitively, the problem is that since rewrite rules
allow us to replace terms of one form with terms of another, we may have rules that only
overlap after some initial rewriting. However, if we restrict the left-hand sides of rules,
then the absence of critical pairs ensures confluence. The standard terminology is that a
rule L — R is left-linear if no variable occurs twice in L. A set of rules is left-linear if
every rule in the set is left-linear.

The main result in this section is that left-linear, non-overlapping rewrite systems
are confluent. The earliest proofs of this fact are probably proofs for combinatory logic
(see Example 3.7.31) that generalize to arbitrary left-linear and non-overlapping systems
[Klo87]. The general approach using parallel reduction is due to Huet [Hue80].

3.7 Rewrite Systems 223

Example 3.7.26 The following rewrite system for finite and “infinite” numbers has no
critical pairs (and is therefore locally confluent) but is not confluent.

o0 — S0

Eq?xx — true
Eq?x (Sx) — false

Intuitively, the two Eq? rules would be fine, except that the “infinite number” co is its own
successor. With oo, we have

Eq? 0000 — true
Eq? 0000 — Eq?00 (S00) — false

so one term has two distinct normal forms, true and false.

The intuitive reason why confluence fails in this situation is fairly subtle. The only pos-
sible critical pair in this system would arise from a substitution R such that R(Eq?x x) =
R(Eq? x (Sx)). Any such substitution R would have to be of the form R = [M/x], where
M = SM. But since no term M is syntactically equal to its successor, SM, this is im-
possible. However, the term oo is reducible to its own successor. Therefore, the rules
have the same effect as an overlap at substitution instances Eg? 0o oo and Eg? oo (S00).
Another, way of saying this is that since co — Soo, we have [00/x](Eq? x x) — [00/x]
(Eq?x (Sx)), and the “overlap after reduction” causes confluence to fail. n

We will analyze left-linear, non-overlapping rewrite systems using parallel reduction,
which was considered in Section 2.4.4 for PCF. We define the parallel reduction relation,
= for a set R of algebraic rewrite rules by

[SLy,...,SLy/AY, ... 0k]M =R [SRy, ..., SRy /AL, .. .0]M
where 71, . .. n} are disjoint positions in M (i.e., none of these sequences of natural num-
bers is a subsequence of any other) and L1 — Ry, ..., Ly — Ry are rewrite rules in R that

need not be distinct (and which have variables renamed if necessary). An alternate charac-
terization of =5, is that this is the least relation on terms that contains — and is closed
under the rule

M|y =R N1, ..., Mk =R Ni
CIMy, ..., M] =rCI[Ny, ..., Nl

for any context C[. ..] with places for k terms to be inserted. This was the definition used
for parallel PCF reduction in Section 2.4.4.

224 Universal Algebra and Algebraic Data Types

Some useful notation is to write M —>, N if M —> N by a reduction sequence of
length n, and M —> _, N if there is a reduction sequence of length less than n.

The reason we use parallel reduction to analyze linear, non-overlapping rewrite systems
is that parallel reduction has a stronger confluence property that is both easier to prove
directly than confluence of sequential reduction and interesting in its own right. A relation
— on terms is strongly confluent if, whenever M — N and M — P, there is a term O
with N => . Q and P —> ., Q. The reader who checks other sources should know that
an alternate, slightly weaker definition of strong confluence is sometimes used.

We now show that = is strongly confluent. This is called the “parallel moves lemma.”
After proving this lemma, we will show that strong confluence of = implies confluence
of —>R.

Lemma 3.7.27 [Hue80] If R is left-linear and non-overlapping, then =g is strongly
confluent.

The lemma proved in [Hue80] is actually stronger, since it applies to systems with the
property that for every critical pair (M, N), we have M = N or N =5 M. However,
the left-linear and non-overlapping case is easier to prove and will be sufficient for our
purposes.

Proof Suppose that M = N and M =5 P. We must show that N =5 o < P. For
notational simplicity, we will drop the subscript R in the rest of the proof.

The reduction M = N results from the replacement of subterms SLi, ..., SL; at posi-
tions 7y, ..., ng by SRy, ..., SRk and, similarly, the reduction M = P involves replace-
ment of terms at positions pi, ..., p¢. By hypothesis, the positions 77, ..., 7y must be
disjoint and similarly for pj, ..., pe. There may be some overlap between some of the
n;’s and p;’s, but the kinds of overlaps are restricted by the disjointness of the two sets of
positions. Specifically, if some #; is a subsequence of one or more p;’s, say pi, ..., pj,
then none of pi, ..., pj can be a subsequence of any r,,. Therefore, the only kind of over-
lap we must consider is a subterm SL of M that is reduced by a single rule L — R in
one reduction, but has one or more disjoint subterms reduced in the other. Since there are
no critical pairs, we have only the trivial case that n; = p;, with the same rule applied in
both cases, and the nontrivial case with all of the effected subterms of SL arising from
substitution for variables in L.

For notational simplicity, we assume in the rest of this proof that we do not have 7; = p;
for any / and j. The modifications required to treat n; = p; are completely straightforward,
since N and P must be identical at this position.

To analyze this situation systematically, we reorder the sequences of disjoint positions
so that for some r <k and s < £, the initial subsequences A1, ...,n, and pi,..., ps

3.7 Rewrite Systems 225

have two properties. First, none has any proper subsequences among the complete lists

ni, ..., A and pi, ..., pe- Second, every sequence in either complete list must have some
proper subsequence among the initial subsequences 11, ..., A, and p, ..., ps.

Ifwelets =r +sandlet My, ..., M; be the subterms M|, ..., M|z, Mlz, ..., M|
then every My, ..., M; is reduced in producing N or P, and all of the reductions occur in
My, ..., M;. Therefore, we may write M, N and P in the form
M=C[M,,...,M]

N =C[Ny, ..., N]

P=C[P,..., Pl

where, for 1 <i <t, we have M; = SL — N; = SR, forsome rule L - R, and M; = P;
by zero or more disjoint reductions that occur within subterms that arise by substitution
into L, or similarly with the roles of N; and P; reversed. We will complete the proof by
showing that in each case, N; = o < P;.

Suppose that M; occurs at position 7; in M and M; = SL — N; = SR, for some rule
L — R. If n; is not a subsequence of any p j then we have N; = o < P; by the rule
L — R. Otherwise, there exist positions np, ..., ni'q in M; such that for u <gq,

(M), =SL, and (P)|s, = SRy

for some rules Ly — Ry,..., Ly — Ry, and, since the rewrite system R is non-over-
lapping, each position 7, in M; = SL is at or below a variable in L. Since positions
mi, ..., My are at or below variables in L, there is some substitution S’ of terms for
variables such that P; = §’'L. Since the rule L — R is left-linear, we have P; - S'R.
It remains to show that N; = SR = §’'R. Reasoning as in the variable overlap case in
Section 3.7.4 (Figure 3.3), we can see that for each variable x in R, we must have Sx =
§’x. Therefore SR = S'R. The case N; — P; is completely analogous. This concludes the
proof. u

Lemma 3.7.28 If = is strongly confluent then both == and —»>x are confluent.

Proof 1t is not hard to see that =% and —>g are the same relation on terms. (This
is part (a) of Exercise 2.4.19 in Section 2.4.4.) Therefore, it suffices to show that if =>¢
is strongly confluent then == is confluent. For notational simplicity, we will drop the
subscript R in the rest of the proof. Recall that we write M ==, N if there is a reduction
sequence from M to N of length n, and M =»_, N if the length is less than #.

Suppose = is strongly confluent. We first show by induction on » that if M ==, N
and M = P then there is some term Q with N == _» Q and P == _, (. For the base
case, M =9 N, this is trivial. For the induction step, suppose M =%, N; == N and

226 Universal Algebra and Algebraic Data Types

M = P. By the induction hypothesis, there is some Q with Ny == _, Q and P =, Q.
If N1 = Q, then we are done. Otherwise, since N1 = @ and N = N, we may use strong
confluence of = to prove the claim.

It remains to consider the general case M ==, N and M ==, P. However, it is easy to
show by induction on p that there is some term Q with N ==, Q and P ==, Q, by the
same form of reasoning used in the special case p = 1 above. This proves the lemma. =

It follows immediately from Lemmas 3.7.27 and 3.7.28 that every left-linear and non-
overlapping rewrite system is confluent.

Proposition 3.7.29 1If R is left-linear and non-overlapping, then =% and —>g are
confluent.

Example 3.7.30 The following rewrite system for list expressions is left-linear and non-
overlapping, and therefore confluent.

car(cons x) —> x
cdr(consx) — £
isempty? nil — true
isempty?(cons x £) — false
However, left-linearity is destroyed if we add the non-linear rule
cons(car £)(cdrt) — £.

We have already seen, in Example 3.7.22, that the non-linear rule does not interact
badly with the cdr rule; the overlap with car is similarly benign. However, the in-
teraction with the second isempty? causes local confluence to fail. Specifically, since
isempty?(cons(car £)(cdr £)) reduces to false and isempty?({), we have a critical pair con-
sisting of distinct normal forms. n

Example 3.7.31 Untyped combinatory logic has the following algebraic specification.
sorts:¢
fetns:S, K, 1:¢
apit—>1—1
eqns:ap(ap(ap S x)y)z = ap(ap x z)(ap y 2)
aplap K x)y =x

aplx=x

3.7 Rewrite Systems 227

It is easy to see that if we orient the three equational axioms from left to right, we have a
left-linear and non-overlapping rewrite system. Therefore, combinatory logic is confluent.
It is conventional to write ap as an infix operator, and even to omit ap. In the rest of this
example, we will write x - y for ap x y. When parentheses are omitted, we associate - to
the left.

It is not very hard to show that this rewrite system is not terminating. For example,
consider the term S - 7 - 1. It is easy to see that

S-1-I)-x—>x-x.
Therefore, we have
S-I-nH-S-I1-H—>S-1-I)-(S-1-1).

An important motivation for combinatory logic is that every untyped lambda term can be
translated into combinatory logic. The untyped translation is the same as the translation of
typed lambda terms into typed combinators given in Section 4.5.7. An algebra satisfying
the axioms of (untyped) combinatory logic is called an (untyped) combinatory algebra. m

3.7.6 Local Confluence, Termination and Completion

In the last section, we saw that every left-linear, non-overlapping rewrite system is con-
fluent, regardless of termination. In this section, we consider a sufficient condition for
confluence that allows rules which are not left-linear, but requires termination. Specif-
ically, every terminating and locally confluent relation is confluent. This fact, which is
often called “Newman’s Lemma,” after [New42], does not depend on the structure of alge-
braic terms at all. For this reason, it applies to a variety of other systems, including lambda
calculus reduction and various graph manipulation rules. It has been discovered by many
different researchers.

Proposition 3.7.32 Let R be a terminating rewrite system. Then R is confluent iff R is
locally confluent.

Proof We say R is confluent from M if, whenever N <<—r M —>x P, we have N —> 1
o «—7 P. Since R is terminating, we may let the norm, |M|, of term M be the length of
the longest sequence of reductions from M. We will show by induction on the norm that
R is confluent from every term. Let us write —> instead of —> . The base case, |M| =0,
is trivial.

Suppose that M —> N, M —> P and for every Q with |Q| < |M|, R is confluent from
Q. If either reduction, M —> N or M —> P, has length 0, then clearly N —> o «— P.
Therefore, we assume M — Ny —> N and M — P; — P. By local confluence, there

228 Universal Algebra and Algebraic Data Types

is some term Q with Ny —> Q and P; —> Q. By the induction hypothesis, there is
some term R with Ny =>> R and Q —> R. Since Py > Q —> R and P, &> P, we may
apply the induction hypothesis again to obtain a term S with R —> S and P —> S. By
combining reductions already listed, we can see that both N and P reduce to S. This
proves the lemma. u

Example 3.7.33 The following rewrite rules for conditional are locally confluent and
terminating but not left-linear.

if true then x else y —>x
if false then x else y —y

if u then x else x — x

Termination is straightforward since all rules reduce the length of terms. There are two
critical pairs, both involving the third, non-linear rule. The first results from reducing

if true then x else x,

by the first and third rules. This gives us the critical pair (x, x), which clearly does not
present a problem. The second critical pair is also (x, x). =

Proposition 3.7.23, often called the Knuth-Bendix test, was originally presented in
[KB70] as part of an algorithm that not only tests a set of terminating rewrite rules for local
confluence, but adds additional rules if the test fails. This algorithm is called the Knuth-
Bendix completion procedure, or completion for short. The rules added by the procedure
are conservative over the original ones, in the sense that if the Knuth-Bendix algorithm
produces R’ 2 R, then £’ and £r determine the same algebraic theory. The comple-
tion procedure requires an algorithm for determining whether any inequality of the form
M > N holds, in some well-founded algebra.

The completion procedure begins by testing whether L > R, for each rewrite rule L —
R. If so, then the rewrite system is terminating and we may proceed to test for local
confluence. This may be done algorithmically by computing critical pairs (M, N) and
searching the possible reductions from M and N to see whether M —> o <« N. Since the
rewrite system is terminating, there are only finitely many possible reductions to consider.
If all critical pairs converge, then the algorithm terminates with the result that the rewrite
system is confluent and terminating.

If we do not have M —> o <« N for some critical pair (M, N) then by definition of
critical pair, there is some term that reduces to both M and N. Therefore, M and N may
be proved equal by equational reasoning and it makes logical sense to add M — N or
N — M as a rewrite rule. If M > N or N > M, then the completion procedure adds
the appropriate rule and continues the test for local confluence. However, if M and N

3.7 Rewrite Systems 229

are incomparable (neither M > N nor N > M), there is no guarantee that either rule
preserves termination, and so the procedure terminates inconclusively. This procedure may
not terminate, as illustrated in the following example, based on [Bel86].

Example 3.7.34 In this example, we show that the completion procedure may continue
indefinitely, neither producing a confluent system after adding any finite number of rules,
nor reaching a state where there is no rule to add. Let us consider two rewrite rules, called
H for homomorphism and A for associativity.

fx+fy —fx+y) (H)
x+y+z—ox++2) (A)

We can see that these are terminating by constructing a well-founded algebra, A. As the
single carrier, we may use the natural numbers greater than 2. To make (A) decreasing, we
must choose some non-associative interpretation for +. The simplest familiar arithmetic
operation is exponentiation. We may use

+A 0,) =y,
fAx) = 2%

An easy calculation shows that each rule is decreasing in this algebra.

The only critical pair is the result of unifying fx + fy with the subterm (x + y) of the
left-hand side of (A). Reducing the term (fx + fy) + z in two ways gives us the critical
pair

(f&+y+z fx+(fy+2)

with weights

FAx A y) +A 7 =200 =0

FAXHA Ay +42) = (@) = 20960

Comparing the numeric values of these expressions for x, y, z > 3, we can see that termi-
nation is preserved if we add the rule rewriting the first term to the second. This gives us a
rewrite rule that we may recognize as an instance of the general pattern

ffx+Y+z— ffx+(f"y +2), (Adn

with (A) = (A)o.

The general pattern, if we continue the completion procedure, is that by reducing the
term f*~'(fx + fy) +z by (H) and (A),_1, for n > 1, we obtain a critical pair of the
form

230 Universal Algebra and Algebraic Data Types

(P4 +z ffx+(f"y+2)

with weights
Xy2n 2nx
(fA)"(x +-A y) +A 7= z((y i) — Z(y)

2n 2n 2ny\(y2n
(fA)nx +.A ((fA)ny +.A Z) — (Z(}’))(x) — Z(y)(x“")

This leads us to add the rewrite rule (A),. For this reason, the completion procedure will
continue indefinitely. (]

There are a number of issues involved in mechanizing the completion procedure that we
will not go into. A successful example of completion, carried out by hand, is given in the
next section.

Exercise 3.7.35 Consider the infinite rewrite system consisting of rule (H) of Exam-
ple 3.7.34, along with each rule of the form (A), given in that example. Prove that this
infinite system is confluent and terminating, or give a counterexample.

Exercise 3.7.36 The rewrite system with the single rule

f@&(fx) — g(fx)

is terminating, since this rule reduces the number of function symbols in a term. Carry out
several steps of the completion procedure. For each critical pair, add the rewrite rule that
reduces the number of function symbols. What is the general form of rewrite rule that is
added?

3.7.7 Applications to Algebraic Datatypes

There are several ways that rewrite rules may be used in the design, analysis and appli-
cation of algebraic specifications. If equational axioms may be oriented (or completed)
to form a confluent rewrite system, then this gives us a useful way to determine whether
two terms are provably equal. In particular, a confluent rewrite system allows us to show
that two terms are not provably equal by showing that they have distinct normal forms. A
potential use of rewrite rules in practice is that rewriting may be used as a prototype imple-
mentation of a specified datatype. While this may be useful for simple debugging of speci-
fications, reduction is seldom efficient enough for realistic programming. Finally, since our
understanding of initial algebras is largely syntactic (based on provability), rewrite systems
are very useful in the analysis and understanding of initial algebras.

We will illustrate two uses of rewrite systems using the algebraic specifications of lists
with error elements. The first is that we may discover the inconsistency of our first specifi-
cation by testing for local confluence. The second is that we may characterize the initial al-

3.7 Rewrite Systems 231

gebra for the revised specification by completing directed equations to a confluent rewrite
system.

In Tables 3.5 and 3.6 of Section 3.6.3, we considered a naive treatment of error values
that turned out to be inconsistent. Let us consider the rewrite system obtained by reading
the equations from left to right. It is easy to see that these rules are terminating, since every
rule reduces the length of an expression. Before checking the entire system for confluence,
let us check Table 3.5 and Table 3.6 individually for critical pairs. The only pair of rules
that give us a critical pair are the rules

cons error, | = error;

CONns X error) = errory

of Table 3.6. Since the left-hand sides are unified by replacing x and / by error values,
we have the critical pair {error;, error;). However, this critical pair obviously does not
cause local confluence to fail. It follows that, taken separately, the rules determined from
Tables 3.5 or Table 3.6 are confluent and terminating. Hence by Corollary 3.7.14, the
equations in each figure are consistent.

Now let us examine rules from Table 3.6 that might overlap with a rule from Table 3.5.
The first candidate is cons error,l — error), since a rule car(cons x [) — x containing
cons appears in Table 3.5. We have a nontrivial overlap since the term car(cons error, 1)
is a substitution instance of one left-hand side and also has a subterm matching the left-
hand side of another rule. Applying one reduction, we obtain error,, while the other gives
us car error;. Thus our first non-trivial critical pair is (error,, car error;). However, this
critical pair is benign, since car error; — errorg.

The next critical pair is obtained by unifying the left-hand side of cons error, 1 — error,
with a subterm of the next rule, cdr(cons x [) — . Substituting error, for x produces a
term cdr(cons error, 1), which reduces either to the list variable [or cdr error;. Since the
latter only reduces to error;, we see that confluence fails. In addition, we have found a
single expression that reduces both to a list variable /, and a list constant error;. Therefore,
error; <> [[I: list] and so by Lemma 3.7.11 the equational specification given in Tables 3.5
and 3.6 proves the equation error; = I[I: list]. This shows that all lists must be equal in
any algebra satisfying the specification. From this point, it is not hard to see that similar
equations are provable for the other sorts. Thus we conclude that the specification is
inconsistent.

The revised specification of lists with error elements is given in Table 3.7. We obtain
a rewrite system by reading each equation from left to right. Before checking the critical
pairs, let us establish termination. This will give us a basis for orienting additional rules
that arise during the completion procedure.

We can show termination of this rewrite system using a well-founded algebra A with

232 Universal Algebra and Algebraic Data Types

each carrier the set of positive natural numbers (the numbers greater than 0). We interpret
each of the constants as 1 and the functions as follows. This interpretation was developed
by estimating the maximum number of reduction steps that could be applied to a term of
each form, as described in Example 3.7.17.

consxt =x+¢

car ¢ =2xf4+5
cdrtt =2%0+45
isempty?AE ={+8
condAuxy=u+x+y+1

OK* x =x+8

It is straightforward to check that L > R for each of the rewrite rules derived from the
specification.

There are several critical pairs, all involving the rules for consxerror and conserrort.
The first overlap we will check is

car(cons error £)
If we reduce the outer term, we get
cond (OK error) (cond(OK £)error error) error

while the inner reduction gives us carerror. This is a nontrivial critical pair. However, both
terms reduce to error, so there is no problem here.
The next overlap is

car(cons x error)
which gives us the similar-looking critical pair
(cond (OK x) (cond(OK error) x error) error, car error)

The second term clearly reduces to error, but the closest we can come with the first term
(by reducing the inner conditional) is

cond (OK x)error error.

This gives us a candidate for completion. In the well-founded algebra .4, it is easy to see
that

3.7 Rewrite Systems 233

cond (OK x)error error > error
so we will preserve termination by adding the rewrite rule
cond (OK x)error error — error.

Since the left-hand and right-hand sides of this rule are already provably equal from this
specification, adding this rule does not change the conversion relation between terms.
The critical pairs for cdr and isempty? are similar. For both functions, the first critical
pair converges easily and the second converges using the new rule added for the car case.
The final critical pairs are for OK applied to a cons. For car(cons error £), we get false
in both cases. However, for

car(cons x error)

we must add the rewrite rule
cond (OK x) false false — false.

Thus two new rules give us a confluent rewrite system.

The initial algebra for a specification consists of the equivalence classes of ground
(variable-free) terms, modulo provable equality. Since the confluent and terminating
rewrite system for the list specification allows us to test provable equality by reduction,
we may use the rewrite system to understand the initial algebra. Specifically, since every
equivalence class has exactly one normal form, the initial algebra is isomorphic to the
algebra whose carriers are the ground normal forms of each sort. Therefore, the atoms
in the initial algebra are a, b, c,d, ..., error,, the booleans in the initial algebra are
true, false, errorp, and the lists all have the form nil, error or cons A L where neither
A nor L contains error. Thus this specification correctly adds exactly one error element to
each carrier and eliminates undesirable lists that contain error elements. The reader inter-
ested in a general theorem about initial algebras with error elements may consult [GTW78,
Wir90].

Exercise 3.7.37 Exercise 3.6.7 asks you to write an algebraic specification of queues
with error elements, in the same style as the specification of lists in Table 3.7. Complete
this specification to a confluent set of rewrite rules and use these rules to characterize the
initial algebra.

Exercise 3.7.38 Exercise 3.6.8 asks you to write an algebraic specification of trees with
error elements, in the same style as the specification of lists in Table 3.7. Complete this
specification to a confluent set of rewrite rules and use these rules to characterize the initial
algebra.

4 Simply-typed Lambda Calculus

4.1 Introduction

This chapter presents the pure simply-typed lambda calculus. This system, which is ex-
tended with natural numbers, booleans and fixed-point operators to produce PCF, is the
core of all of the calculi studied in this book, except for the simpler system of universal
algebra used in Chapter 3. The main topics of this chapter are:

* Presentation of context-sensitive syntax using typing axioms and inference rules.

» The equational proof system (axiomatic semantics) and reduction system (operational
semantics), alone and in combination with additional equational axioms or rewrite rules.

* Henkin models (denotational semantics) of typed lambda calculus and discussion of
general soundness and completeness theorems.

Since Chapter 2 describes the connections between typed lambda calculus and pro-
gramming in some detail, this chapter is more concerned with mathematical properties of
the system. We discuss three examples of models, set-theoretic models, domain-theoretic
models using partial orders, and models based on traditional recursive function theory,
but leave full development of domain-theoretic and recursion-theoretic models to Chap-
ter 5. The proofs of some of the theorems stated or used in this chapter are postponed
to Chapter 8. Although versions of typed lambda calculus with product, sum, and other
types described in Section 2.6 are useful for programming, the pure typed lambda cal-
culus with only function types is often used in this chapter to illustrate the main con-
cepts.

Church developed lambda calculus in the 1930’s as part of a formal logic [Chu32] and as
a formalism for defining computable functions [Chu36, Chu41]. The original logic, which
was untyped, was intended to serve a foundational role in the formalization of mathemat-
ics. The reason that lambda calculus is relevant to logic is that logical quantifiers (such
as universal, V, and existential, 3, quantifiers) are binding operators and their usual proof
rules involve substitution. Using lambda abstraction, logical quantifiers may be treated as
constants, in much the same way that recursive function definitions may be treated using
fixed-point constants (see Example 4.4.7 and associated exercises). However, a paradox
was discovered in logic based on untyped lambda calculus [KJ35]. This led to the devel-
opment of typed lambda calculus, as part of a consistent, typed higher-order logic [Chu40,
Hen50].

In 1936, Kleene proved that the natural number functions definable in untyped lambda
calculus are exactly the recursive functions [Kle36]. Turing, in 1937, then proved that the
A-definable numeric functions are exactly as the functions computable by Turing machines

236 Simply-typed Lambda Calculus

[Tur37]. Together, these results, which are analogous to properties of PCF considered in
Sections 2.5.4 and 2.5.5, establish connections between lambda calculus and other models
of computation. After the development of electronic computers, untyped lambda calcu-
lus clearly influenced the development of Lisp in the late 1950°s [McC60]. (See [McC78,
Sto91b] for many interesting historical comments.) General connections between lambda
notation and other programming languages were elaborated throughout the 1960’s by var-
ious researchers [BG66, Lan63, Lan65, Lan66], leading to the view that the semantics
of programming languages could be given using extensions of lambda calculus [Str66,
MS76, Sto77].

Although untyped lambda calculus provides a simpler execution model, a modern view
is that typed lambda calculus leads to a more insightful analysis of programming lan-
guages. Using typed lambda calculi with type structures that correspond to types in pro-
gramming languages, we may faithfully model the power and limitations of typed pro-
gramming languages.

Like many-sorted algebra and first-order logic, typed lambda calculus may be defined
using any collection of type constants (corresponding to sorts in algebra) and term con-
stants (corresponding to function symbols). Typical type constants in programming lan-
guages are numeric types and booleans, as in PCF, as well as characters, strings, and other
sorts that appear in the algebraic datatypes of Chapter 3. In typed lambda calculus, the
term constants may have any type. Typical constants in programming languages include
3, +andif ... then ... else ...asinPCF Asinalgebra, the set of type constants
and term constants are given by a signature. The axiom system (axiomatic semantics), re-
duction rules (operational semantics) and model theory (denotational semantics) are all
formulated in a way that is applicable to any signature.

Exercise 4.1.1 In the untyped logical system Church proposed in 1932, Russell’s para-
dox (see Section 1.6) results in the untyped lambda term

(Ax.not(xx))(Ax.not(xx))

This may be explained as follows. If we identify sets with predicates, and assume that x
is a set, then the formula xx is true if x is an element of x, and not(xx) is true if x is not
an element of x. Therefore the predicate (Ax.not(xx)) defines the set of all sets that are
not members of themselves. Russell’s paradox asks whether this set is a member of itself,
resulting in the application above. Show that if this term is equal to false, then it is also
equal to true, and conversely. You may assume that not true = false and not false = true.
(Church did not overlook this problem. He attempted to avoid inconsistency by not giving
either truth value to this paradoxical term.)

4.2 Types 237

4.2 Types

4.2.1 Syntax

We will use the phrase “simply-typed lambda calculus” to refer to any version of typed
lambda calculus whose types do not contain type variables. The standard type forms that
occur in simply-typed lambda calculus are function types, cartesian products, sums (dis-
joint unions) and initial (“null” or “empty”) and terminal (“trivial” or “one-element’)
types. We do not consider recursive types, which were introduced in Section 2.6.3 and
are considered again in Section 7.4, a form of simple type. (Recursive types contain type
variables but a type variable alone is not a type, so this could be considered a borderline
case.) Since lambda calculus would not be lambda calculus without lambda, all versions
of simply-typed lambda calculus include function types.
The type expressions of full simply-typed lambda calculus are given by the grammar

o ::= b|null|unit\c +0 |0 Xo|oc—>0

where b may be any type constant, null is the initial (empty) type and, otherwise, terminal
(one-element), sum, product and function types are as in Chapter 2. (Type connectives
x and — are used throughout Chapter 2; unit and + appear in Section 2.6.) Recall that
when parentheses are omitted, we follow the convention that — associates to the right. In
addition, we give x higher precedence than —, and — higher precedence than +, so that
a+bxc—>disreadasa + ((b x ¢c) > d).

To keep all the possibilities straight, we will name versions of typed lambda calculus
by their types. The simplest language, called simply-typed lambda calculus with function
types, will be indicated by the symbol A~. With sums, products and functions, we have
At and so on. A A~ fype expression is a type expression containing only — and type
constants. A A" type expression is a type expression containing only x, — and type
constants, and similarly for other fragments of simply-typed lambda calculus.

4.2.2 Interpretation of Types

There are two general frameworks for describing the denotational semantics of typed
lambda calculus, Henkin models and cartesian closed categories. While cartesian closed
categories are more general, they are also more abstract and therefore more difficult to
understand at first. Therefore, we will concentrate on Henkin models in this chapter and
postpone category theory to Chapter 7.

In a Henkin model, each type expression is interpreted as a set, the set of values of
that type. The most important aspect of a Henkin model is the interpretation of function
types, since the interpretation of other types is generally determined by the function types.

238 Simply-typed Lambda Calculus

Intuitively, o — t is the type, or collection, of all functions from o to . However, there
are important reasons not to interpret ¢ — t as all set-theoretic functions from o to 7. The
easiest to state is that not all set-theoretic functions have fixed points. In the denotational
semantics of any typed lambda calculus with a fixed-point constant, fix,, the type 0 — o
must contain all functions definable in the language, but must not contain any functions
that do not have fixed points.

There are many reasonable interpretations of function types. A general intuitive guide is
to think of 0 — t as containing all functions from o to 7 that have some general and desir-
able property, such as computability or continuity. To emphasize from the outset that many
views are possible, we will briefly summarize three representative interpretations: classi-
cal set-theoretic functions, recursive functions coded by Godel numbers, and continuous
functions on complete partial orders (domains). Each will be explained fully later.

In the full set-theoretic interpretation,

a type constant b may denote any set A”, and

the function type o — t denotes the set A7 7 of all functions from A% to AT.

Note that A° 7 is determined by the sets A% and A°.

There are several forms of recursion-theoretic interpretation for A, each involving
sets with some kind of enumeration function or relation. We will consider a representa-
tive framework based on partial enumeration functions. A modest set (A, e4) is a set A
together with a surjective partial function e4: A/ — A from the natural numbers to A. In-
tuitively, the natural number # is the “code” for es(n) € A. Since ey is partial, e4(n) may
not be defined, in which case 7 is not a code for any element of A. The importance of hav-
ing codes for every element of A is that we use coding to define the recursive functions
on A. Specifically, f: A — B is recursive if there is a recursive map on natural numbers
taking any code for a € A to some code for f(a) € B. In the recursive interpretation,

a type constant b may denote any modest set (A”, e,), and

the function type 0 — 7 denotes the modest set (A° 7, e,_, ;) of all total recursive func-
tions from A% to AT.

Since every total recursive function from A to AT has a Godel number, we can use any
standard numbering of recursive functions to enumerate the elements of the function type
A°7T. Thus, if we begin with modest sets for each type constant, we can associate a
modest set with every functional type.

The continuous or domain-theoretic interpretation uses complete partial orders. The
primary motivations for this interpretation are to give semantics to recursively defined

4.3 Terms 239

functions and recursive type definitions. A complete partial order, or CPO, (D, <) is a set
D partially ordered by < in such a way that every directed subset E C D has a least upper
bound, or “limit,” \/ E. (A subset E of a CPO is directed if every finite subset S C E
has an upper bound in E.) A function f: A° — A" is continuous if it is monotonic and
preserves limits of directed sets. In the domain-theoretic interpretation,

a type constant b may denote any CPO (A?, <), and

the function type o — t denotes the CPO (A7, <,_,) of all continuous functions from
A% to AT

Note that in order to make sense of higher types like (b — b) — (b — b), we need to
make sure that every function type denotes a CPO. This may be accomplished by consid-
ering f <s-.; g whenever we have f(x) <; g(x) for every x € A°.

In general, the interpretation of initial and terminal types is determined by the function
spaces. Specifically, there must be exactly one function from null to o and exactly one
function from o to unit in every model. This often means that null is interpreted as the
empty set and unit as any one-element set. (It does not matter which one, since we have no
operations to distinguish one such interpretation of unit from another.) A sum type o +
is generally interpreted as the disjoint union of ¢ and t. The standard disjoint union of
two sets A and B is the union of A x {0} and B x {1}, with “tags” O and 1 serving to
distinguish elements of A from elements of B in the union. A cartesian product type o x T
is generally interpreted as the set of all ordered pairs with first component from o and
second component from .

4.3 Terms

4.3.1 Context-sensitive Syntax

Programming languages are often defined using a context-free grammar, as in the defini-
tion of type expressions above. However, a context-free description of a statically-typed
language tells only half the story, since typing constraints are context sensitive. For exam-
ple, the expression x + 3 is well-typed only if the declaration of this x specifies that x is
a numeric variable. In most languages, the declaration of x may precede the expression
x + 3 by an arbitrary number of other declarations. Using Ogden’s lemma, it is straight-
forward to prove that there is no context-free grammar generating precisely the well-typed
terms of A™ (see, e.g., [HU79]).

We will define typed languages using a formalism based on logic. Specifically, we will
define expressions and their types simultaneously using axioms and inference rules. The

240 Simply-typed Lambda Calculus

atomic expressions of a language are given by typing axioms. Informally, a typing axiom
c¢: T means that the symbol ¢ has type 7. Put another way, c: T is an axiom about the type
membership relation, which we write as “:”. The axiom says that the type membership
relation holds between ¢ and t. An example axiom for a language with natural numbers is
3:nat, which specifies that 3 is a natural number.

The compound expressions and their types are defined using inference rules. These are

rules that let us derive more complicated facts about the “:” relation. One form of inference
rule is

Mi:oy, ..., My ox

N:t
Intuitively, this rule says that if My, ..., M; are well-formed terms of types oy, ..., o,
respectively, then N is a well-formed term of type t. Typically, My, ..., My are the sub-

terms of N, since the type of a term will depend on the types of its subterms. This
rule tells us how to produce a well-formed term N of type t from well-formed terms
My, ..., My.

The inference rule above is not powerful enough to capture the context-sensitive syntax
of expressions that declare the types of variables. To take the types of variables into
account, we will work with typing assertions

s M:1,
where I is a type assignment of the form
I'={x1:01,...,xc: 01},

with no x; occurring twice. Intuitively, the assertion I' > M: 1 says that if variables
X1, ..., Xx; have types o1, ..., oy (respectively), then M is a well-formed term of type
7. A type assignment is also called a typing context so that ' > M:t may be read, “in
context I', the term M has type 7.” In some presentations of typed languages and calculi,
typing contexts are ordered sequences. In this book, type assignments will be unordered
sets, except in Section 7.2.4, where we consider the categorical interpretation of terms,
and parts of Chapter 9 on polymorphism.
The general form of a typing rule with contexts is

oMo, ...,Te> Moy,
'>N:t ’

which says that if each M; has type o; in typing context I';, then N has type T in context
I". In all the typing rules we will use, the terms M1, ..., M} will be the subterms of N.
If I' is any type assignment, we will write T, x: o for the type assignment

4.3 Terms 241

Ix:o =T U{x:0}.

In doing so, we always assume that x does not appearin I'.

Technically speaking, our proof system for typing assertions is a simple form of se-
quent calculus. Logicians may realize that we could also formalize the same basic ideas
using what is called natural deduction. In some of the literature on type systems, natural
deduction proof systems are used. In these sources, it is common to use I' - M: o to in-
dicate that the typing assertion M:o is provable from the set I' of typing assumptions.
Other references also use sequent calculus, but often use the notation I' = M: o for typing
assertions. The main reason we use > instead of I is to reserve - for provability in the
equational proof system. Typing assertions are sometimes called fyping judgements in the
literature.

4.3.2 Syntax of A~ Terms

The syntax of terms depends on the choice of type and term constants. A A~ signa-
ture ¥ = (B, C) consists of

* A set B whose elements are called base types or type constants.

* A collection C of pairs of the form (c, o), where ¢ is a A~ type expression over B and
no ¢ occurs in two distinct pairs.

A symbol ¢ occurring in some pair (¢, d) € C is called a term constant of type o. We
generally write ¢: o if (¢, o) € C. Note that the type and term constants must be consistent,
in that the type of each term constant may only contain the given type constants. For
example, it only makes sense to have a natural number constant 3: nat when we have nat
as a type constant.

If ¥ is a signature for multi-sorted algebra, there is a standard way to regard X as a
A~ signature. The A~ signature ¥_, = (B, C) corresponding to the algebraic signature
¥ = (S, F) is defined by letting B be S and, for each f:s; X ... X s = s from F, in-
cluding constant f:sy — ...— s¢ — s in C. In other words, we let the type constants
be the sorts and the term constants be curried function symbols. The reason for convert-
ing constants to curried form is just to avoid using cartesian products (see Section 2.2.3
for discussion of curried functions). If we use A>~ instead of A7, then we can give the
lambda calculus constants their algebraic types.

Example 4.3.1 The algebraic signature X for the natural number and boolean expres-
sions of PCF may be written as

242 Simply-typed Lambda Calculus

sorts: nat, bool
fetns: 0,1,2,3,4,...:nat
true, false: bool
plus: nat X nat — nat
Eq?: nat x nat — bool
cond,: bool x nat x nat — nat
condy: bool x bool x bool — bool

This may be considered a signature for A** ™, without change. We may also derive a A~
signature, X_,, from this algebraic signature by currying all of the function constants. To
obtain the full A~ signature X pcp for PCF without products, we will add a few other
constants. Since we would also like to have conditional on other types, we include cond,
for each type 0. We also include fixed-point operators at all types.

type constants: nat, bool
term constants: 0, 1,2,3,4, ...:nat
true, false: bool
plus: nat — nat — nat
Eq?: nat — nat — bool
condy:bool - o0 — 0 — o eachtype o
fixg: (0 — o) - o eachtypeo

We may write terms over this signature in the familiar form of PCF described in Chapter 2
using the syntactic sugar

M+ N & plus M N
if M then N else P & cond, M N P
where the type subscript on cond is determined by the types of N and P. L]

The A~ terms over X and their types are defined simultaneously using axioms and
inference rules. For each constant ¢ of type o, we have the axiom

Pdoc.o (cst)

4.3 Terms 243

The typing context here is empty, since the type of a constant is fixed, and therefore
independent of the context in which it occurs.

We assume some countably infinite set Var of variables {vo, vy, . ..}. Variables are given
types by the axiom

X:0>X.0 (var)

where o must be a A~ type over X. This axiom simply says that a variable x has whatever
type it is declared to have. Some authors assume each variable v € Var has a fixed type,
and therefore do not mention typing contexts explicitly. However, this seemingly simpler
presentation does not generalize to lambda calculi with polymorphic functions or abstract
data type declarations. In addition, when we wish to reason about types that may be empty,
it is essential to keep track of the free variables used in proofs. This is easily taken care of
in the formalism we use.

Compound expressions and their types are specified using inference rules. A straight-
forward one is the following “add var” rule that applies to terms of any form. The rule

NsM:o

(add var)
Cxito Mo

allows us to add an additional hypothesis to the typing context. In words, rule (add var)
says that if M has type o in context I', then M has type o in the context I', x: T which
also gives a type to x. Recall that in writing I, x: T we assume x does not appear in I,
Consequently, the type of M could not have depended on the type of x. In fact, after we
have seen all of the rules, it will be easy to prove that if I > M: o is derivable, then every
free variable of M must appear in I'. Therefore, in rule (add var), we can be sure that x
does not occur free in M.

In lambda calculus, lambda abstraction is used to identify the variable that is used as the
function argument. This is made precise by the following term-formation rule.

MxiooM:t
's(Ax:0.M):0 > 1

(— Intro)

Intuitively, the rule says that if M specifies a result of type t for every x:o, then the
expression Ax:o. M defines a function of type o — t. (Other free variables of M are
unaffected by lambda abstraction, and must be given types in I".) Note that while the type
of M may depend on the type of variable x, the type of Ax:o. M does not, since the type
of x is explicitly declared in Ax:o. This rule is called (— Intro), since it “introduces” a
term of functional type. As mentioned in Chapter 1 and discussed in detail in Chapter 2,
the variable x is bound in Ax:0. M.

244 Simply-typed Lambda Calculus

An alternative reading of the (— Intro) rule may make it seem more familiar to com-
puter scientists. Suppose we want to type-check a function expression Ax:o. M, and we
have a “symbol table” T' associating types with variables that might occur free in M.
Then reading from bottom to top, the (— Intro) rule says that in order to check that
I'>Ax:0.M:0 — t, we add the specification x: o to the symbol table I', and then check
that the function body M has type 7. This should be familiar to anyone who has considered
how to type check a function declaration

function f(x: 0);
begin
(function_body)
end;
in any Algol-like programming language. A 1™ typing algorithm that works in precisely
this way is given in Section 4.3.5.

Function applications are written according to the rule

I''sM:oco -1, T'>N:o
I'sMN:7t

(— Elim)

which says that we may apply any function with type ¢ — 7 to an argument of type o to
produce a result of type 7. Note that while — appears in the antecedent, this symbol has
been “eliminated” in the consequent, hence the name (— Elim).

We say M is a A~ term over signature ¥ with type T in context T if ' M:7 is
either a typing axiom for X, or follows from axioms by rules (add var), (— Intro) and
(— Elim). As an expository convenience, we will often write I' > M: T to mean that
“TI' > M: 7 is derivable,” in much the same way as one often writes a formula Vx.P(x),
in logic, as a way of saying “Vx.P(x) is true.” A proof of a typing assertion is called a
typing derivation.

Example 4.3.2 A term that requires all of the typing rules is y:o > (Ax:0.x)y:0. A
first step is to derive the typing assertion @ > Ax: 0. x:0 — o. If we start with the typing
axiom x:o0 > x:0, then # > Ax:0.x:0 — o follows by rule (— Intro). We would now
like to apply this term to the variable y, typed by the axiom y:o > y: o, and show that
the result is well-typed by rule (— Elim). However, we can only use rule (— Elim)
when both terms have the same typing context. Therefore, we use (add var) to derive
y:0 > Ax:0.x:0 — o from the earlier typing assertion about Ax: o. x, and then combine
this with y: o > y: o by rule (— Elim) to obtain y:0 > (Ax:0.x) y:0. .

In Exercise 4.3.9, you are asked to show that every well-formed algebraic term is a well-

4.3 Terms 245

typed A~ term over the appropriate signature. Another typing example appears in Example
4.3.7, using some of the following lemmas.

The next four lemmas are each proved by a straightforward induction on typing deriva-
tions. Since all of the arguments are similar, we give only the proof of Lemma 4.3.6.

Lemma 4.3.3 If " > M: o, then every free variable of M appears in I.
Lemma4.3.4 If'> M:o and I' NI contains all free variables of M, then "> M: 0.

If we let I'ys = I'| Fv(m) be the set of typing assumptions x: t with x € FV (M), then
Lemma 4.3.4 shows that I' = M: o is provable iff Iy > M: o is provable. In Section 4.3.5
we will use Lemma 4.3.4 to show how to determine efficiently whether a typing assertion
I'> M: o is provable.

We have two useful lemmas about typing and substitution. Since substitution [N /x]M
of N for free occurrences of x in M is discussed in detail in Chapter 2, we will not
discuss substitution and renaming of bound variables here. We write [y/x]I" for the result
of substituting y for any occurrence of x in I'. In doing so, we must assume that y does not
occur in I'. Otherwise, [y/x]I" would not be a well-formed type assignment.

Lemma 4.3.5 IfI"'> M:0 and y does not occur in T, then [y/x1I" > [y/x]M: 0.

Lemma 43.6 IfI',x:o>M:t and 'y > N:o are terms of A™, with I’y U T, a well-
formed type assignment, then the substitution instance I'y U 'y > [N/x]M: 7T is a well-
formed term.

These lemmas generalize to most type systems, including all of the systems covered in
this book.

Proof The proof of the lemma is by induction on the proof of typing assertion 'y, x: o
M: t. This is almost the same as induction on the structure of M, except that we have a
stronger induction hypothesis for lambda abstractions, as noted below.

There are two base cases, one for the typing axiom for constants and one for the typing
axiom for variables. However, the only axiom of the form I'{, x: 0 > M: 7 is the variable
axiom 'y, x: 7 > x: 7, with '] empty. (See Exercise 4.3.11 for a discussion of term con-
stants.) We assume that I'; > N: 7 is derivable. Since [N /x]x is just N, the typing assertion
' UTy > [N/x]x: 7 is just ' > N: t and therefore derivable. This proves the base case of
the induction.

There are three induction steps, corresponding to typing rules (— Intro), (— Elim)
and (add var). A proof ending with (— Intro) concludes by deriving

FLoxiosAyit . Mt > 1

246 Simply-typed Lambda Calculus

from
[, xio,y:T'>M: 1.

Since '}, x: o, y: 7’ is a well-formed type assignment, we know that y does not appear in
I'1, x: 0. In particular, y is different from x. (This would not be guaranteed if we tried to
prove the lemma by induction on the structure of terms.) By the inductive hypothesis,

MU, yit's[N/xIM: T

is provable, and the lemma follows by rule (— Intro).

The induction step for a proof of T'j,x:0 > PQ:1 from I';,x:0 > P:t' — 1t and
Iy, x:0 > Q: 7' by rule (— Elim) is similar. By the induction hypothesis, both 'y U ' &
[N/x]P:1t" — t and 1 U T, [N/x]Q: t’ are derivable and the lemma follows by rule
(— Elim).

If the derivation of 'y, x: o > M: T ends with (add var), there are two cases to consider.
The degenerate case is when (add var) is used to add the hypothesis x: . In this case, x
does not appear in M and so [N/x]M = M. It follows from Lemma 4.3.4 that T} U Ty >
M: 7 is derivable. The final case is where (add var) is used to add a hypothesis y: p, and
[y =T, y: p. By the induction hypothesis, we know that since ['{, x:0 > M: T and I'; >
N:o are derivable, so is I'j U T’y > [N/x]M: t The typing assertion [UT2 > [N/x]M: T
follows by (add var). This finishes the proof. =

Example 4.3.7 A LA™ signature X p¢ with term constants corresponding to PCF is given
in Example 4.3.1. Recall that the factorial function may be written as fix F, where

F & Af:nat — nat.Ay:nat. if Eq?y0 then | else yx* f(y—1)

We will show that the typing assertion @ & fix F: nat — nat is provable over signature
Ypcr.Recallthatif ... then ... else ...is syntactic sugar for cond.

Since y: nat > y: nat is an axiom and typing assertions y: nat > Eq?: nat — nat — bool
and y: nat > 0: nat are easily derived using (add var), we have

y:nat > Eq?y 0: bool
using (— Elim) twice. Proceeding similarly, we can prove
y:nat > cond g (Eq? y 0) 0: nat — bool

by (— Elim).

Let us assume that y — 1 is syntactic sugar for pred y, for some term pred. We assume
that the typing assertion y: nat > y — 1: nat provable, and similarly x % y % mulr x y with
u:nat, v: nat > u * v: nat provable. From this assumption about subtraction, we can derive

4.3 Terms 247

finat — nat, y:nate> f(y — 1):nat

Applying Lemma 4.3.6 twice, to substitute terms for variables « and v in u: nat, v: nat >
u * v: nat, it follows that

finat — nat, y:natey * f(y — 1):nat
is provable. Combining this with the typing assertion above, we obtain
f:nat — nat, y:nat>if Eq?y0 then 0 else yx* f(y — 1):nat

The desired typing of factorial now follows using (— Intro) twice and (— Elim) to
apply fixpar— par to F. .

Exercise 4.3.8 Draw a proof tree for the typing derivation described in Example 4.3.2.
This tree should have a leaf for each axiom used, and an internal node for each inference
rule (— Intro), (— Elim) or (add var). You may draw the tree with the leaves at the
bottom if you like, but it is traditional to draw proof trees with the leaves at the top. Now
draw the proof tree for another derivation of the same typing. The second tree will have
the same rules, but they will be used in a different order.

Exercise 4.3.9 As described at the beginning of this section, there is a straightforward
way of forming a A~ signature ¥_, from an algebraic signature X.

(a) Show that for any X, if M € Terms*(Z, ') is a well-formed algebraic term of sort
s, then the typing assertion I > M: s is provable over X_,. This is straightforward since
algebraic terms are formed by application and A~ application has precisely the same type
restrictions as the sort restrictions on algebraic terms.

(b) Find an algebraic signature ¥ with function symbols f, a and b such that fab is
a well-formed algebraic term and f a is a well-formed lambda term over Z_, but not a
well-formed algebraic term over Z.

Exercise 4.3.10 Prove the following typing assertions using the typing axioms and infer-
ence rules.

(a) x:0,y:0 > T YXIT

(b) x:0,y:opAyi0 > 1. yx:(0 > 1) > T

() > (Ax:0 > 0. Ay: 1. x)(AXx:0. X):T >0 —> 0O

Exercise 4.3.11 In the proof of Lemma 4.3.6, the base case for term constants is trivial
because no typing assertion of the form 'y, x: o > ¢: T is an instance of the typing axiom

248 Simply-typed Lambda Calculus

for term constants. Explain how the proof shows that if I'j, x:o >c¢: 7 and I'y > N:o are
derivable then I'y U I'; > ¢: T is also derivable.

Exercise 4.3.12 Prove the following lemmas by induction on typing derivations or in-
duction on the structure of terms.

(a) Lemma 4.3.3
(b) Lemma 4.3.4
(c) Lemma 4.3.5

4.3.3 Terms with Product, Sum and Related Types

The typing rules for the standard simply-typed extensions of A~ are listed below. For each
version of simply-typed lambda calculus, the definition of signature and well-formed terms
with respect to a given signature are analogous to the definitions for A~ . The definition of
well-formed terms of A7 is stated below, to give an example, but the straightforward
definitions for other variants are omitted.

Cartesian Products

Intuitively, as explained in Chapter 2, a pair belongs to o x 7 iff the first component
belongs to o, and the second component to 7. One part of this “iff” is that if M:o and
N: 7, then the pair (M, N) has type o x t. This is written symbolically in the rule

I''sM:o0, '>N:1
I's(M,N).o0 xt

(x Intro)

which is called an introduction rule since it lets us “introduce” an element of product
type. This rule implies that if 1: nat and 2: nat, for example, then the pair (1, 2) has type
nat X nat.

If M is an element of type ¢ x T, then M consists of an element of o and an element of
7. The rules

I'sM:o0 xt

I'>Proj]"M:o (> Elim),

I''sM:oxt

I'>Proj;"M:t (> Elim),

describe the syntactic forms Proj]* M and Proj5'* M which we use to obtain the first and
second components of a pair M:o x 7. These are called elimination rules since the x
in the type of M is “eliminated.” We often omit the type superscripts from Proj‘l’” and
ProjS".

2

4.3 Terms 249

Wesay ' M:o isatermof A7 if I' > M:o is a typing axiom, or follows by rules
(add var), (x Intro), (x Elim), (— Intro) and (— Elim). All of the syntactic properties
of A~ terms mentioned in the last section extend easily to A% .

An alternate presentation of products is that for all types o and 7, there are term con-
stants

Pair®™:0c - 1 — (0 x 1)
Proji":(c xt) >0
Projg’r: oxt)>T1

with (M, N)>T treated as syntactic sugar for Pair®* M N and type superscripts omit-
ted when clear from context. The main difference between the two presentations is
that Pair, Proj; and Proj, are terms themselves in the second presentation, while only
Ax:o.Ay:t.Pairx y, Ax:o x 1. Proj;x and Ax:o x t.Proj,x are well-formed terms in
the first. This does not effect the set of expressible functions or any other pragmatic use of
the language. However, it has some significance in proofs by induction. In the first presen-
tation, we have an induction step for (x Intro) and an induction step for (x Elim). With
term constants, we must consider the constants Pair, Proj, and Proj, in the base case
of the induction. Generally speaking, the formulation with inference rules (x Intro) and
(x Elim) is more useful.

Sums
Sum types are discussed in Section 2.6.2. The term forms associated with sums are in-
jection and case expressions. Terms of sum type are formed according to the following
rules:

'sM:.o (+ Intro)
s Inleft®*M:0 + 1 !
'sM:
>t (+ Intro),

I' > Inright”*M:.o + 1

These are called introduction rules since they introduce terms of sum type into the lan-
guage. Intuitively, the injection functions map o or 7 to o + 7 by “tagging” elements with
Inleft or Inright.

The elimination rule characterizes the type-correct use of case expressions.

I''sM:o+1t, ’'oNio—>p, T'>PT—p

Elim
I'>Case®™"M N P:p (+ Elim)

250 Simply-typed Lambda Calculus

Intuitively, Case”™” M N P inspects the tag on M and applies N if M is from o and P if
M is from 7.

As with products, sums may be defined using term constants instead of formation rules.
The constants, for any types p, o and 7, are:

Inleft®’ 0 >0 +71
Inright®*:t > o + 1
Case”"” :(c+1)>(c > p)>(t—=>p)—=>p

Initial and Terminal Types
It is sometimes useful to have an initial (“empty”) type, null, or a terminal (“one-element”)
type, unit. The only term form associated with unit is the term constant

*: Unit (unit Intro)
The term form associated with null is that for each type o, there is a term constant
Zero® :null — o (null Elim)

Intuitively, Zero? is the empty function, “the function mapping nothing nowhere.” In the
set-theoretic representation of functions as ordered pairs, Zero? is the empty set. The
constant * is called an “Intro” form since it gives us a way of naming an element of type
unit. The constant Zero’ is called an “Elim” form since it gives us a way of using an
element of type null if we had one (which we generally do not).

4.3.4 Formulas-as-types Correspondence

There is a correspondence between between formulas of constructive logic and types
in typed lambda calculus that is useful in proof theory [CF58, DB80, GLT89, How80,
Lam80, Lau65, Lau70, Mar82, Sta79, Ste72]. The programming significance of the corre-
spondence has been stressed by Martin-L6f [Mar82, Mar84] and used as the basis for the
Nuprl proof development system [C86]. The main idea may be illustrated using implica-
tional logic.

Implicational propositional logic uses formulas that contain only propositional variables
and implication, which we will write as —. The formulas of implicational propositional
logic are defined by the grammar

o .:=blo—o

where b may be any propositional variable. We will be concerned with an intuitionistic
interpretation of formulas, so it is best not to think of formulas as simply being true or false

43 Terms 251

whenever we assign truth values to each variable. While various forms of intuitionistic
semantics have been developed [Kri65, Kle71, Fit69, Tro73], we will not go into this topic.
Instead, we will concentrate on a proof system for intuitionistic implicational logic.

Natural deduction is a style of proof system that is intended to mimic the common
blackboard-style argument

Assume o.
By ... we conclude 7.

From this argument, we can see that 0 — 1.

This argument begins by assuming some proposition o, which is used to derive 7. At this
point, we have proved t but the proof depends on the assumption of o. In the third step of
the argument, we observe that since o leads to a proof of t, the implication 0 — 1 follows.
Since the proof of o — t is sound without proviso, we have “discharged” the assumption
of o in proceeding from t to 0 — 1. In a natural deduction proof, each proposition may
depend on one or more assumptions and a proposition is considered proved only when all
assumptions have been discharged.

The natural deduction proof system for implicational propositional logic may be char-
acterized using an axiom and three inference rules, given below. For technical reasons, we
use labeled assumptions. This is useful from a proof-theoretic point of view, as a means
of distinguishing between different assumptions of the same formula. Let V be a set, in-
tended to be the set of labels, and let I" be a finite set of labeled assumptions. If x is a label
and o a formula, then we write x: o for the assumption of ¢ with label x. We will use the
notation I" -y o to mean that M is a proof with consequence o, relying on the set I' of
labeled assumptions. For example, we may write x: 0, y: o -, o to indicate that if x and
y are assumptions of the formula o, then x is a proof of o that relies on assumptions x
and y.

The natural deduction proofs and their consequences are defined as follows:

x.obyo

'Fyo
—i—x notin I
NxtkEyo

Fr-yo—-rt, 'nyo

Myt

Mxiobpyt
MFaxvoMo—>T

252 Simply-typed Lambda Calculus

A formula o is provable if there is a proof M with @ - o . In English, we may summarize
the proof forms as follows.

If x is an assumption of o, then x is a proof of o.

If M is a proof of o with assumptions I', then we may also consider M a proof of o with
assumptions [", x: 7.

If M is a proof of 0 — 7 and N is a proof of o, both with assumptions I', then M N is a
proof of T with assumptions TI'.

If M is a proof of t with assumption x of o, possibly among others, then Ax:0. M is a
proof of 0 — 7 with the assumption x discharged.

Even when — is the only propositional connective, there are classical tautologies that are
not intuitionistically provable. For example, it is easy to check that the formula ((a —
b) > a) — a is a classical tautology just by trying all possible assignments of true and
false to a and b. However, this formula is not intuitionistically provable (see Exercise
4.3.16).

It is easy to see that we have just defined the typed lambda calculus: the terms of typed
lambda calculus are precisely the proofs defined above and their types are exactly the for-
mulas proved. Symbolically, I" s o iff ' > M: 0. The correspondence is more than just a
connection between terms and proofs. There are standard methods for simplifying proofs
to normal form that may be used to prove the consistency of various logics. This is one
of the basic techniques of proof theory, discussed in [GLT89], for example. For impli-
cational logic, the proof simplifications are exactly the reduction rules on typed lambda
terms. Thus, the formulas-as-types correspondence has three parts:

formula ~ type
proof & lambda term
proof normalization & reduction

This correspondence is also called the Curry-Howard isomorphism after [CF58, How80).
The correspondence extends to the other propositional connectives and quantifiers. The
standard natural deduction proof rules for A and V are precisely the formation rules given
for product and sum types, respectively [Pra65]. The type constants null and unit cor-
respond exactly to logical constants for false and true. The quantifiers, which give us
polymorphism and data abstraction, are discussed in Section 9.1.4.

Since our only presentation of intuitionistic logic is via typed lambda calculus, we state
the following proposition without proof.

4.3 Terms 253

Proposition 4.3.13 [CF58, How80] There is a closed A~ term of type 7 iff 7 is a valid
formula of intuitionistic propositional logic, with — read as implication.

This is a well-known fact about typed lambda calculus that was probably first observed
by Curry. We give some intuition for the connection between a formula and its proof in the
proof of Lemma 4.3.14 below.

An interesting feature of the proof rule for v, given in [Pra65], for example, is that
it took some time for computer scientists to arrive at the proper formulation of sums.
For example, the variant record types of Pascal are a form of sum type, but have a type
insecurity discussed in [WSH77]. A related issue arises in “Classic” ML [GMW79]. Al-
though the original formulation of sums in Classic ML was not incorrect, it did rely on
exceptions to prevent type insecurity. Specifically, ML had functions outleft:c + v — o
and outright: o + t — t. If x: 7 in ML, then (inrightx): o + 7 and outleft(inrightx): o.
However, since we cannot actually compute a value of type o from x: 7, this is not se-
mantically sensible. The ML solution to this problem is to raise a run-time exception when
outleft(inright.x) is evaluated, which introduces a form of run-time type checking. In con-
trast, the discriminating case statement of CLU [L"81] is a correct form of sum (or disjoint
union) type without the insecurities of Pascal variant records (see [LSAS77, page 569]) or
reliance on exceptions. It is exactly the same as the V rule from intuitionistic logic, known
to proof theorists for many years. Since the V rule leads us directly to a case statement that
requires no run-time type checking, it seems that the formulas-as-types correspondence
can be a useful source of inspiration in programming language design.

An interesting fact about intuitionistic implicational logic, easily proved using lambda
calculus, is that when only one propositional symbol is used, the logic becomes classical.
A consequence for lambda calculus is that, in general, the special case with only one type
constant may differ from lambda calculus with two or more type constants.

Lemma 4.3.14 Let ¥ be a A~ signature with one type constant, b, and no term con-
stants. Then for every type o over this signature, there is a closed term M: o iff o is a true
formula of classical propositional logic, reading — as implication and b as false.

Note that every type o over the kind of signature described in the lemma may be written
in the form 0 = o] — ... — oy — b, for some sequence of types o1, ..., ox. We will use
this in the proof of the lemma below. It is useful to observe that a propositional implication
0 =01 —> ... —> oy — bis classically valid iff it is true when b is interpreted as false. The
reason is that the implication is clearly true with b is interpreted as true.

Proof We use induction on types to show that there exists a closed term M:o iff o is
true, reading — as implication and b as false. (As noted above, this is equivalent to o

254 Simply-typed Lambda Calculus

being a classical tautology.) The base case is ¢ = b. Since we consider b false, and there
is no closed term M : b, the claim holds.

For the inductive step, we show that there is a closed term M:o — t iff either o is
false or t is true. If there is a closed term M:o — 1 and o is true, then by the inductive
hypothesis there is a closed term N: o and therefore a closed term M N: t. This shows that
if there is a closed term M: o — T then either o is false or 7 is true. It remains to establish
the reverse implication.

There are two cases to consider. If t is true, then by the inductive hypothesis there is
some closed P: t and therefore we may write a closed term Ax:o. P of type o — 7.

The remaining case is when o is false. We write ¢ in the formo =0y > ... - oy —
b and observe that since the implication o is false, all of the propositional formulas
o1, ..., 0, must be true. Therefore, by the inductive hypothesis, there exist closed terms
Mi:oq, ..., My: or. If we write T in the form T =1 — ... — 17, — b, then we may write
the closed term

AX1O.AYIT). . AV Te. x My ... Mg

with type
o—>T1=(001—>...>0r—>b)>T1—>...> 17— b
This completes the proof.

Exercise 4.3.15 Prove the following implicational formulas by finding closed A~ terms
(with type constants but without term constants) of each type.

(a) a > a.

(b) (@a—>b) >c—>a—b.

() a—>b)—> (b—c)— (a—c).

Exercise 4.3.16 This exercise assumes familiarity with normal form lambda terms, dis-
cussed in Chapter 2 and Section 4.4.2. In the discussion above, the implicational formula
((@ = b) — a) — a is given as an example of a formula that is valid classically but not
intuitionistically.

(a) Explain why the formula is classically valid.

(b) It is difficult to show directly that this formula is not intuitionistically provable. How-
ever, it is not very hard if we use the fact that each proof may be written out as a closed
A™ term with type constants a and b and no term constants. The reason why lambda terms
are helpful is that if there is a closed lambda term M: ((a — b) — a) — a then there is

4.3 Terms 255

a closed normal form (the normal form of M) of this type. Show that this implicational
formula is not provable by showing that there is no closed normal form term of this type.

43.5 Typing Algorithm

There are several algorithmic problems associated with the syntax of simply-typed lambda
calculus. For example, given I', M and o, we would like to determine efficiently whether
I'> M: o is a provable typing assertion. A variant that does not appear to be any harder
is to determine, given only M and [, whether there is some o with ' > M: o provable.
If so, we would like to determine o. We will see that this problem is solvable by a
straightforward algorithm. A completely different problem is to determine, given I' and
o, whether there is some M with [> M: o provable. We will see that this is significantly
more difficult. Some related problems are considered in Chapter 11.

Before discussing the type-checking algorithm, it is useful to identify the context-free
syntax of the underlying expressions of A™. We shall call these pre-terms. The A~ pre-
terms over signature X are given by the grammar

M ::=c|x|MM| ix:o. M

where ¢ may be any constant from ¥ and ¢ may be any A™ type over X. This grammar
may be derived from the typing axioms and inference rules in an obvious and routine
way. In particular, there is one clause on the right of the ::= for each typing axiom or
inference rule. The input to the type-checking algorithm will be a pre-term, since there
are standard algorithms for determining whether a string is generated by a context-free
grammar. This is consistent with standard compiler design, where context-free parsing
precedes type analysis [ASU86].

A type-checking algorithm is given in Table 4.1. Given a type assignment I" and pre-
term M as input, the algorithm either returns a type o with I' > M: o derivable or halts
with failure. The correctness of the algorithm is stated in the following proposition.

Proposition 4.3.17 Let X be a A~ signature, I" a type assignment using types over X,
and M a A~ pre-term over X. Then algorithm 7C(I", M) terminates with type o iff the
typing assertion I' > M: ¢ is derivable. If there is no derivable typing assertion for I' and
M, then the algorithm halts with failure.

In practice, a type checker is usually designed to check complete programs, which are
closed terms. However, if we call TC (8, M) for closed M, then recursive calls for subterms
of M will involve open terms and nonempty type assignments. Some examples are given
in Exercise 4.3.18.

256 Simply-typed Lambda Calculus

Table 4.1
Type-checking algorithm.
TC(T, ¢) = o
if ¢: o is a constant of the signature
else fail
TC(T, x) = o
ifx:oel
else fail
TC(',MN) = 7
if TC(T,M)=0 — 1 and TC(T", N) = o
else fail
TC(T, Ax:0. M) = o—>T
if TC((T)y y-g. p> ¥:0), M) =1
else fail

Proof The proof proceeds by induction on the structure of pre-terms. For a constant, we
know by Lemma 4.3.4 that I" > ¢: o is derivable iff ¢ is given type o by the signature. The
variable case is similar.

For the application case, we know by Lemma 4.3.4 that for each o, the assertion I' >
MN: o is derivable iff 'y y > MN:o is derivable. By Lemma 4.3.3 and inspection of
the typing rules, we can see that if 'yyy > M N: o is derivable, there must be a derivation
ending with rule (— Elim). Using Lemma 4.3.4 again, we can see that

I' > MN: o is derivable iff
I'yy > MN: o is derivable iff
I'mynye> M: 71— o and I'yyy > N: T are derivable for some 1 iff

I'sM:7—> o and I'" > N: 1 are derivable for some 7.

Using the inductive hypothesis for TC(I", M) and TC(T", N), this proves the lemma in the
application case.

For the lambda abstraction case, we again use Lemma 4.3.4 to see that I’ > Ax:0. M: p
is derivable iff I"yy.s. g > Ax: 0. M: p is derivable and note that the latter typing assertion
must be proved using rule (— Intro). It follows that p must have the form p = 0 — 1 and
Cax:o. M> x: 0 > M: T must be derivable. The lemma follows by the inductive hypothesis. m

The other algorithmic problem mentioned at the beginning of this section is, given I'
and o, to find M such that I > M: o is derivable. This may seem like an artificial problem,
from a programming point of view, unless you think of I" and & as a simple specification
and an algorithm for this problem as an algorithm for “program derivation.” For A~ such

4.4 Proof Systems 257

specifications are sufficiently vague that this form of program derivation does not seem
likely to be useful in practice. Using the formulas-as-types correspondence described in
the last section, we can see that this problem is quite difficult.

From the formulas-as-types correspondence, we can see that there is a term M with

X1:01,...,Xp.ox>M: 0o
derivable iff the implicational formula
o —> ...—~> 0y —>0

is intuitionistically provable. In other words, the problem of constructing a term with a
given typing is the problem of constructing a proof of a given formula. The problem of
determining whether an intuitionistic implicational formula is provable is PSPACE-complete
[Sta79]. Therefore, given I' and o, it is PSPACE-complete to determine whether there
exists an M with [' > M: o derivable. Since there is no chance of finding a more efficient
algorithm, we will not consider the problem of constructing the actual proof/term.

Exercise 4.3.18 Use algorithm TC to compute types for the following closed lambda
terms. Assume numerals 0, 1, 2, ... of type nat are given by the signature and use the
empty type assignment.

(a) Ax:nat — nat.\y:.nat.xy
(b) Ax:nat — nat.Ay:nat.((Ax:nat.3)(xy))
(c) Ax:nat — nat.\y:nat.((Ax:nat.3)(xz))

4.4 Proof Systems

4.4.1 Equations and Theories

The equational proof system of typed lambda calculus may be used to derive equations
that hold in all models, and to derive equations that follow from equational hypotheses.
Unlike algebra, the valid equations between typed lambda terms are nontrivial. However,
in the absence of recursive types, which allow us to express recursion and many interesting
datatypes (as shown in Section 2.6.3), we must generally add type and term constants to
simply typed lambda calculus and adopt appropriate axioms in order to obtain a language
with interesting computational properties. As illustrated by the programming capabilities
of PCF, typed lambda theories for many interesting computational systems consist of alge-
braic axioms for datatypes, together with non-algebraic axioms for fixed-point operators
or other forms of recursion. For this reason, we devote some attention to the relationship
between typed lambda calculus and algebra. In addition, to illustrate the expressiveness of

258 Simply-typed Lambda Calculus

typed lambda calculus, we also describe the lambda theory corresponding to a fixed set of
recursive types and a theory for higher-order logic.

As in algebra, we write equations between typed lambda terms in a form that includes
the assignment of types to variables. Since the types of terms will be used in the equational
proof system, we also include the types of terms. Specifically, a typed equation has the
form

'sM=N:1

where we assume that M and N have type t in context I'. Intuitively, the equation
{x1:01,...,xk:0k} > M = N:t means that for all type-correct values of the variables
X1:01, ..., Xk Ok, expressions M and N denote the same element of type t. Another way

of writing this equation might be
Vx1:0y...Vxpop. M=N: 7.

Because the variables listed in the type assignment are universally quantified, an equation
may hold vacuously if some type is empty. Specifically, if o is empty, then the equation
Vx:o0. M = N:t is true simply because there is no possible value for x.

Since we include type assignments in equations, we have an equational version of the
typing rule that adds variables to type assignments,

''sM=N:o
INx:toM=N:o

(add var)

The next group of axioms and inference rules make provable equality an equivalence
relation, and a congruence with respect to the term-formation operations (see Section
2.3.2). To make equality an equivalence relation, we have the axiom and rules

'sM=M:o (ref)
'sM=N:o
FoN=Mo (sym)
'sM=N:o, [b N=P:o

FoM=Po (erans)

The two term-formation operations of A~ are abstraction and application, both of which
preserve equality. The rule

INx:ooM=N:1
I'sAx:o.M =Ax:0.N:od > 1

&)

says that if M and N are equal for all values of x, then the two functions Ax:c. M and

4.4 Proof Systems 259

Ax:o. N are equal. For application, we have the rule

F'eMi=My:0 -1, ' N =No
s M{N;=M;Nz: T

(v)

saying that equals applied to equals yield equals. Rules (§) and (v) may be explained
using the equality principle associated with function types: two functions are equal iff they
map equal arguments to equal results. One direction of this “iff” gives rule (v), and the
other (§). It is interesting to note that the two congruence rules have the same form as the
introduction and elimination rules for —.

For A7, three axioms remain. The first describes renaming of bound variables, while
the other two specify that the introduction and elimination rules are “inverses” of each
other. Since these axioms are described and illustrated by example in Chapter 2, we will
not discuss them in detail here. The first, (), allows us to rename bound variables.

C>Ax:o0.M =Ay:o.ly/xIM:0 — 1, provided y & FV (M) (o)
The second, (8) shows how to evaluate a function application using substitution.
e (Ax:o. M)N =[N/xIM:t (B)

In the special case that the argument N is a variable, this axiom says that introduction
(lambda abstraction) composed with elimination (application) is the identity operation.
The other composition of elimination and introduction is also the identity.

> Ax:0.(Mx)=M:0 — 1, provided x ¢ FV(M) n)

Recall from Chapter 2 that if x ¢ F'V (M), then by (B) we have (Ax:0. Mx)y = My for
any argument y: o. Therefore M and Ax: 0. Mx define the same function.
The following lemma is easily proved by induction on equational proofs.

Lemmad4.4.1 If+Tw>M = N:o and I' NI contains all free variables of M and N, then
FI'oM=N:o

This shows that if we only consider proofs from the axioms, it is not necessary to in-
cluding type assignments in equations. However, it follows from Proposition 4.4.5, below,
that type assignments are needed for deductions from equational hypotheses.

A typed lambda theory (or L~ theory) over signature X is a set of well-typed equations
between T-terms that includes all instances of the axioms and is closed under the inference
rules. If £ is any set of well-typed equations, we write £ - I' > M = N:o to mean that the
equation ' > M = N: o is provable from the axioms and equations of £. The theory of £,
written Th(E), is the set of equations provable from the axioms and equations of £.

260 Simply-typed Lambda Calculus

Given any algebraic signature X, there is a corresponding A~ signature X_, (defined
in Section 4.3.2; see Exercise 4.3.9) such that every algebraic term over X is a A~ term
over ¥ _,. This allows us to regard any algebraic equations as A~ equations. An example
involving the algebraic specification of trees is given in Exercise 4.4.8.

An important relationship between algebra and simply-typed lambda calculus is that
every algebraic proof can be carried out in A7 . Since the only algebraic proof rule that
is not a A rule is (subst), we show that this is a derived rule of A ™.

Lemma 4.4.2 The algebraic rule

INx:ocoM=N:t, T P=Q:0

e [P/xIM=[Q/xIN:T (subst)

is a derivable proof rule of A™.

Proof FromT,x.0>M = N:t, we can prove

NsAx:o.M =ix:0.N:og =1

by rule (§). Then by rule (v), we have

's(Ax:0. M)P=(x:0.N)QO:t

The lemma follows by (8) and transitivity.]

Using this lemma, it is easy to prove the following proposition by induction on proofs
in the algebraic proof system.

Proposition 4.4.3 Let £ be a set of equations between algebraic terms over algebraic
signature X, and let E be a single such equation. If £ - E in the algebraic proof system,
then £ - E in the A~ proof system, regarding E and the elements of £ as equations
between A~ terms over signature X_, .

The converse of this proposition is that simply-typed lambda calculus is conservative
over algebra. (The general notion of conservativity is discussed at the end of this section.)

Proposition 4.4.4 (Conservativity) Let £ be as set of equations between algebraic terms
over algebraic signature X, and let E be a single such equations. If £ - E, when we regard
E and the equations in £ as equations between A~ terms over signature X, then €+ E
using the algebraic proof system.

This is proved in Exercise 4.5.19 using a semantic construction. The main idea is that
if £+ E in A7 then by soundness, £ must hold in every Henkin model satisfying &.

4.4 Proof Systems 261

By showing that every algebra can be extended to a Henkin model, the result follows by
completeness of the algebraic proof system.

Using conservativity, we can show that keeping track of variables in equations affects
provability.

Proposition 4.4.5 There is a typed lambda theory £ and terms M and N without x free
suchthat EF T xiooM=N:tbutEFT'>-M=N:1

This follows from the corresponding fact for algebra, Proposition 3.4.14, by conserva-
tivity and Proposition 4.4.3. While it is not conservative to add fixed-point operators at all
types, fixed-point operators may be added conservatively using lifted types, as discussed
in Section 2.6.4. We consider some important non-algebraic theories in the next two ex-
amples.

Example 4.4.6 Although we do not consider lambda calculus with recursive types a form
of “simply-typed lambda calculus,” there is a sense in which any particular use of recursive
types can be expressed as a simply-typed lambda theory. For example, suppose we are only
interested in the type nat, which may be defined recursively as

nat = unit + nat,

as shown in Section 2.6.3. Instead of adding constants for the numerals and basic functions
such as successor, addition, and so on, we can add nat to simply-typed lambda calculus
using a general method that applies to any recursive type.

Recall from Section 2.6.3 that the basic operations associated with a recursive type are
functions up and dn. If we want to add nat to A****~ we can do so by adding a type
constant nat and term constants for the particular up and dn functions associated with the
recursive definition above. Specifically, we define the single recursive type nat using term
constants with the following types and equational axioms:

up,,,,: (unit + nat) — nat
dn,g: nat — (unit + nat)
Ax: (unit 4 nat). dnpg (up,,,, x) = Ax: (unit + nat). x
Ax:nat.up,,(dngg x) = Ax:nat. x.

Note that these two equations yield dn(up M) = M and up(dn M) = M, for any term M
of the appropriate type, by application. Without adding any other constants or equational
axioms, we may write terms that define the numerals and basic functions as illustrated in
Section 2.6.3. A related treatment of untyped lambda calculus, as a A~ theory, is given in
Exercise 4.4.12. L]

262 Simply-typed Lambda Calculus

Example 4.4.7 As mentioned in the introductory remarks of Section 4.1, lambda cal-
culus was originally developed with logic in mind. One way to obtain logic from typed
lambda calculus is to add a type for “truth values”, which we write tv instead of bool to
avoid confusion, together with constants

or:tv — tv— tv
not:tv — tv
Voi(o > tv) > tv

for each type o. These constants should be familiar, except possibly for the constant V.
The intended use of V,, is that instead of writing a universally quantified formula in the
form Vx:o.¢, using V as a binding operator, we will write ¥V, (Ax:0.¢). In the logic
obtained from typed lambda calculus, a logical formula is a term of type tv, and a predicate
variable (for example) is a variable of type o — tv.

To simplify the axioms of higher-order logic, we adopt the following abbreviations.

-M ' not M

MVvN € orMN

MAN & —((=M)V (~N))

MSN & (=M)VN

Vxio.M & VY, (Ax:0. M)

Ax:ooM & =(Vx:0.-M)

eq, & Ax:0.Ay:0.Vf:0 > tv.(fM D fN)
M~N & eq MN

This allows us to write any of the standard formulas of higher-order logic as a lambda term
of type #v. This definition of equality, written here as = to avoid confusion with =, is often
called Leibniz equality, after the philosopher and mathematician. Intuitively, we may read
Vf:o — tv.(fM D fN) as saying that any property of M is also a property of N. Some
properties of = are given in Exercise 4.4.14.

Classical higher-order logic, sometimes called type theory or Church’s theory of simple
types, may be axiomatized using the following formulas, taken from [Hen50].

xvx)Dx

XD (xVy)

4.4 Proof Systems 263

(xVvy)D(yVvx)

xDyY)DWzvx)D(zVy)

Vof D fx

Vx:o.(yV fx)D(xVvVsf)

(xDyA(Dx)Dx=y

Vx:o.(fxx~gx)D frg

If we read each axiom M as an abbreviation for the equation M = true, where true &
Vx:tv. (x D x), then we may read each of the standard axioms as a A~ equation. To show
that we can present higher-order logic as a A~ theory, we show that for each inference

rule of higher-order logic, we may carry out the required deduction in lambda calculus.
For this, we will need one additional equational axiom,

x = (true D x).
There are six inference rules of higher-order logic, as presented in [Hen50].

(I) Rename bound variables in any formula.

(II) Replace (Ax:0. M)N by [N/x]M in any formula.

(II1) Replace [N/x]M by (Ax:o. M)N in any formula (the converse of 1I).
(IV) From Mx infer M N, provided x € FV(M).

(V) From M D N and M infer N.

(VI) From Mx infer Vo M, provided x ¢ FV(M).

It is easy to see that inference rules I-III are derivable in A, as direct consequences
of (@) and (B) and the congruence rules. Derivations of rules IV-VI are left as Exercise
4.4.13, which completes the proof that if M is a provable formula of classical higher-order
logic, then the equation M = true is provable from the equational axioms given above.
The converse is given as Exercise 4.4.15. Since the models and interpretations of formulas
are virtually identical for higher-order logic and typed lambda calculus, it is also easy to
see directly that the axioms and proof rules here are sound for general models of higher-
order logic. Semantic connections between higher-order logic and typed lambda calculus
are given in Exercises 4.5.20 and 4.5.27. For more information on classical higher-order
logic, the reader may consult [And86, Gor93, Hen50, Hen63, Mon76]. For information on
intuitionistic higher-order logic and its relationship to typed lambda calculus with a type
of truth values, see [LS86]. -

It is tempting to combine theories of the form described in Example 4.4.6, providing

264 Simply-typed Lambda Calculus

instances of recursive types, with the theory in Example 4.4.7 giving us higher-order logic.
The reason is that with enough recursive types, or, alternatively, with fixed-point operators,
we would obtain a higher-order logic for reasoning about programs. However, this must be
done with great care. For example, it is possible to prove in classical higher-order logic, for
each type o, that ¢ — o is not isomorphic to o. Therefore, if we add axioms solving the
recursive type equation ¢ = ¢t — ¢ to the equational theory giving us higher order logic, we
obtain an inconsistent theory. Similar problems arise with fixed points, since, for example,
it is inconsistent to have a fixed-point of negation. While there appear to be solutions
to these problems using intuitionistic logic and explicit lifting (Section 2.6.4), this issue
remains a research topic.

Product Types

The equational axioms for product types are explained in Chapter 2.

I > Proj,(M,N)=M:o (proj})
I'>Proj,(M,N)=N:o (proj,)
' > (Proj, M, Proj, M) = M: o (sp)
Sum Types

The equational axioms for sums are presented in Section 2.6.2, where several examples
and exercises are also given.

I'> Case”"” (Inleft”>* MYN P=NM:p (case)
[> Case”™” (Inright®* M)N P = PM: p (case),
"> Case”™” M (N o Inleft”") (N o Inright”") = NM:o + 1 (case)s

It is easy to check that axiom (Case)3 is well-formed only if ' > N: (o + 1) = (0 + 7).

Terminal Type
The axiom for the terminal type, unit, is explained in Section 2.6.2.

' > M = x: unit (unit)

The category-theoretic characterization of unit is as a terminal object. The definition
of terminal object is that for every type o, there is a unique function One®: o — unit. In
any lambda calculus with unit, we can write One® as Ax:o. *. This gives us one function
from o to unit. The equational axiom above lets us show that any other function from o
to unit is equal to One’. Specifically, if ' > M: o — unit, then for some fresh x we have
I', x: 0 > Mx: unit and therefore

4.4 Proof Systems 265

I', x:0 > Mx = *: unit

by the axiom above. Using rule (§) and (1), we may conclude I' > M = Ax: 0. x:0 — unit.

Another description of unit is as the “zero-ary product,” or cartesian product of zero
types. This sounds a little cryptic, but may be made precise in a meaningful way using
category theory. A simple consequence is that for any type o, there is an isomorphism
0 = o x unit. This is shown in Exercise 4.4.9.

Initial Type

The category-theoretic characterization of null is as an initial object. The definition of
initial object is that for every type o, there is a unique function Zero?:null - o. In
any lambda calculus with null, we assume we have the term form Zero®. The following
equational axiom lets us show immediately that any other function from null to o is equal
to Zero®.

I's M =Zero’:null - o (null)

Another description of null is as the “zero-ary sum,” or sum of zero types. A conse-
quence is that for any type o, there is an isomorphism o = o + null. This is shown in
Exercise 4.4.10.

Relationship Between Versions of Simply-typed Lambda Calculus

In general, if one logical system or language, £, contains another, L1, it is useful to
compare the two using the formulas of the smaller language. The main technical definition
is that if £; contains £, then we say L is conservative over L if, whenever F is a set
of formulas in the language of £; and F is a single such formula, we have F - F in the
proof system of £; whenever F - F in the proof system of £;. A common situation is that
the proof rules of £, include those of L£;. In this case, conservativity implies that 7 - F
in £y iff F F F in £2. An example is that the proof system and language of A~ contain
the proof system and language of A~ . Therefore, if £ is a set of A~ equations and E is
a single A~ equation, it is natural to ask whether we can prove E from £ in one proof
system but not the other. As shown in Section 4.4.4, .- is conservative over A, which
means that the two proof systems are equivalent for reasoning about A~ equations.

There are two methods for proving conservativity, one by analyzing proof systems and
the other by semantic construction. For versions of simply-typed lambda calculus, we
can use confluence of reduction to prove conservativity. The general method, which is
also applicable to other typed or untyped calculi, is illustrated in Section 4.4.4. A related
general technique for analyzing theories is given in Section 9.3.2. A semantic proof of
conservativity is described in connection with Proposition 4.4.4.

266 Simply-typed Lambda Calculus

Exercise 4.4.8 An algebraic specification of trees is given in Table 3.3. Let ¥ be the
A~ signature obtained by currying all function types in this specification and adding the
constants

Eq? :atom — atom — bool
S X oo atom: ((tree — atom) — (tree — atom)) — (tree — atom)

with their usual axioms

Eqlaa = true any atom constant a

Eq?ab =false distinct atom constants a, b

SiX oo atom = A+ (tree — atom) — (tree — atom). f(fiX,reo—satom)

Write a function find_a: tree — atom over this signature and prove that if M:rree is a
closed expression then one of the equations find_a M = true or find_a M = false is prov-
able, depending on whether one of the leaves of the tree defined by M is the atom a.

Exercise 4.4.9 Show that in any lambda calculus with function types, cartesian products
and unit, there is an isomorphism o = o X unit, for every type o. More specifically, give
closed terms

M:0 — o X unit

N:o X unit > o

and show that both compositions, M o N and N o M, are provably equal to the identity
function of the appropriate type.

Exercise 4.4.10 Show that in any lambda calculus with function types, sums and null,
there is an isomorphism o = o + null, for every type o. More specifically, give closed
terms

M:o — o + null
N:o+null - o

and show that both compositions, M o N and N o M, are provably equal to the identity
function of the appropriate type. This is slightly harder than Exercise 4.4.9. You may wish
to use the results of Exercise 2.6.3.

Exercise 4.4.11 A simpler definition of conservative is that if £, contains £, and F
is a formula in the language of £, then £; is conservative over L if - F in the logic
of £, implies - F in the logic of £;. The difference is that this simpler definition does
not involve deduction from arbitrary sets of hypotheses. Show that for any logic with

4.4 Proof Systems 267

conjunction, implication, and deductive soundness and completeness theorems, the two
definitions are equivalent.

Exercise 4.4.12 Following the method illustrated in Example 4.4.6, show how to define
pure untyped lambda calculus, as presented in Exercise 2.6.7, as a A~ theory. You will
need one type constant, untyped, two term constants, and two equations. Related semantic
connections between typed and untyped lambda calculus are described in Exercise 4.5.21.

Exercise 4.4.13 This exercise asks you to show that inference rules IV-VI of higher-
order logic are derivable in 17, given the equational axioms listed in Example 4.4.7.

(IV) Show that from Mx = true, we can prove M N = true, provided x ¢ FV(M).
(VI) Show that from Mx = true, we can prove Y, M = true, provided x & FV(M).

(V) Show that from (M D N) = true and M = true, we can prove infer N = true. (Hint:
Remember the equation x = true D x; this is the trickiest of the inference rules.)

Exercise 4.4.14 Show that for each formula R that follows, the equation R = true is
provable from the A~ equations given in Example 4.4.7.

(@ MXNON=~M
) M~NYA(N~P)OM~P
©) (M~N)A(P~Q)DMP~NQ

Exercise 4.4.15 Show that if the equation M = N is provable from the equational ax-
ioms of Example 4.4.7, then the formula M &~ N is provable in higher-order logic (as
formulated in Example 4.4.7). Use this to conclude that if M = true is provable in the
equational system, the formula M is provable in higher-order logic.

4.4.2 Reduction Rules

Reduction is a “directed” form of equational reasoning that corresponds to symbolic eval-
uation of programs. As in the examples of Chapters 2 and 3, most reduction systems are
obtained by orienting the equational axioms. In simply-typed lambda calculus, we orient
each of the equational axioms except (o). We begin by discussing properties of “pure”
B, n-reduction on A~ terms over any signature, or any superset of A~ . Reductions for
term forms associated with products, sums and other simple types are given at the end of
the section.

While we are only interested in reducing typed terms, we define reduction without
mentioning types. Since reduction models program execution, this is a way of emphasizing
that A~ execution may be done without examining the types of terms. We will also see

268 Simply-typed Lambda Calculus

that the type of a term does not change as it is reduced. Together, these two facts imply
that type-independent execution of A~ -terms is type-correct, or “A™ does not require run
time type checking.”

Since the reduction rules are described and illustrated by example in Chapter 2, we
simply list them here.

(Ax:0. M)N — [N/xIM, (Blred
Ax:o.Mx — M, provided x ¢ FV(M). (Mred

A term of the form (Ax:o. M)N is called a B-redex and Ax:o. Mx an n-redex. We say
M B, n-reduces to N in one step, written M — g , N, if N can be obtained by applying (8)
or (n) to some subterm of M. The reduction relation —> g , is the reflexive and transitive
closure of one-step 8, n-reduction.

Using Lemma 4.3.6 and inspection of an 7-redex, it is easy to show that one step
reduction preserves type.

Lemma4.4.16 IfI'>M:0,and M —g, N,thenT' > N:o.

It follows by an easy induction that —> g, also preserves type. This is often called the
subject reduction property, based on terminology that calls M: o as a “sentence” whose
subject is M and predicate is .

Since we are only interested in reduction on well-typed terms, it is useful to write
I'>M —> N:o when I' > M: 0o is well-typed and M —> N. We know by the Lemma
above that in this case, we also have ' > N: . A term M is in B, n-normal form if there is
noN with M —g, N.

The main theorems about 8, n-reduction are confluence and strong normalization. These
are proved in Sections 8.3.2 and 8.3.3, using the technique of logical relations.

* Confluence (Theorem 8.3.10): 8, n-Reduction is confluent on A~ terms.

* Strong Normalization (Theorem 8.3.6): There is no infinite sequence Mo —g., M1 — g,
My =gy ... of B, n-reductions on A~ terms.

Theorem 8.3.6 is called “normalization” since it shows that every term may be reduced to
a normal form (a term that cannot be reduced further). The “strong” part of the theorem is
that a normal form is reached by any sequence of reductions. In contrast, weak normaliza-
tion is the property that every term may be reduced to a normal form by some sequence of
reductions, but not necessarily all.

Since reduction is effectively computable, strong normalization implies that, for any
reasonable encoding of the natural numbers, we cannot encode all partial recursive func-
tions in pure A7, This is because any function we can encode in pure A~ must terminate

4.4 Proof Systems 269

on all input. However, as shown in Section 2.5.5, we can define all partial recursive func-
tions if we add constants for basic numeric functions and fixed-point operators.

It is worth emphasizing that reduction is not confluent on pre-terms, strings that look
like terms but are not necessarily well-typed. To see this, consider the pre-term

Axio.(Ay:T.y)x

Using S-reduction, we may simplify this to Ax: o.x, while n-reduction gives us Ay: t.y.
Since these normal forms differ by more than names of bound variables when o # 1,
confluence fails for pre-terms.

One consequence of this example, which is taken from [vD80, Ned73], is that con-
fluence for typed lambda calculus does not follow immediately from the confluence of
untyped lambda calculus, even though the typed terms could be considered as a subset
of the untyped terms (c.f. [Bar84, Appendix A]). The reason is that the simple “proof”
of confluence for typed lambda calculus by appeal to the Church-Rosser theorem for un-
typed lambda calculus applies to pre-terms as well as typed terms. Since this leads to an
incorrect conclusion for pre-terms, it is not a correct proof for typed terms. The reader fa-
miliar with other presentations of typed lambda calculus may wonder whether this is still
the case if we do not write type expressions in typed terms, but use variables that are each
given a fixed type. In the alternate presentation of A, a-conversion must be restricted so
that we only replace one bound variable by another with the same type. With this restric-
tion on a-conversion, the example demonstrating failure of confluence still applies. Thus
confluence for A~ does not seem to follow from the Church-Rosser theorem for untyped
B, n-reduction directly. It is worth noting, however, that if we drop n-reduction, then we
do have confluence for B-reduction on A~ pre-terms.

The convertibility relation <> g ; on typed terms is the least type-respecting equivalence
relation containing reduction —> g ;. For typographical simplicity, we will drop the 8, n
subscripts for the rest of this section. Conversion can be visualized by saying thatI" > M <«
N: o iff there is a sequence of terms My, ..., My with I > M;: o such that

M=My—>> M| «—...—>»> My =N.

In this picture, the directions of —> and <« need not be regarded as significant. However,
by reflexivity and transitivity of —, this order of reduction and “backward reduction” is
completely general.

A few words are in order regarding the assumption that I' > M;: o for each i. For pure
B, n-conversion, this assumption is not necessary. The reason is that if '> M < N:o
and I' N IV mentions all free variables of M and N, then I'' > M < N:o. However, for
extensions of pure typed lambda calculus obtained by adding algebraic rewrite rules for

270 Simply-typed Lambda Calculus

basic types, this fails. This may be illustrated using the same theory that is used in the proof
of Proposition 4.4.5. Specifically, suppose we have a function symbol f and constants ¢
and d with equational axioms {x:a}> fx =c:band {x:a}> fx =d:b, and corresponding
rewrite rules fx — ¢ and fx — d. Then without the constraint mentioned above, we
would have @ > ¢ < d: b. However, the equation ¢ =d would not be provable without
assuming a variable x:a. Thus we can derive unprovable equations by conversion. Since
the main applications of typed lambda calculus to the study of programming languages
involve extensions of the pure calculus, we have chosen notation and basic definitions
which accommodate extensions of the pure theory.

A consequence of confluence is the following connection between reduction and prov-
able equality.

Corollary 4.4.17 An equation I'> M = N: 7 is provable from the axioms of A7 iff
I'> M < N:z iff there is some term P with M —>4 , Pand N =>4, P.

The proof for simply typed lambda calculus is essentially the same as the the proof for
algebra given in Section 3.7.2.

Reduction for Products, Sums and Other Simple Types

Reduction axioms for typed lambda calculus with product, sum, unit and null types are
obtained by directing the equational axioms given in Section 4.4.1 from left to right. We
list them here for completeness and for reference.

Proj, (M, N) > M Projred
Proj,(M, N) > N Projy)red
(Proj, M, Proj, M) —> M (SP)rea
Case”"* (Inleft®* MYN P - NM (case)| req
Case”"? (Inright”* M)N P - PM (case)y req
Case”"” M (N o Inleft”") (N o Inright®*) - NM (case)s req
M= x (unit)req
M — Zero® (null)yeq

In defining reduction with (unit),.; and (null),.q, we must restrict these to terms of the
appropriate type. For example, we can only use (unit),.q to reduce an arbitrary term M to
* when M:unit. This is done by defining reduction I' > M —> N:o on typed terms, in a
manner similar to the definition of conversion, I' > M < N: o, earlier in this section.

4.4 Proof Systems 271

Strong normalization holds for all of the versions of simply-typed lambda calculus
(without additional reductions such as algebraic rules), but confluence is more subtle. With
products and sums, we have confluence, but the unit reduction problematic; some repairs
for the failure of confluence are suggested in [LS86, CD91]. Confluence does not appear
to have been studied for typed lambda calculus with null. We discuss confluence with
additional rules, such as algebraic rules or fix reduction, in the next section.

4.4.3 Reduction with Additional Rules

As pointed out in Section 4.3.2, every algebraic signature may be regarded as a A~ sig-
nature. This allows us to consider algebraic terms as a subset of A~ terms, and apply
algebraic rewrite rules to lambda terms. More specifically, if ¥ is an algebraic signature,
and R is an algebraic rewrite system over X, then we may consider the rules L — R of
R as rewrite rules for lambda terms over any A~ signature ¥’ containing X. One-step
reduction — 5 on lambda terms over X’ is the least relation such that

[SL/xIM =7 [SR/x]M

whenever [SL/x]M is a well-typed term over X', S is any substitution of lambda terms
for variables and M has exactly one occurrence of variable x. This is exactly the same as
reduction on algebraic terms, except the rule L — R may be applied inside a lambda term,
and the variables in L and R may be replaced by lambda terms in any way that produces a
well-typed term.

Example 4.4.18 Consider the algebraic signature ¥ with the following type constants
and term constants.

type constants: nat

term constants: 0: nat
S: nat — nat

plus: nat — nat — nat

and let ' be T with term constant fix: (nat — nat) — nat added. While X is an algebraic
signature, X’ is not since the domain of fix is a function type.
Let R be the algebraic rewrite system over £ with the rewrite rules

plusOy —>y
plus (Sx) y — S (plusx y)
Then we have the following algebraic reduction on lambda terms:

Ax:nat. plus (Sx) (fix §) — Ax:nat. S (plus x (fix S))

272 Simply-typed Lambda Calculus

Note that the usual reduction rule for fix is not an algebraic rule since fix is not an algebraic
constant. =

If T is an algebraic signature, R a rewrite system over X, and X’ is a A~ signature
containing X, then for terms M and N over X', we say M R, B, n-reduces to N if we can
reduce M to N using rewrite rules from R, together with 8, n-reduction, and similarly for
R, B-reduction. We may also combine algebraic reduction with fix-reduction on signatures
that contain fixed-point constants fix, for one or more types, resulting in R, 8, n, fix-
reduction and R, B, fix-reduction. It is easy to show that all of these combined forms of
reduction preserve type, using Lemmas 3.7.2 and 4.4.16.

The main theorems about combined algebraic and lambda calculus reduction are proved
in Section 8.3.4, for typed lambda calculus with functions, products and fixed-point opera-
tors. It follows that these properties hold for any subset of such a language. For clarity, we
summarize some consequences of the theorems of Section 8.3.4 below. In each case, we
assume X is an algebraic signature, R an algebraic rewrite system over X, and ¥’ a A~
(or A*-7) signature containing X.

« If R is confluent and terminating, then R, B-reduction is confluent and terminating on
A~ terms over X',

« If R is confluent and left-linear, then R, B, fix-reduction is confluent on A~ terms and
R, B, proj, fix-reduction is confluent on A*-~ terms over X’.

e If A*™ term M over &' R, B, fix-reduces to normal form N, and R is confluent, termi-
nating, left-linear, and left-normal, then there is a reduction from M to N that reduces the
leftmost redex at each step.

The definition of left-normal appears in Section 8.3.4.

As mentioned in Section 2.2.3, we do not use (sp),eq, Often called surjective pairing,
in PCF. The reason, apart from the fact that it is unnecessary for programs (closed terms
of observable type) and not generally implemented, is that the rule causes confluence to
fail when combined with fix reduction. This is a classical theorem from untyped lambda
calculus. The original proof in [Klo80] can be carried out in a typed calculus, while an
apparent simplification in [Bar84] does not appear typable. We sketch a simplified, typable
proof from [CH94b].

Proposition 4.4.19 Reduction in simply-typed lambda calculus with (8),eq, (p70j;)rea.
(sP)req and fix is not confluent.

Proof Sketch The proof uses the following terms, written using a free variable f:1; x
T2 — 11 X 17 for any types 7y and 13!

4.4 Proof Systems 273

B & fixC

C & fixV

V & Axit X ;= 11 X 1. Ay: 71 X 12.(Proj (fy), Proj,(f (xy)))
The three steps of the proof are:

1. Show that for any term M of the right type, we have CM —> VCM —> (Proj,(f M),
Proj,(f(CM))).
2. Use this to show that for A & f(CB), we have B —> A and B —> CA.

3. Prove that A and C A do not reduce to a common term and therefore confluence fails
from B.

The reader may enjoy carrying out the first two steps. The difficult part of the proof is the
third step. While Klop’s original proof required more detailed analysis of reduction and
reduction strategies, the argument required for these particular terms can be carried out
using elementary reasoning about reduction. (]

4.4.4 Proof-theoretic Methods for Consistency and Conservativity

For many systems and theories, the simplest way to prove consistency is by constructing
a semantic model. This is also true for conservativity, as in the proof of Proposition 4.4.4.
However, there are situations in which proof-theoretic methods may be useful. The most
common are when it is difficult to construct a semantic model with the required properties,
or when we are interested in the proof-theoretic analysis for other reasons. One historical
example is the proof of consistency of untyped lambda calculus by confluence [CR36],
which predated Dana Scott’s construction of the first semantic model, in 1969, by 33 years.
In this section, we review the use of confluence for proving consistency, then investigate
a general method for proving conservativity and consistency that does not require the
equational axioms to yield confluence, but nonetheless uses reduction on typed lambda
terms. Another general technique for analyzing theories is given in Section 9.3.2.

If an equational proof system gives rise to a confluent reduction system, then this gen-
erally gives a proof of consistency. More specifically, if we know that an equation M = N
is provable only if M and N reduce to some common term P, and reduction is confluent,
then we may prove consistency by finding two distinct normal forms. It therefore follows
from Corollary 4.4.17 that ™ is consistent. We can also apply this method to show that
an algebraic theory is consistent, using the results given in Section 3.7.2 and the methods
in other parts of Section 3.7 for showing confluence. By Proposition 4.4.4, we can show

274 Simply-typed Lambda Calculus

that the combination of an algebraic theory and a typed lambda calculus is consistent by
showing that the algebraic theory is consistent.

The simplest form of conservativity only involves provability without equational hy-
potheses. This form follows immediately from confluence. For example, we can see that if
E is an equation between A~ terms, then - E using the proof system of A¥"**:~ iff - E
using the proof system of A ™. The reason is that the equation if provable iff both terms re-
duce to a common term, and this reduction cannot involve any Aunit, <.~ raductions if both
terms are from A~ . However, the more interesting form of conservativity is to show that
if £ is a set of equations between A~ terms, and FE is a single such equation, then £+ E
using the proof system of A~ whenever £ - E using the proof system of A%~ We
will use this as an illustrative example for the rest of this section.

One way to show conservativity of A= over A~ is by semantic means. The stan-
dard method for doing this, described after the statement of Proposition 4.4.4, requires
completeness of A~ . However, we do not have completeness of A, in general, for the
simplest form of model (Henkin models). Therefore, we must use cartesian closed cat-
egories. An alternative is the general proof-theoretic method described below, based on
[Jac75]. This method may also be used to prove conservativity of polymorphic typed
lambda calculus over simply-typed lambda calculus. In this case, we are unable to em-
bed every model of simply-typed lambda calculus into some model of polymorphic typed
lambda calculus.

If £ is a finite set of equations between closed A*""-*>~ terms, say

5:{U1=V1,...,Un:Vn},

then we write ' > M & N:o if there is a term P over the same signature and free variables
as M and N such that

FIsPUIV..U,V,=M:0 and T PVU,...V,U,=N:o.

It is easy to see that if ' > M & N:o, then EF T > M = N:o. We will give a proof of
a form of converse, showing that provable equality from a set of equational hypothesis
may be characterized using & . Since provable equality without equational hypotheses can
be characterized using reduction, this allows us to use reduction to study provability from
equational hypotheses. While we state and prove the lemmas for A¥"**~ these hold for
a variety of lambda calculi, including untyped lambda calculus.

Lemma 4.4.20 For any finite set £ of equations between A" %>~ terms, the relation &,
has the following properties:

(@ fFT>M=N:o,thenT>M & N:o.
®) (U =V)e&, thenU & V.

4.4 Proof Systems 275

(¢c) fEFT > M = N:o by asingle proof step other than transitivity, then F'>M & N:o.

Proof Properties (a) and (b) are immediate. To show property (c), we must consider each
of the A¥"-= axioms and inference rules. If ' > M = N: o is an axiom or equation in
£, then (¢) follows from (a) or (b). Therefore, it remains to consider each of the inference
rules. For notational simplicity, we will assume that £ contains only one equation, U = V.

Since (sym) is immediate, we begin with (v). Suppose ' > M| & Ni:o — 1 and
> My & Ni:o. By definition, there are terms Py, P, with T'> P,UV = M; and T >
P;VU = N;. We must show ' > MM, £ N|N,:t. This means we must find a term P
such that > PUV = MiM2 and I"' > PVU = N|N,. This is accomplished by letting P
be Au: p. Av: p.(Piuv)(Puv).

For rule (£), we suppose [',x:o0 > M & N:t and prove > Ax:0. M & Ax:0.Nt.
Given term P with I, x:o PUV =M:1 I',x:0 > PVU = N: 1, this is established
using Au: p. Av: p. Ax:o. Puv. Here it is important that both U and V are closed.

The remaining rule, (add var), is trivial. This proves the lemma. n

Lemma 4.421 If£FT > M = N:o, then there exist terms My, ..., My, with M = M
and My = N, such that £ =T > M; = M;,: 0 without using the transitivity proof rule.

Proof We use induction on proofs from £. If the equation is an axiom or element of £,
then the lemma clearly holds. The symmetry rule is straightforward, since if

E-My=M,=...= M,
then clearly
E-My=M,_1=...= M.

The transitivity case is easy. This leaves (v), (§) and (add var). Since (v) is the most
difficult, and most informative, we do that case and leave the other to the reader.

Suppose EFMog=M,=...=M;, E- Nyg= N =...= N, and we wish to prove
MyNy = My N, by a proof of the appropriate form. If k > ¢, for example, then using
reflexivity we may increase the length of the first sequence by repeating terms. We may
prove the required equation by

E- MoNog=M|N|=...= M;N,.
This completes the proof. u

Theorem 4.4.22 Let & be any set of equations between A“""*-= terms. Then EFTo
M = N:o iff there is some finite £ C £ and sequence of A7 terms My, ..., My,
with M = Mg and My = N,suchthatT' > M; & M0

276 Simply-typed Lambda Calculus

Proof One implication is straightforward, so we concentrate on the other. Suppose Er
'>M = N:o and let £ C £ be the set of equations from & that are used in the proof.

(Since a proof is finite, £ must be finite.) By Lemma 4.4.21, there is are terms My, . .., Mg,
with M = My and M = N, such that £ - I' > M; = M, : o without using transitivity. By
Lemma 4.4.20, we have I' = M; & M;,: o, and the theorem follows. .

It is easy to see, from the proofs, that Theorem 4.4.22 also holds for A™, with
Mo, ..., My in the statement of the theorem A~ terms, and similarly for other fragments
of Anull.unit,+,X,~> 1n fact, since all fragments of A"#/#mit+.%.= have the same inference
rules, the proofs are essentially the same for all cases. In Exercise 4.4.26, Theorem 4.4.22
is used to show that it is consistent to add the equation fix(Ax: nat. x) = 0, for example, to
a simplification of PCF.

We use Theorem 4.4.22 to prove conservativity of A¥*::~ over A~ by proving a form
of “conservativity” of existence of normal form terms.

Lemma 4.4.23 If > M: o is a A¥¥%~ term in normal form, over a A~ signature X,
with o and every type in " a ™ type, then I' > M: o is a A™> term.

In the proof of Lemma 4.4.23, we will write normal form terms in a particular way.
This may be visualized using a representation called Bohm trees, after C. B6hm (see
[Bar84]). The Bohm tree of a term Axi:oy...Axj:0;.zM)... M} in normal form is
written

Axj:0y ... Ax; O;. z
Ml M2 « e s Mk
where z is a variable or constant and M, ..., M; are written out as Bohm trees. It is

not hard to see that every normal form may be written as Axj:0y...Axj:0;.2M1 ... My,
for j, k > 0. Specifically, any term has the form Ax:oy...Ax;:0;. M, where M does
not begin with . We may write any such M as M = MoM, ... M, where My is not
an application. If My is a lambda abstraction, then this is not a normal form. Therefore,
M must be a variable or constant. We will adopt the alternative formulation of A¥%f*—

4.4 Proof Systems 277

in which Pair, Proj,, Proj, and * are constants. For Axi:01...Ax;:0j.zM... M to
be a A“"X~ normal form, z may be Proj, or Proj, only if M| does not begin with
Pair.

Proof Lemma 4.4.23 We use induction on the height of the Bohm tree of M. For a term
Axj:o1...Axj:0j.z, the lemma clearly holds, since if z is Pair, Proj,, Proj, or *, the
term will not have a A™ type.

For the induction step, we consider Axy: 0y ... Axj:0j.zMy ... My, with k > 1, assume
the lemma holds for M ... M} and all of their subterms. If z is a free or bound variable,
or a constant from X, then it must have a A~ type and therefore all of M, ... M; must
have A7 types. By the inductive hypothesis, we must have a A~ term. Since k > 1, z
cannot be . It is easy to see that z cannot be Pair, so the remaining cases are Proj; and
Proj,.

If z = Proj,, say, then M;: 11 X T2, where only 77 is necessarily a A~ type. We prove
the lemma by examining the form of M. Because of its type, M cannot begin with a
A, and so we may write M| as z’M; ... M;. The symbol z’ cannot be a variable, since
all variables have A~ type, and cannot be Pair since then the term containing M; would
not be in normal form. It is also easy to see that z’ cannot be *, so the only possibility is
that z' = Proj;. However, repeating this argument for M{, we can see that the term must
have infinitely many Proj;’s. Since this is contradictory, we must not have z = Proj, or,
by similar reasoning, Proj,. This proves the lemma. L]

Using normalization of A¥"*>-~ we may now prove conservativity of A"~ gver
A7

Proposition 4.4.24 If £ is a set of equations between A~ terms, and E is a single such
equation, then £ I E using the proof system of A“"**-= iff £ |- E using the proof system
of A7,

Proof Since the axioms of A~ are a subset of those for A“"*>-~ one implication is
immediate. To prove the proposition, we therefore assume that EFTeoM=N:0o using
the proof system of A“"*:= and show that may be carried out using the proof system of
AT

By Theorem 4.4.22, there is some finite £ C £ and sequence of A%~ terms
My, ..., My, with M = My and My = N, such that T > M; & M;,;: 0. By definition of
&, there are terms Py, ..., Py_1 over the same signature and free variables as M and N
such that

Fre RPUGW,...UV,=M;:0 and +Tos PVU... V,U,=M;11:0.

278 Simply-typed Lambda Calculus

However, since all My, ..., M, and all of the equations from &£ have A~ types, so must
Po, ..., Pr_i. If we reduce each P; to normal form, then by Lemma 4.4.23, we obtain a
sequence of equivalent A~ terms. It follows that we may prove each I' > M; = M; 1.0
from & using only the proof rules of A ™. This proves the proposition.]

It is interesting to notice that the proof of Proposition 4.4.24 does not require confluence
of A#nit.%.= only weak normalization and a typing property of normal forms.

Exercise 4.4.25 Prove Lemma 4.4.23, with AT in place of A¥" %=,

Exercise 4.4.26 This exercise asks you to show that it is consistent to add an equation
to the variant of L™ with fix constants and equational axioms (f) and (fix), but without
the equational axiom (7). We assume the signature includes a type constant b and at least
two constants, true, false: b (This is a simplification of PCF that avoids some technical
complications.) We adapt the definition of £ to this language by saying ©'> M & N:o
if there is a term P over the same free variables such that I' > PUV;...U,V, =M:0o
and ' PV U, ...V,U, = N: o are both provable using (8) and (fix). It is easy to check
that Theorem 4.4.22 holds. Show that for closed term Z:o, it is consistent to add the
equation fix(Ax:o.x.) = Z, by the steps outlined below. You will need to use the fact that
B. fix-reduction is confluent. For notational simplicity, we adopt the abbreviation Q &f
fix(Ax:0.x.).

(a) Use Lemma 2.5.24, in combination with Lemma 2.5.21, to show that if P 2 Z and
P Z Q are closed terms that both reduce to normal forms of type b, then they must re-
duce to the same normal form. (The use of programs and type constants in this exercise is
needed only so that Lemmas 2.5.21 and 2.5.24, stated for lazy rather than left-most reduc-
tion, apply.)

(b) Let us write M 24 N if there is some term P with the same free variables as M
and N such that P Q2 =M and P Z = N are provable from (8) and (fix). Show that if
M 2% N, and M:b is a closed normal form, then the equation M = N is provable from
(B) and (fix).

(c) Show that if ' > M 5% N : o, then there is some Q with M £Z Q %4 N,

(d) Show thatif M 24 Q £Z N, where all terms are programs, then I' > M %52 N : b.
(This is harder than (c).)

(e) Use Theorem 4.4.22, (c), (b) and then (d) to show, by contradiction, that the equation
true = false is not provable from Q = Z, (8) and (fix).

4.5 Henkin Models, Soundness and Completeness 279

4.5 Henkin Models, Soundness and Completeness

4.5.1 General Models and the Meanings of Terms

For most logical systems, a model provides a mechanism for giving mathematical meaning
to each well-formed expression, in sufficient detail to determine whether any formula of
the logic is true. For logics with variables, it is common to separate the assignment of
values to variables from the general notion of model. For example, an algebra provides
a set of possible values for each variable and an interpretation for each function symbol.
After choosing values for variables (by selecting an environment), we use the functions
given by the algebra to determine the value of an algebraic term. Doing this for two terms,
we may determine whether an equation between algebraic terms holds. Another example
is first-order logic, which has predicate symbols and function symbols. A model for first-
order logic includes a set of possible values for each variable, an interpretation for each
function symbol, and an interpretation for each predicate symbol. The interpretation of
each first-order term is determined as in algebra. Then, the interpretation of predicate
symbols is used to see whether a formula is true or false in the model.

A model for typed lambda calculus is similar to an algebra, in that we require a set
of possible values for each variable and an interpretation for each constant symbol that
appears in the signature. This means that we need a set of values for each type, and a
specific one of these chosen for each constant symbol. However, that is not all, since
we have to make sense of application and lambda abstraction. More specifically, suppose
A%77 is the set of values of type 0 — 7, and A? is similarly the set of values of type o. If
f € A°”T and x € A%, then we need to be able to apply f to x. The simplest condition on
models that would make this possible is to require that A° T be a set of functions from A
to A™. Then ordinary function application would give us f(x) in the set of values for type
7. A more subtle issue is that we also need to be able to interpret every lambda abstraction,
which means that every lambda-definable function must lie in the appropriate set of values.
If we impose the stronger requirement that A° 7 must be the set of all functions from A
to AT, then certainly every lambda-definable function will exist in the model, and we can
interpret every well-typed lambda term as a value in the correct set.

What makes the model theory of typed lambda calculus complicated is that we need to
be relatively flexible about the interpretation of function types. We cannot simply say that
in any model A, A" must be the set of all functions from A to A™. The main reason is
that, as pointed out in Section 4.2.2, we need to be able to interpret constants such as fix,
whose equational axiom forces every function to have a fixed point. If A has more than
one element, then there exists at least one function on A% without a fixed point. Therefore,
if we force A7 to contain all functions, we cannot have models for PCF, or any other

280 Simply-typed Lambda Calculus

typed lambda theory involving fixed points. But since fixed points are needed to interpreted
recursive definitions, and recursion is central to computation, we need models where every
element of at least some non-trivial function type can have a fixed point. This forces us to
define models using a more flexible, and more abstract, condition on function spaces. This
condition must be flexible enough so that the three examples described briefly in Section
4.2.2, classical set-theoretic functions, recursive functions on modest sets, and continuous
functions on CPOs, all satisfy the technical definition of model.

There are several equivalent definitions of “general models,” which we will call Henkin
models after [Hen50]. The definition we will use has three parts. We first define typed ap-
plicative structures, and then specify two additional conditions that applicative structures
must have to be models. A typed applicative structure consists of families of sets and map-
pings indexed by types, or pairs of types, of the form necessary to give meanings to terms.
To be a model, an applicative structure must be extensional, and there must be enough
elements so that every lambda-definable function is in the model. The extensionality con-
dition is equivalent to saying that the interpretation of a function type must be some set of
functions. We consider two ways of formalizing the condition that there must be “enough
elements” and prove that these are equivalent. The first is the environment model condi-
tion, which is straightforward but syntactic in flavor, and the combinatory model condition,
which is less intuitive but more algebraic.

A slightly more general form of model may be defined using category theory. Categor-
ical models of A“"*-*~ are called cartesian closed categories, or CCCs for short. These
are discussed in Section 7.2.

4.5.2 Applicative Structures, Extensionality and Frames
A typed applicative structure A for A~ signature X is a tuple
({A°}), {App”'"}, Const)

of families of sets and mappings indexed by type expressions over the type constants from
%. For each ¢ and t we assume the following conditions.

o A% is aset,
» App” " isamap App”T: AC™T 5 A% - AT,
* Const is a map from term constants of X to elements of the union of all the A%’s such

that if c: o, then Const(c) € A°.

The intuition behind this definition is that the terms of type o will be interpreted as
elements of A°. For any types o and 7, the application map App”® lets us use each
a € A7 as a function from A to A". Finally, the map Const gives the meaning of each
term constant.

4.5 Henkin Models, Soundness and Completeness 281

Another way to view an applicative structure for X is as a multi-sorted algebra for a
signature derived from X. Specifically, if £ = (B, C) is a ™ signature, we can define an
algebraic signature Xq;, = (S, F) by letting the set S of sorts be the set of types over &
and letting the set F of function symbols be

F=CU{App”" |0, T types over L}

Note that since all of the type expressions are regarded as sorts, all of the term con-
stants become algebraic constants. For example, if c:b — b — b in the A~ signature
%, then b — b — b becomes a sort in X, and ¢ becomes an algebraic constant of
this sort. With this construction, it is easy to see that an applicative structure for A™
signature X is exactly a multi-sorted algebra for signature X,;¢. Since applicative struc-
tures may be regarded as multi-sorted algebras, we can immediately apply the definitions
of homomorphism, isomorphism, and other concepts in Chapter 3 to applicative struc-
tures.

An important part of the definition of Henkin model is that equality between elements
of function types must be standard equality of functions. An applicative structure is exten-
sional if it satisfies the condition

* Forall f,ge A7, if App fd =Appgdforalld e A%, then f =g

Extensionality means that f, g € A°~T are equal iff App f and Appg are the same
function from A% to AT. Another way of saying this is that the function App must
be one-to-one from A% " into the set of functions from A to A". The set-theoretic,
recursion-theoretic and continuous interpretations all yield extensional applicative struc-
tures in which App”" f x = f(x) is simply function application. The set of terms over
any signature ¥ may also be viewed as an applicative structure that is not necessarily
extensional, as described in the following example.

Example 4.5.1 Let T be any signature and let H be any finite or infinite type assignment
‘H = {x1: 01, x2: 02, .. .}. An applicative structure

T = {{T°}, {App®'*}, Const)
may be defined by letting
T° ={M | T > M:o some finite ' C H}

and defining App”* M N = MN for every M € T° ™7 and N € T°. For each term con-
stant from ¥, we take Const(c) = ¢. If H provides variables of each type, then 7 is
extensional. However, if H does not then some 7° may be empty. If 77 is empty, then

282 Simply-typed Lambda Calculus

any two elements of 7777 will be extensionally equal (vacuously), so extensionality will
fail if 7277 has more than one element. (See Exercise 4.5.4.) ~

Example 4.5.2 'We may construct a “recursive” applicative structure using any enumera-
tion ¢, @1, @2, ... of the partial recursive functions on the natural numbers. In this struc-
ture, each type A° will be a subset of the natural numbers and application will be defined
by App n m = ¢,(m). For each base type b, we may choose A® arbitrarily. However, since
App must be a total function, we must select the elements of function types more carefully.
Specifically, for any function type o — 7, we let A°~F be the set of all natural numbers
n € N such that for all m € A®, ¢, (m) is defined and an element of AT. If A is the set
of all natural numbers, then A>~? will be the set of all # such that ¢n is a total recursive
function. Therefore, although application is computable in this structure, it may not be de-
cidable whether # is an element of some A?. This applicative structure is not extensional,
since there will generally be several natural numbers that all code (correspond to) the same
recursive function.]

In place of applicative structures, it is possible to use a definition of model that assumes
extensionality. Instead of letting A° 7 be any set, and requiring an application map to
make elements of A~ behave like functions, we could require that A° 7 actually be
some set of functions from A to A™. To be precise, a type frame is an applicative structure
({A%}, {App” '}, Const) such that

AT C Ar(A")

and App°" f d = f(d). In the formula above, exponentiation A% denotes the usual set-
theoretic collection of all functions from B to A. Since App is always function application
in any type frame, it is common to omit App, writing A = ({A°}, Const). If ¥ has no
constants, then we may also drop Const, and think of a type frame 4 = {A“} as simply an
indexed family of sets. An example type frame is the full set-theoretic function hierarchy
over any base types. This is a frame .4 = ({A?}, Const) such that A°~7 contains all set-
theoretic functions from A to A7,

Lemma 4.5.3 An applicative structure A is extensional iff there is an isomorphic type
frame B = A.

The proof is by straightforward induction on types, given as Exercise 4.5.5 below.
Although we will not pursue this direction, it is possible to generalize A~ to allow certain
types to be identified. In this case, the equivalence between type frames and extensional
applicative structures fails. For example, it is possible to have an extensional applicative
structure with A” = A° 77 the same set, but in this case A° 7 cannot be a set of functions
from A? to A°.

4.5 Henkin Models, Soundness and Completeness 283

Exercise 4.5.4 This exercise is about the applicative structure of terms described in
Example 4.5.1.

(a) Verify the claim that if H provides variables of each type, then 7 is extensional.

(b) Find a set H of typing assumptions about variables such that the term applicative
structure 7 is not extensional. Give two distinct elements of some 777 that determine
the same function from 7° to T".

Exercise 4.5.5 Prove Lemma 4.5.3. This is a straightforward induction on types, using
the definitions of applicative structure, extensionality and frame given in this section.

4.5.3 Environment Model Condition

One characterization of Henkin model uses the environment model condition, relying on
the subsidiary notion of environment. As in algebra, an environment n for applicative
structure .4 is a mapping from variables to the union of all A?. If I is a type assignment,
then we say 7 satisfies T, written n =T, if n(x) € A9 for every x:0 € I". If 5 is any
environment for A, and d € A?, then n[x +> d] is the environment mapping x to d, and y
to n(y) for y different from x.

An applicative structure A satisfies the environment model condition if the clauses be-
low define a total meaning function A{[-J- on terms I' > M: o and environments 1 such
that = I". Recall that if ' > M: o is well-typed, then there is proof of this using the typ-
ing rules. To make the definition of meaning as simple as possible, we will use induction
on typing derivations, later showing that the meaning is independent of which derivation
we choose. Specifically, we define the meaning A[M]ln of a well-typed term I" > M: o in
environment n = " by five inductive clauses, corresponding to typing axioms (var), (cst),
and typing rules (add var), (— Elim) and (— Intro). In computer science jargon, we can
think of the “abstract syntax” of lambda terms as typing derivations. This allows us to de-
termine the type and free variables of a term and the typing rules used to establish that the
term is well-typed.

Al@ v c:olln = Const(c),

Alx:o > x:0ln =n(x)

AT, x:0>M: 7]y =A[l>M:tln

AIT > MN: 7Ty = App° " AIT > M: o — tInAIT > N:o 11

A[T > Ax:0. M:0 — t]ln = the unique f € A°~" such that
Vd € A°. App fd = AlT, x:0 > M: tlinlx — d]

284 Simply-typed Lambda Calculus

The main reason for using induction on typing derivations is that in defining the mean-
ing of a lambda abstraction ' > Ax:0.M:0 — 7, we need to refer to the meaning
of M in typing context I', x:o. If we know that I' > Ax:0. M:0 — 7 is typed ac-
cording to rule (— Intro), then we are guaranteed that I', x: o is well-formed, since
this must have occurred in the hypothesis of the rule. If we used induction on the
structure of terms, then we would have difficulty with a term such as x:0 > Ax:7.x,
where the lambda-bound variable appears in the type assignment. There are other ways
to solve this minor technical problem, which may become more severe in extensions
to simply-typed lambda calculus. Overall, induction on typing derivations is as sim-
ple as any of the alternatives, and also generalizes most easily to other type systems.
When the model A is either irrelevant or clear from context, it is common to write
[T > M:o1n for AT > M: o]ln. Similarly, the environment may be omitted if the term is
closed.

An extensional applicative structure might fail to satisfy the environment model con-
dition if A°”T does not contain any f satisfying the conditions given in the clause for
A[l > Ax:0. M: 0 — t]n. This is the only possible problem, since extensionality guaran-
tees that if any f exists, it is unique. It is easy to show that any full set-theoretic hierarchy
satisfies the environment model condition (see Exercise 4.5.10). We will show later that
frames of recursion-theoretic or continuous functions also satisfy the environment model
condition and are therefore Henkin models.

Example 4.5.6 'We may define a Henkin model 4 for the signature with single base type
nat by letting A™ be the usual set of natural numbers and A" the set of all functions
from A% to A*, for all ¢ and 7. This is called the full set-theoretic function hierarchy
over the natural numbers. We apply a function f € A° 77 to argument x € A? as usual by
App f x = f(x). We will work out the meaning of the term Ax:nat — nat.Ay:nat.xy.
Since this term is closed, it does not matter which environment we choose. Using the
inductive definition of meaning, we can make the following calculation. For typographic
simplicity, we omit the types of terms.

[[@ > Ax:nat — nat. Ay:nat. xylln

_ the unique f € A(nai—>na—nat—nat g ch that
T \\Vh € Am@—~rat_App f h = [x: (nat — nat) > Ay: nat. xylln[x — h]

The meaning of the lambda term with one less A is defined similarly, and simplified as
follows.

4.5 Henkin Models, Soundness and Completeness 285

[x:nat — nat > Ay: nat. xy]n[x — h}

_ the unique g € A" "% guch that
T\ \Vne A" Appgn = [[x: nat — nat, y: nat > xyln{x — hl[y — n]

_(the unique g € A"¥~"¥ such that
"\ VYneA™ Appgn=Apphn

=h
This allows us to complete our calculation of the meaning of the original term.
[P > Ax: nat — nat. Ay: nat. xyln

__ (the unique f € Alat—nan—nat=nal gych that
= Vh € A™=>nat Apn fh=h

Thus the meaning of this term is the unique element of Aa/=>nad—nat—>nat renresenting
the identity function. We can check this calculation by seeing that, by (1),

X:nat — nat > Ay:nat.xy = x:nat
and therefore we can prove the equation
> Ax:nat — nat.\y:nat.xy = Ax:nat — nat. x]

We will now show that the meaning of a well-typed term does not depend on the typing
derivation we use. This is the intent of the following two lemmas. The first requires some
special notation for typing derivations. In general, a typing derivation is a tree, with each
leaf an instance of a typing axiom, and each internal node (non-leaf) an instance of an
inference rule. In the special case that an inference rule has only one premise, then uses
of this rule result in a linear sequence of proof steps. If we have a derivation ending in a
sequence of uses of (add var), this derivation has the form A,A’, where A is generally a
tree, and A’ is a sequence of instances of (add var) concatenated onto the end of A. We
use this notation to state that (add var) does not effect the meanings of terms.

Lemma 4.5.7 Suppose A is a derivation of ' > M:o and A,A’ is a derivation of I'' >
M: o such only rule (add var) appears in A’. Then for any 1 k= I'’, we have

ITeM:olln=[I">M:cln,
where the meanings are taken with respect to derivations A and A,A’.

The proof is an easy induction on typing derivations, left to the reader. We can now show
that the meanings of “compatible” typings of a term are equal.

286 Simply-typed Lambda Calculus

Lemma 4.5.8 Suppose A and A’ are derivations of typings I' > M:0 and > M: 0,
respectively, and that I" and [’ give the same type to every x free in M. Then

[TeM:ollp=0I">M:cln,
where the meanings are defined using A and A’, respectively.

The proof, which we leave as an exercise, is by induction on the structure of terms. It
follows that the meaning of any well-typed term is independent of the typing derivation.
This lemma allows us to regard an equation I' > M = N: o as an equation between M and
N, rather than derivations of typings ' > M:o and "' > N: 0.

Lemma 4.5.8 is a simple example of a coherence theorem. In general, a coherence
problem arises when we interpret syntactic expressions using some extra information that
is not uniquely determined by the expressions themselves. In the case at hand, we are
giving meaning to terms, not typing derivations. However, we define the meaning function
using extra information provided by typing derivations. Therefore, we must show that the
meaning of a term depends only on the term itself, and not the typing derivation.

The final lemma about the environment model condition is that it does not depend on
the set of term constants in the signature.

Lemma 4.5.9 Let A be an environment model for terms over signature ¥ and let ¥’ be a
signature containing X (i.e., containing all the type and term constants of ¥). If we expand
A to ¥’ by interpreting the additional term constants as any elements of the appropriate
types, then we obtain an environment model for terms over X'.

Proof This lemma is easily proved using the fact that every constant is equal to some
variable in some environment. More specifically, if we want to know thataterm I'> M: o
with constants from X’ has a meaning in some environment, 7, we begin by replacing
the constants with fresh variables. Then, we choose some environment 7y that is identical
to n on the free variables of M, giving the new variables the values of the constants
they replace. If A is an environment model, then the new term must have a meaning in
environment 7, and so it is easy to show that the original term must have a meaning in 7.

Exercise 4.5.10 Recall that in a full set-theoretic function hierarchy, A° ™7 contains all
set-theoretic functions from A to AT. Show, by induction on typing derivations, that for
any full set-theoretic hierarchy A, typed term I' > M: o and any environment n =T, the
meaning A[I" > M: o]ln is well-defined and an element of A°.

Exercise 4.5.11 Recall that in a full set-theoretic function hierarchy, A° 7 contains all
set-theoretic functions from A% to AY. If there are no term constants, then this frame is

4.5 Henkin Models, Soundness and Completeness 287

simply a family of sets .A = {A?} indexed by types. This problem is concerned with the
full set-theoretic hierarchy for the signature with one base type b and no term constants,
determined by A? = {0, 1}. It is easy to see that there are two elements of A®, four ele-
ments of A?~? and 4* = 256 elements of type AP—=b)=(—b),

1. (a) Calculate the meaning of the term Af:b — b.Ax:b. f(fx) in this model using the
inductive definition of meaning.

2. (b) Express your answer to part (a) by naming the four elements of Ab=b and stating
the result of applying the function defined by Af:b — b. Ax:b. f(fx) to each element.

3. (c) Recall that every pure typed lambda term has a unique normal form. It follows from
the soundness theorem for Henkin models that the meaning of any term in any model is the
same as the meaning of its normal form. Use these facts about normal forms to determine
how many elements of each of the types A?, A% and A®—~D—(¢—b) are the meanings of
closed typed lambda term without term constants.

Exercise 4.5.12 [Fri75] This exercise is also concerned with the full set-theoretic hierar-
chy, A, for one type constant, b. We assume that A? has at least two elements, so that the
model is nontrivial. We define a form of higher-order logic with formulas

¢ :i= M=N|—-¢|lpANd|Vx:00

where in writing these formulas we assume that M and N have the same type (in some
typing context) and that, in the final case, ¢ is well-formed under the assumption that x
is a variable of type o. Each formula may be interpreted in A in the obvious way. We
will use the abbreviation M ~ N & (M D N) A (N D N), and assume abbreviations
for other connectives and quantifier as in Example 4.4.7. We will also use the abbre-
viations T % Ax:b.Ay:b.x, F & Ax:b.Ay:b.y and, for M:o and N:t, (M, N) &
Ax:o0 — 17— b.xMN. Show that for every ¢, there exist terms M and N such that
AE¢xVYx:0.M # N, by the steps given below.

(a) Show AT # F.

(b) For that any M, N, P, Q of appropriate types, A = ((M,N)=(P,O)) (M =P A
N = Q).

(c) We say ¢ is existential if ¢ has the form 3x: o0 (M = N). Show that if ¢ is existential,
then there is an existential ¥ with the same free variables such that A = ¢ ~ —.

(d) Show that if ¢ and ¥ are existential, then there is an existential 8 with FV(0) =
FV(¢) UFV(y¥) suchthat Al=60 = (¢ A ¥).

288 Simply-typed Lambda Calculus

(e) Show that if ¢ is existential, there is an existential ¥ with the same free variables as
dx:o.¢ suchthat Al=¢ ~3Ix:0. Y.

(f) Prove the main claim, using the argument that for any ¢, there is an existential formula
equivalent to —¢.

4.5.4 Type and Equational Soundness

Since there are two proof systems, one for proving typing assertions and one for equations,
there are two forms of soundness for ™ and other typed lambda calculi. The first, type
soundness, is stated precisely in the following lemma.

Lemma 4.5.13 (Type Soundness) Let A be any Henkin model for signature X, T
M: o aprovable typing assertion, and n = I" an environment for A. Then A["'>M:o]ln €
A°.

This has the usual form for a soundness property: if a typing assertion is provable, then
it holds semantically. The proof is a straightforward induction on typing derivations, which
is omitted.

With a little thought, we may interpret Lemma 4.5.13 as saying that well-typed A~
terms do not contain type errors. In a general framework for analyzing type errors, we
would expect to identify certain function applications as erroneous. For example, in the
signature for PCF, we would say that an application of + to two arguments would produce
a type error if either of the arguments is not a natural number. We will use this example
error to show how Lemma 4.5.13 rules out errors.

Suppose we have a signature that gives addition the type +:nat — nat — nat and a
Henkin model A that interprets + as a binary function on A", We consider any appli-
cation of + to arguments that are not elements of A" an error. It is easy to see that the
only way to derive a typing for an application + M N is to give M and N type nat. By
Lemma 4.5.13, if we can prove typing assertions I" > M: nat and I" > N: nat, then in any
Henkin model the semantic meaning of M and N will be an element of the set A" of
semantic values for natural numbers. Therefore, the meaning of a syntactically well-typed
application + M N will be determined by applying the addition function to two elements
of A™_1t follows that no type error arises in the semantic interpretation of any well-typed
term in this Henkin model. To conclude that no type errors arise in a specific operational
semantics, we may prove an equivalence between the denotational and operational seman-
tics, or give a separate operational proof. The standard statement of type soundness for an
operational semantics given by reduction is Lemma 4.4.16.

Before proving equational soundness, we state some important facts about variables and

4.5 Henkin Models, Soundness and Completeness 289

the meanings of terms. The most important of these is the substitution lemma, which is
analogous to the substitution lemma for algebra in Chapter 3.

A simple, preliminary fact is that the meaning of I" > M: ¢ in environment 1 can only
depend on n(y) if y is free in M.

Lemma 4.5.14 [Free Variables] Suppose 1|, n; =T are environments for .4 such that
n1(x) = na(x) forevery x € FV(M). Then

[TeM:ollm=10T">M:olln:.

The proof is a straightforward inductive arguments, following the pattern of the proof of
Lemma 4.3.6.

Since substitution involves renaming of bound variables, we will prove that the names
of bound variables does not effect the meaning of a term. To make the inductive proof go
through, we need a stronger inductive hypothesis that includes renaming free variables and
setting the environment appropriately.

Lemma 4.5.15 Let " ={x;:01, ..., xx: ok} and suppose I > M: o is a well-typed term.
Let IV = {y;:01,..., yx: 0k} and let N be any term that is c-equivalent to [y, ..., y&/
Xls oo XM IE 0 (vi) = n{x;), for 1 <i <k, then

[Te>M:olln=[I">N:cly.

Proof The proof is by induction on the typing derivation of M. The only nontrivial case
is lambda abstraction (by (— Intro)). Suppose that I' > Az: p. M: p — 7 is typed using
I', z: p> M: 7. The meaning of the lambda term is

[Tes Az:p.M:p— 1l
= the unique f € A°7 7 such that
Yaec AP App fa=|T,z p>M:tlnlz+ al

We must show that this is the same as the meaning of any term obtained by renaming free
and bound variables, in an appropriate environment, such as

[T> Aw:ip.N:p— iy
= the unique f € A?7F such that
VYae A?. App fa=[I",w:pv> N:tln'[w > a]
However, by the inductive hypothesis, we know that for any a € A,

[C,z:peM:tnlz— al =M, w: p> N: tln'[w > a]

290 Simply-typed Lambda Calculus

This proves the lemma. L]
This brings us to the substitution lemma for A7

Lemma 4.5.16 (Substitution) LetI',x:0> M:t and I'> N:o be terms, 5 =T, and
d =T N:o]n. Then

[Ce[N/xIM:tlln=[T, x:0>M:tln[x +— d].

Like the substitution lemma for algebra (Lemma 3.3.11), Lemma 4.5.16 says that the
effect of syntactically substituting an expression N for x is the same as letting x denote
the semantic meaning of N. The proof is left as a worthwhile exercise (Exercise 4.5.18).

The standard notions of satisfaction and validity for equations between typed lambda
terms have routine definitions. As in our treatment of algebra, we only define satisfaction
for environments that give variables values of the correct semantic type. A Henkin model
A and environment 5 = I" satisfy an equation I' > M = N: o, written

AnEl>M=N:o,
if
Al >M:o0ln=A[> N:oln.

We say a model A satisfies an equation I' > M = N:o if A and environment 7 satisfy
this equation, for every n satisfying I". As discussed at some length in Section 3.4.1, an
equation may hold vacuously in model A if some A? is empty.

Theorem 4.5.17 (Soundness) If E+T > M = N:t, for any set £ of typed equations,
then every Henkin model satisfying £ also satisfies ' > M = N: 1.

Proof The proof is by induction on equational proofs from the set £ of equational hy-
potheses. The base cases are that E € £ or E is one of the axioms (ref), («), (B), or (n).
The cases for E € £ and (ref) are trivial. The (o) case follows from Lemma 4.5.15.

For (B), we use the substitution lemma, as follows. The meaning of an application is

ITe(Ax:o. M)N:tlln=App fa
where a is the meaning of N and f is the unique element of A° 7 satisfying
App fd' =, x:0> M:t]n[x — d']

for all a’ € A°. We must show that the meaning of the application is the same as the
meaning of the substitution instance

[T>[N/xIM:tln

4.5 Henkin Models, Soundness and Completeness 291

However, by the substitution lemma we have
App fa=[T,x:ooM:tnlx > a'] =T [N/x]M:t]n

which proves this case of the theorem.

The (1) case is a routine calculation, similar to Example 4.5.6.

There are inductive steps for inference rules (sym), (trans), (¢§) and (v). The (sym)
and (trans) cases are trivial. The most interesting case is (§), which is still essentially
straightforward. For this rule, we assume that

AT, x:0>M=N:1.
We must show
AEToAx:0. M =X x:0.N:oc —> 1.
This may be calculated as follows, using the induction hypothesis in the second step.
[T > Ax:0. M:0 — t]lnp = the unique f € A°~ " such that
Vac A°. App fa=[I,x:0 0> M:t]nlx — a]
= the unique f € A7 such that
Vaec A . App fa=[T,x:0 > N:tlnlx — a]
=[>Ax:0.N:o - tln
The (v) case is straightforward and omitted. This finishes the proof. .

Exercise 4.5.18 Lemma 4.5.16 is proved by induction on typing derivations. This exer-
cise asks you to prove some of the cases. If you get stuck, you may wish to look at the
proofs of Lemmas 3.3.11 and 4.3.6. In each case, assume I', x:0 > M:7 and ' > N: o are
provable typing assertions, n =T, and d = [I" > N:o]ln. Suppose that a typing deriva-
tion for ', x: o > M: t is given and assume that if [, x: o > M': t’ is proved by a shorter
derivation, then

[Ce[N/xIM:tln=[T,x:0 > M:tlnlx — d].
Show that this holds for I', x: 0 > M: .

(a) Consider the case where M 1is a variable, not necessarily distinct from x, typed using
the axiom (var).

(b) Consider the case where I', x: 0 > M: T follows by (add var), not necessarily adding
the variable x to the type assignment.

292 Simply-typed Lambda Calculus

(c) Consider the case where I', x: 0 > M: T follows by (— Intro).

Exercise 4.5.19 Prove Proposition 4.4.4 by showing that every multi-sorted algebra may
be extended to a Henkin model. You may want to read the brief proof outline following the
statement of the proposition.

Exercise 4.5.20 1If we write formulas of higher-order logic as described in Example
4.4.7, then formulas are terms over a A~ signature that includes type constant tv, term
constants or, not and ¥, and possibly other type and term constants. A general, or Henkin,
model for classical higher-order logic is a Henkin model A for the appropriate signature
such that A’ = {true, false} and the logical constants or, rot and V,, have their standard
interpretation. The meaning of a logical formula in a general model is defined in exactly
the same way as the meaning of a term in a Henkin model of typed lambda calculus, so it
is easy to see that a formula M holds in A (i.e., it has value true) iff the equation M = true
holds in A (regarding A as a typed lambda model).

(a) Show that the axioms for =~ hold in all general models.
{b) Show that if A is a full classical hierarchy, then = is semantic equality (at each type).

This is not the case for all Henkin models.

Exercise 4.5.21 Untyped lambda calculus is defined in Exercise 2.6.7 and a correspond-
ing typed equational theory in Exercise 4.4.12. A model of untyped lambda calculus
D =(D,[D — D], d, ¥) consists of a set D, a set [D — D] of functions from D to D,
and functions

$:.D— [D— D]
V:[D—- D]— D

such that both compositions ¢ o W and W o ® are identity functions and every lambda term
has a meaning when interpreted as follows

Dlixln =n(x)
DIUVIn =@ (DIUIn) (DIVIN)
DrxUln =¥ (Ad € D.D[UTn[x — d])

Show that from any untyped lambda model D we can construct a Henkin model for the
A7 signature described in Exercise 4.4.12 so that each untyped term has has the same
meaning as the typed lambda term determined as in Exercise 2.6.7. Use this to con-
clude that the equational axioms of untyped lambda calculus hold in all untyped lambda
models.

4.5 Henkin Models, Soundness and Completeness 293

4.5.5 Completeness for Henkin Models Without Empty Types

There are three completeness theorems for A~ . This is more complicated than the situa-
tion for multi-sorted algebra, where there are only two completeness theorems (deductive
completeness in general, and least model completeness if empty sorts are eliminated). The
case that is similar to algebra is that we have least model completeness if we rule out
empty types: for every theory closed under an additional “nonempty” rule, there is a model
satisfying precisely the equations in this theory. However, we do not have deductive com-
pleteness for Henkin models without extending the proof system. On the other hand, if we
consider more general categorical models or Kripke models, described in Chapter 7, we do
have straightforward least model completeness for the proof system as given. In this sec-
tion, we state least model completeness without empty types and sketch a direct proof. A
full proof, resembling the completeness proof for algebra, is given in Section 8.3.1, using
logical relations as an analog for congruence relations over algebras. Deductive complete-
ness for an extended proof system is described in Section 4.5.6, with completeness for
cartesian closed categories and Kripke lambda models considered in Sections 7.2.6, 7.3.6
and 7.3.7.
The inference rule for reasoning about nonempty types,

Ix:ob-M=N:t
'>sM=N:t

x not free in M, N. (nonempty)

is the same as the rule we used for algebra, except that here M and N may be lambda terms
instead of algebraic terms. If we know o is not empty, then the Free Variable Lemma may
be used to show that (nonempty) is sound. However, if a type o is empty (i.e., A7 = @),
then I', x:0 > M = N:7 may hold solely because no environment can give x a value of
type o. Therefore, it is incorrect to apply rule (nonempty) if a type may be empty. As
explained in the discussion of empty types in algebra (Section 3.4.6), this is a derived rule
in any signature that allows us to write a term I’ > P: o with the same type as the variable
x that we wish to eliminate by using this rule. In particular, a theory will be closed under
this rule if the signature allows us to write a closed term of each type.

Theorem 4.5.22 Let £ be any lambda theory closed under the rule (nonempty). Then
there is a Henkin model A, with no A% = @, satisfying precisely the equations belonging
to &.

This theorem may be proved directly using a “term model” construction similar to the
applicative structure 7 in Example 4.5.1. We will sketch the direct proof below, and give
another construction of the same structure using logical relations in Section 8.3.1.

294 Simply-typed Lambda Calculus

Proof Sketch Let H be any infinite set of variable typings x:o such that there are in-
finitely many variables of each type and no variable appears twice. Define the equivalence
class [M]g of M by

[Mlg={N | EFT>M = N:1, some finite I’ C H}

and let AT be the collection of all [M]e with I' > M: 1 some I' C H. This gives us an
applicative structure, with

App [M]g[Nle=[MN]¢

called the term model for the signature and theory. It is possible to show that the meaning
of a term in the term model is a substitution instance (as for term algebras), and that the
term model for £ satisfies exactly the equations provable from &. u

Some consequences of Theorem 4.5.22 are the completeness of the equational axioms
of PCF for reasoning about all Henkin models of the axioms, completeness for untyped
lambda calculus (see Exercise 4.5.26) and completeness of higher-order logic over general
(Henkin) models, provided the signature does not allow empty types (see Exercise 4.5.27
below). Another special case of Theorem 4.5.22 is the pure theory £ closed under the
inference rules of Section 4.4.1, with no nonlogical axioms. It follows from Proposition
4.4.1 that although rule (nonempty) is not among the rules in Section 4.4.1, the pure theory
is closed under (nonempty). Therefore, we have the following corollary.

Corollary 4.5.23 Let &£ be the pure theory of 8, n-conversion. There is a Henkin model
A without empty types satisfying precisely the equations of £.

A model A is nontrivial if there is some equation that is not satisfied by .A. If a signature
2 has only one base type b, then a simple argument shows that any nontrivial Henkin
model must satisfy (nonempty). If A? is empty, then by induction on types no A° may
have more than one element. Therefore, if A is nontrivial, A’ must not be empty. But then
no type is empty, as is easily verified by induction on types. For this reason, when only one
base type is used, it has been common practice to write equations without specifying the
set of free variables explicitly.

Exercise 4.5.24 Let P; and P, be the lambda terms
Py & dx:ia.Aiy:a.x, Py & Ax:a.Ay:a.y.

Show that with rule (nonempty), we can prove the equation f:(a > a —> a) > b
f Pi = f Py:b from the hypothesis Az:a. f Py = Az:a. f P,.1tis shown in Example 7.3.4
that this proof cannot be carried out without (nonempty) or some other addition to the
proof system. (See also Exercise 4.5.29.)

4.5 Henkin Models, Soundness and Completeness 295

Exercise 4.5.25 Show that if we add rule (nonempty) to A"™>~ we obtain an inconsis-
tent proof system.

Exercise 4.5.26 Untyped lambda calculus and its syntactic and semantic connections
with typed lambda calculus are discussed in Exercises 2.6.7, 4.4.12 and 4.5.21. Following
the correspondence described in these exercises, use Theorem 4.5.22 to prove complete-
ness of untyped lambda calculus.

Exercise 4.5.27 General models of higher-order logic are described in Exercise 4.5.20.
Theorem 4.5.22 does not immediately imply completeness for general models, since the
Henkin model A satisfying a theory £ with tv might not have exactly two elements of
A™, or one of the logical constants might be interpreted in a nonstandard way. Suppose
£ is a theory over a signature corresponding to higher-order logic, containing the axioms
of higher-order logic and closed under the proof rules. Assume that the signature prevents
any type from being empty. Show that there is some maximal consistent theory &2 Esuch
that model of £ described in the proof sketch of Theorem 4.5.22 has two elements of type
tv, with the logical constants interpreted in the standard way.

4.5.6 Completeness with Empty Types

In general, we may be interested in typed lambda calculus over an arbitrary collection of
type constants. Since some of these may not have any definable elements, or may naturally
be considered empty (as may arise when types are given by specifications), it may be
useful to reason about terms over possibly empty types. For Henkin models that may
have empty types, we may achieve completeness using additional rules first presented in
[MMMS87]. The main purpose of these additional rules is to capture reasoning of the form
“if M = N whenever o is empty, and M = N whenever ¢ is nonempty, then we must have
M = N”. To facilitate reasoning about empty types, it is convenient to add assumptions of
the form empty o to type assignments. An extended equation is a formulaI'> M = N:o
with I the union of a type assignment I'y and a set I'> of formulas empry . We require that
I''>M:0 and 'y > N: o, so that emptiness assertions do not affect the syntactic types of
terms.

Just as an ordinary equation I' > M = N:o may be read as an implication, “if T is
satisfied, then M and N denote the same value of type o,” we interpret extended equations
as a simple form of implication. For example, x: o, emptyt > M = N:o holds if M and N
are equal whenever x is given a value of type o and the type 7 is empty. More specifically,
if I' the union of a type assignment I'; and a set Iy of formulas of the form empty T, we
say A and 7 satisfy ', written A4, n =T, if A, n = I'y according to the usual definition
and, for every empty t € I', the set AT is empty. (In versions of lambda calculus with type

296 Simply-typed Lambda Calculus

variables, a type might be empty in some environments, and nonempty in others.) The
remaining definitions of satisfaction by a model and validity are as given in Section 4.5.4.

The proof system for reasoning about empty types uses an axiom scheme for introduc-
ing equations with emptiness assertions and an inference rule that lets us use emptiness
assertions to reason by cases. The axiom is

T,emptyo,x:0>M = N:1. (empty I)

Any equation of this form is valid, since it is impossible to give x a value of type o if o
is empty. Therefore, since the extended type assignment I', empty o, x: o is unsatisfiable,
the implication I, empty o, x: 6 > M = N: t holds vacuously. The inference rule for empty
types is
Nxio-M=N:1,,emptyc>M=N:71

''s-M=N:1

x¢g FV(M,N) (empty E)

This is the rule that formalizes the reasoning “if M = N when o is empty, and M = N
when o is nonempty, then we must have M = N”. Technically speaking, the side condition
of this rule is redundant, since the second equation in the antecedent can be well-formed
only if x € FV (M, N). We write H€"P1.E) for provability using the proof rules of Section
4.4.1 and the additional axiom and inference rule for empty types. A simple example of the
kind of deduction that is possible in this proof system is given in Exercise 4.5.29.

The following theorem was announced in [MMMS87] for polymorphic lambda calculus
with the axiom and inference rule above. We give a direct proof sketch below, and give a
more complete proof using logical relations in Exercise 8.3.3.

Theorem 4.5.28 Let £ be a set of extended equations, possibly containing emptiness
assertions, and I' > M = N: o an extended equation. Then €& F€™PYL.E) [o M = N: o iff
every Henkin model satisfying £ also satisfiesI'> M = N:o.

Proof Sketch The completeness proof uses an infinite set H of typings x: o and empti-
ness assertions empty o . If I' > My = Ny: 0p is a chosen equation not provable from &, then
'H is constructed so that (i) I' € H, (ii) for every o, either x: o € ‘H for infinitely many x,
or empty o € H, (iii) for every finite I'' C H, the equation I’ > Mo = Noy: oy is not provable
from £. The construction of H proceeds in stages, using an enumeration of all types. The
remainder of the proof is similar to the proof of Theorem 4.5.22. L]

Since (empty E) is not an equational inference, the rules for reasoning about empty types
have a different flavor from the proof systems without (empty E). In particular, it is not
clear if the consequences of this proof system may be captured by any natural form of
reduction on terms.

4.5 Henkin Models, Soundness and Completeness 297

A subtle issues is the difference between an initial type null and an empty type. As
shown in Exercise 4.5.25, it is inconsistent to treat null as a nonempty type. However,
there are Henkin models for A#»~ in which null is not empty. A simple example is a
term model where, as in the proof of Theorem 4.5.22, we include infinitely many variables
of each type.

Exercise 4.5.29 Let P; and P> be the lambda terms
Py & Ax:a.Ay:a.x, Py ¥ Ax:a.Ay:a.y,

as in Exercise 4.5.24. Show that with axiom (empty I') and rule (empty E), we can prove
the equation f:(a - a — a) —» b f Py = f P,:b from the hypothesis Az:a. f P| =
Az:a. f P,. Explain why this implication is sound for Henkin models in which a or b may
be empty. It is shown in Example 7.3.4 that this proof cannot be carried out without some
addtion to the proof system.

4.5.7 Combinators and the Combinatory Model Condition

The environment model condition is equivalent to the existence of certain elements called
combinators, each characterized by an equational axiom. This is called the combinatory
model condition. One advantage of the combinatory model condition is that it does not
refer to syntax or the meaning function on typed lambda terms.

The simplest way to prove the equivalence of the combinatory and environment model
conditions involves translations between lambda terms and combinatory terms. A combi-
natory term is an applicative term, or lambda term not containing A, over a certain kind of
signature. If X is a A signature, then CL(X) is a signature with exactly the same type
constants as X but with additional term constants. Specifically, CL(ZX) has all the term
constants of X, together with constant symbols

Ko :0—>1T—0
Spori(P=>0—>1)>(p>0)>p—>1

for all types p, o and T over the type constants of X. A combinatory term over signature
% is a term, not containing A, over the signature C L(X) with constants K and S added.
It is important to realize that the main purpose of the environment model condition is to
guarantee that every term containing A has a meaning in the structure. However, since
combinatory terms do not contain XA, every combinatory term over ¥ has a meaning in
any applicative structure for signature CL(X). We use the letters “CL” in the signature
with combinators since a historical term for the algebraic system with combinators is
combinatory logic.

298 Simply-typed Lambda Calculus

We say an applicative structure A has combinators, or satisfies the combinatory model
condition if, for all p, o, 7, there exist elements

Kar eAa—>(r—>a)

Sp o1 € A(p—>0—>r)—>(p—>a)—>p—>r

satisfying the equational conditions
Ko-xy =x
Sp.0.0xyz = (x2)(y2)

for all x, y, z of the appropriate types. If applicative structure A for signature X has com-
binators, then we write A" for the applicative structure derived from .A by interpreting
the additional constants of CL(X) as elements satisfying the equations above. If A is ex-
tensional, then AC* is uniquely determined.

The main idea behind the equivalence of the combinatory and environment model con-
ditions is that combinators K and S allow us to write all lambda-definable functions using
only application. To show how this works, we define “pseudo-abstraction.” For every com-
binatory term I, x: 0 = M: 7, we define the combinatory term I' > (x:0) M: 0 — T using
induction on the structure of M as follows.

(x:0)x = Sa,a~—>a,a Koo50Ko,0,
(x:0)y = K sy, where 7 is the type of y and y is different from x,
(x:0)c = K ¢, where 7 is the type of constant c,

(x:0) (MN) = Sg,p,:({(x:0)M)({x:0) N), whereT", x:0 > M:p — 1,

The definition of (x: o) x is analogous to the usual untyped translation into combinators
(x)x = SK K. Itis not hard to verify that T > (x:0) M:0 — 1 is well-typed.
The essential properties of pseudo-abstraction are described by the following lemma.

Lemma 4.5.30 Let A be an applicative structure for CL(X) satisfying the equational
axioms for K and §. For any combinatory terms I', x: 0 > M: 7 and ' > N: o over CL(X),
we have

AETbs ((x:0) M)N=[N/xIM:.

The Lemma is proved by an easy induction, left as Exercise 4.5.35.
Let ' > M: o be alambda term over . We define the combinatory term " > cL(M): o
by induction on the derivation of I' > M: 0. The (add var) case requires no translation and

4.5 Henkin Models, Soundness and Completeness 299

is omitted.

CL(x) =x

cL(c) =c

CL(MN) =CL(M)CL(N)

cL(Ax:0. M) = {(x:0)cL(M)

We can use the translation of A-terms into combinatory terms to interpret a A-term in any
applicative structure with combinators. If the applicative structure is extensional, then we
may show this yields the standard meaning of the lambda term.

Lemma 4.5.31 Suppose A is an extensional applicative structure for CL(X) satisfying
the axioms for K and S and I' > M: o is a lambda term over . If n = I", then the meaning
of I'> M: o exists in A and is given by

[TeM:ollp=[0I> (M):o]n.

Proof The lemma is proved by induction on the typing of terms. The only nontrivial case
is (— Intro). Recall that the meaning of I' > Ax: 0. M: 0 — 7 typed by (— Intro) is

[T>Ax:0.M:0 — t]ln = the unique f € A°~7 such that
Yae A° . App fa=[T,x:0v> M:tlnlx > a]
By the inductive hypothesis,
App fa=[TI,x:0> (M):tlinfx — a]
for all a € A°. By the substitution lemma and LLemma 4.5.30,
ApplTe (x:o) (M):0 = tllna=1I,x:0 (M): tlnlx — a]
for all @ € A°. This proves the lemma. [
‘We may also translate combinatory terms into lambda terms, as follows.
LAM(X) =X
LAM(c) = ¢ for constant ¢ different from K, S
LAM(K5 1) =Ax:0.Ay:T.X
LAM(S, 6,7) =AXx: (0 = 0 —> T).Ay: p = 0.Az2: p. x2(¥7)

LAM(MN) f = LAM(M)LAM(N)

300 Simply-typed Lambda Calculus

It is easy to prove the following lemma.

Lemma 4.5.32 Let .4 be an environment model for signature . Then for every combi-
natory term I > M: o over CL(XZ), we have AL =T M= (M):0.

Using Lemmas 4.5.31 and 4.5.32, we can now prove the following combinatory model
theorem. This theorem is analogous to the combinatory model theorem of [Mey82], but
somewhat more simply stated since we have only considered extensional structures.

Theorem 4.5.33 An extensional applicative structure satisfies the environment model
condition iff it satisfies the combinatory model condition.

Proof If applicative structure 4 satisfies the environment model condition, then .A has
combinators since, by Lemma 4.5.32, every combinator is definable by a closed lambda
term. Conversely, if A satisfies the combinatory model condition, then by Lemma 4.5.31,
each lambda term must have a meaning in .A. m

In logical terms, a typed applicative structure may be viewed as a first-order model
of a many-sorted signature with one sort for each type, as discussed at the beginning
of Section 4.5.2. Extensionality may be written as a first-order formula (over the same
signature), while each combinator is defined by an equational axiom. Therefore, Henkin
models may be characterized as models of a multi-sorted first-order theory comprising the
extensionality and combinator axioms.

Exercise 4.5.34 Translate the following lambda terms into combinators.

(a) Ax:o.Ay:T.X
) Ax:(p >0 = 1).Ay:p=> 0. Az p.x2(y2)

Exercise 4.5.35 Prove Lemma 4.5.30.
4.5.8 Combinatory and Lambda Algebras

Two nonextensional structures are occasionally of interest. These are typed analogs of
untyped structures discussed in [Bar84], for example. Since the main interest in these
structures is technical, we sketch only the main ideas. The reader interested in further
information is encouraged to consult [Bar84].

Combinatory algebras are typed applicative structures that have combinators (as de-
scribed above), but are not necessarily extensional. In a sense, every term can be given
a meaning in a combinatory algebra, since every term can be translated into combina-
tors, and every applicative combination of combinators has a straightforward interpre-
tation. However, many natural equations between lambda terms may fail. For example,

4.5 Henkin Models, Soundness and Completeness 301

SKK = SK S holds in every lambda model (when these combinators are each typed ap-
propriately), since these functions are extensionally equal. However, both are in combina-
tory normal form, and so by the confluence of combinatory reduction (Example 3.7.31)
these terms are not provably equal. It follows from completeness for algebra that they
may have distinct interpretations in a combinatory algebra. In particular, they are not equal
in the term combinatory algebra (the term algebra for combinatory logic). Consequently,
combinatory algebras are not models of the equational theory of typed lambda calculus.

There exists an equationally axiomatized class of combinatory algebras satisfying the
pure equational theory of typed lambda calculus (8, n-conversion). These structures are
called lambda algebras, and the unmemorable axioms may be found in [Bar84, Mey82],
for example. The main difference between lambda algebras and models is that lambda
algebras do not satisfy (£) in the standard sense. As a consequence, the set of equations
satisfied by an arbitrary lambda algebra is not necessarily closed under (§). We generally
interpret

Fxo-M=N:1
F'six:io.M=2x:0.N:og —> 1

&)

as saying that whenever M and N have the same meaning for all values of x, we have
Ax:0.M = Ax:o0. N. This semantic interpretation of (§) is guaranteed by extensionality,
but fails in arbitrary lambda algebras.

4.5.9 Henkin Models for Other Types

We extend the definition of Henkin model to other versions of simply-typed lambda cal-
culus by extending the definitions of applicative structure, extensionality, and the environ-
ment and combinatory model conditions. In this section, we describe Henkin models for
Ayl unit, +, X, = by reference to the definitions already given for A~. Models for intermedi-
ate simply-typed lambda calculi may obtained by dropping the irrelevant conditions.

Applicative Structures
A Amullunit, . x,=> applicative structure differs from a A~ applicative structure in that we
need additional operations associated with the additional types. While it is possible to re-
duce the definition of A™/-4nit:+.X,= applicative structure to the definition of A~ structure
by adding constants to a A~ signature, it is simpler to take a more direct approach.

A typed applicative structure A for signature X is a tuple

({A%}, {Inleft”", Inright™ ", Proj{"*, Proj;'*, App”*}, Const)

of families of sets and mappings indexed by types, with

302 Simply-typed Lambda Calculus

Inleft”*: A9 — AT,
+ Inright”": A" —> AT,
* Proj]": A7 — A7,

. ijg,f:Aaxr N Ar,

for all types o and t over X, and App”’ as described in Section 4.5.2.

It may appear strange that we assume injection and projection functions as part of the
structure, but not case or pairing functions. However, this is consistent with our earlier
treatment of function types. We assume application as part of the applicative structure,
leaving it to the the extensionality and environment or combinatory condition to guarantee
that we may interpret lambda abstraction in a Henkin model. Similarly, the extensionality
and environment or combinatory conditions will guarantee that case, pairing, * and Zero
may be interpreted uniquely in every A™L#nit: ..~ Henkin model.

Extensionality
We will use the term extensionality for the conjunction of several conditions, one for each
type. Intuitively, each extensionality conditions says that equality on the type is “standard”
in some way. For example, the extensionality condition for products says that two elements
representing pairs are equal iff they have the same first and second components.

An applicative structure is extensional if it satisfies the following conditions.

o AMI=0 gnd A9 UM each have exactly one element,
*Vf,ge APt (f olInleft = g o Inleft A f o Inright = g o Inright) > f =¢
* Vp,q € A% (Proj, p = Proj,q A Proj,p =Proj,q) D p=gq

The first condition should be self-explanatory. In the second condition, an equation f ch =
g o h should be read as an abbreviation for a formula of the form

Vx.App f (App 7 x) = App g (App h x)

Intuitively, the second condition says that a function on a sum type is determined by the
elements in the range of the injections (see Exercise 2.6.3). The last condition guarantees
that for every pair of elements a € A” and b € AT, there is at most one “pair” p € A7*7
whose first and second projections yield a and b, respectively.

Frames

If we are only interested in extensional applicative structures, then, as for A~ , we may for-
mulate a simpler, combined definition. For A™Lurit.+.X,= "3 frame satisfies the following
conditions:

4.5 Henkin Models, Soundness and Completeness 303

o A= and A9 4t each have exactly one element,

s A9TT D A% WJ AT is a superset of the disjoint union A° W A" = ({0} x A%)U ({1} x A7),
* Inleft”"x = (0, x) and Inright” %y = (1, y),

* A9%T C AY x AT is a set of ordered pairs

* Proj{"(x, y) =x and Proj5 " (x, y) =y

in addition to the conditions on A° 7 and App stated in Section 4.5.2. It is possible to
generalize Lemma 4.5.3 to the calculus A™/4nit.X.= without sums (see Exercise 4.5.36).

Sums are problematic since A“*9)~7 could be empty in some applicative structure A.
However, any nontrivial Henkin model with sum types is isomorphic to some frame.

Meaning and the Environment Model Condition
The meaning of a A"/:#nit.+.X.~ term is given by extending the definition of the meaning
function for A~ terms with the following additional clauses.

9> Zero®: null - oy = the unique element of A™/~>7
[@ > *: unitln = the unique element of A*"
[T >Inleft”"M:0 + tlyn =Inleft®” [T > M:0lln

[T & Inright”*M: o + t]n = Inright”™’ [T > M:t1n

[T > CaseMNP:pln =App fIII'>M:0 + tln

where f € A°T777 is uniquely determined by
foInleft”" =["'> N:o — plln and
f oInright”™" =[[T»> P: 7 — plln

[T >Proji "M:oln =Proj{" [T>M:0 x
[T > Proj5 "M: 7] =ProjJ" [F'>M:0 x 1l
[T>(M,N).oc x1tln = the unique p € A?*7 such that

Proj{"" p=[I'> M:o]n and
Proj;" p=[I'>N:tlp

Recall that an applicative structure satisfies the environment model condition if the
standard inductive clauses define a total meaning function [-]- on terms I'> M: o and
environments 7 such that 7 = I'. In other words, for every well-typed term I' > M: o, and
every environment i |= I', the meaning [T > M: o]ln € A must exist as defined above.

304 Simply-typed Lambda Calculus

Combinatory Model Condition
As for A7, the condition that every term has a meaning is equivalent to the existence of
combinators, where each combinator is characterized by an equational axiom. To avoid
any confusion, the constants for combinators and their types are listed below.
Zero° null— o
* unit
Inleft”*® 0 — (6 + 1)
Inright®*: 7 — (o + 1)
Case®™ :(c+1)> (6> p)> (T —=>p)—>p
Pair®" 0 > 17— (0 X 1)
Proji" :(oxt)—>0
Proj;" (o xt)—>T
The equational axioms for these constants are the equational axioms of A™-unit,+, X,
It is straightforward to extend Theorem 4.5.33 and the associated lemmas in Section
4.5.7 to Amullunit+, %, = Most of the work lies in defining pseudo-abstraction and verifying
its properties. However, all of this has been done in Section 4.5.7.

Exercise 4.5.36 Prove Lemma 4.5.3 for A™:4nit.X,> Show that if A is a Ambunit:+. <.~
Henkin model, then A°*7 is isomorphic to a superset of A% & AT,

5 Models of Typed Lambda Calculus

5.1 Introduction

This chapter develops two classes of models for typed lambda calculus, one based on
partially-ordered structures called domains, and the other based on traditional recursive
function theory (or Turing machine computation). The second class of models is intro-
duced using partial recursive functions on the natural numbers, with the main ideas later
generalized to a class of structures called partial combinatory algebras.

The main topics of this chapter are:

* Domain-theoretic models of typed lambda calculus with fixed-point operators based on
complete partial orders (CPOs).

» Fixed-point induction, a proof method for reasoning about recursive definitions.

» Computational adequacy and full abstraction theorems, relating the operational seman-
tics of PCF (and variants) to denotational semantics over domains.

* Recursion-theoretic models of typed lambda calculus without fixed-point operators, us-
ing a class of structures called modest sets.

* Relationship between modest sets and partial equivalence relations over untyped compu-
tation structures called partial combinatory algebras.

* Fixed-point operators in recursive function models.

In the sections on domain-theoretic models, we are primarily concerned with the sim-
plest class of domains, called complete partial orders, or CPOs for short. The main moti-
vation for studying domains is that they provide a class of models with fixed-point opera-
tors and methods for interpreting recursive type expressions. Our focus in this chapter is on
fixed points of functions, with recursive types considered in Section 7.4. Since fixed-point
operators are essential for recursion, and recursion is central to computation, domains are
widely studied in the literature on programming language mathematics.

A current trend in the semantics of computation is towards structures that are related to
traditional recursive function theory. One reason for this trend is that recursive function
models give a pleasant and straightforward interpretation of polymorphism and subtyping
(studied in Chapters 9 and 10, respectively). Another reason for developing recursion-
theoretic models is the close tie with constructive logic and other theories of computation.
In particular, complexity theory and traditional studies of computability are based on
recursive functions characterized by Turing machines or other computation models. It
remains to be seen, from further research, how central the ideas from domain theory are
for models based on recursive function theory. Some indication of the relationships are
discussed in Section 5.6.4.

306 Models of Typed Lambda Calculus

Both classes of structures are presented primarily as A*>~ models, leaving the interpre-
tation of sums (disjoint union) and other types to the exercises. The proofs of some of the
theorems stated or used in this chapter are postponed to Chapter 8.

5.2 Domain-theoretic Models and Fixed Points

5.2.1 Recursive Definitions and Fixed Point Operators

Before defining complete partial orders and investigating their properties, we motivate the
central properties of domains using an intuitive discussion of recursive definitions. Recall
from Section 2.2.5 that if we wish to add a recursive definition form

letrec f:o=M in N

to typed lambda calculus, it suffices to add a fixed-point operator fix, that returns a fixed
point of any function from ¢ to o. Therefore, we study a class of models for A* 7,
and extensions, in which functions of the appropriate type have fixed points. A specific
example will be a model (denotational semantics) of PCF.

We will use properties of fix reduction to motivate the semantic interpretation of fix. To
emphasize a few points about (fix) reduction, we will review the factorial example from
Section 2.2.5. In this example, we assume reduction rules for conditional, equality test,
subtraction and multiplication.

Using fix,,;;_ nar» the factorial function may be written fact & fix, ., . .. F, where F
is the expression

F & Xf:nat — nat.Ay:nat. if Eq? y O then 1| else yx f(y — 1).

Since the type is clear from context, we will drop the subscript from fix. To compute fact n,
we expand the definition, and use reduction to obtain the following.

factn = (Af:nat — nat. f(fix f)) Fn
=F (fixF)n
= (Af:nat — nat.Ly:nat. if Eq? y O then | else yx f(y — 1)) (fix F) n
=if Eq?n 0 then | else nx (fix F)(n — 1)

When n = 0, we can use the reduction axiom for conditional to simplify fact 0 to 1. For
n > 0, we can simplify the test to obtain 7 * (fix F)(n — 1), and continue as above. For any
numeral n, we will eventually reduce fact n to the numeral for n!.

An alternative approach to understanding fact is to consider the finite expansions of

5.2 Domain-theoretic Models and Fixed Points 307

fix F. To make this as intuitive as possible, let us temporarily think of nat — nat as a
collection of partial functions on the natural numbers, represented by sets of ordered pairs.
Using a constant diverge for the “nowhere defined” function (the empty set of ordered
pairs), we let the “zero-th expansion” fixl0 F = diverge and define

fixlt T F = F (fixl™ F)

In computational terms, fix!" F describes the recursive function computed using at most n
evaluations of the body of F. Or, put another way, fix!"! F is the best we could do with
a machine having such limited memory that allocating space for more than n function
calls would overflow the run-time stack. For example, we can see that (ﬁxm F)0O=1and
(ﬁxm F)1=1,but (ﬁxm F) n is undefined for n > 2.

Viewed as sets of ordered pairs, the finite expansions of fix F are linearly ordered by
set-theoretic containment. Specifically, fix'%! F =@ is the least element in this ordering,
and fix!"t"1 F = (fix!™! F) U (n, n!) properly contains all fix!'! F for i <n. This reflects
the fact that if we are allowed more recursive calls, we may compute factorial for larger
natural numbers. In addition, since every terminating computation involving factorial uses
only a finite number of recursive calls, it makes intuitive computational sense to let fact =
U, (ﬁx["] F); this gives us the standard factorial function. However, a priori, there is
no reason to believe that for arbitrary F, |, fix"! F is a fixed point of F. This may be
guaranteed by imposing relatively natural conditions on F (or the basic functions used
to define F). Since any fixed point of F must contain the functions defined by finite
expansions of F, Unﬁx["] F will be the least fixed point of F (when we order partial
functions by set containment).

In domain-theoretic models of typed lambda calculus, types denote partially-ordered
sets of values called domains. Although it is possible to develop domains using partial
functions [Plo85], we will follow the more standard approach of total functions. However,
we will alter the interpretation of nat so that nar — nat “contains” the partial functions
on the ordinary natural numbers in a straightforward way. This will allow us to define an
ordering on total functions that reflects the set-theoretic containment fix"l F C fixn 11 p
of partial functions. In addition, all functions in domain-theoretic models will be continu-
ous, in a certain sense. This will imply that least fixed-points can be characterized as least
upper bounds of countable sets like {fix!™ F | n > 0}.

A specific problem related to recursion is the interpretation of terms that define nonter-
minating computations. Since recursion allows us to write expressions that have no normal
form, we must give meaning to expressions that do not seem to define any standard value.
For example, it is impossible to simplify the PCF expression

letrec f:nat — nat=>Ax:nat. f(x+1) in f3

308 Models of Typed Lambda Calculus

to a numeral, even though the type of this expression is nat. It is sensible to give this term
type nat, since it is clear from the typing rules that if any term of this form were to have
a normal form, the result would be a natural number. Rather than say that the value of
this expression is undefined, which would make the meaning function on models a partial
function, we extend the domain of “natural numbers” to include an additional value L, to
represent nonterminating computations of type nat. This gives us a way to represent partial
functions as total ones, since we may view any partial numeric function as a function into
the domain of natural numbers with L ,,;; added.

The ordering of a domain is intended to characterize what might be called “information
content” or “degree of definedness.” Since a nonterminating computation is less informa-
tive than any terminating computation, L ,,, will be the least element in the ordering on
the domain of natural numbers. We order nat — nat point-wise, which gives rise to an or-
dering that strongly resembles the containment ordering on partial functions. For example,
since the constant function Ax: nat. L, produces the least element from any argument, it
will be the least element of nat — nat. Functions that are defined on some arguments, and
intuitively “undefined” elsewhere, will be greater than the least element of the domain, but
less than functions that are defined on more arguments. By requiring that every function be
continuous with respect to the ordering, we may interpret fix as the least fixed-point func-
tional. For continuous F, the least fixed point will be the least upper bound of all finite
expansions fixX] F.

5.2.2 Complete Partial Orders, Lifting and Cartesian Products

Many families of ordered structures with the general properties described above are called
domains. We will focus on the complete partial orders, since most families of domains are
obtained from these by imposing additional conditions. In this section, we define complete
partial orders and investigate two operations on complete partial orders, lifting and carte-
sian product. Lifting is useful for building domains with least elements, an important step
in finding fixed points, and for relating total and partial functions. Cartesian products of
CPOs are used to interpret product types.

The definition of complete partial order requires subsidiary definitions of partial order
and directed set. A partial order (D, <) is a set D with a reflexive, anti-symmetric and
transitive relation <. Reflexivity means that d < d for every d € D, and transitivity means
that if d <d’ and d’ < d”, then d < d”. A relation is anti-symmetric if d <d’ and d’ < d
imply d = d’. Antisymmetry implies that there are no “loops” d < d’ < d withd # d’. (See
Exercise 5.2.3.) Any set can be considered a partial order using the discrete order x < y iff
x = y. Another example of a partial order is the prefix order on sequences. More precisely,

5.2 Domain-theoretic Models and Fixed Points 309

let S be any set and let $* be the set of finite sequences of elements of S. We say s <prefix 5’
iff sequence s is an initial segment of sequence s’. This gives is a partial order (S*, <prefix)-
We can also partially order the finite and infinite sequences this way. (See Exercise 5.2.4.)

If (D, <) is a partial order, then an upper bound of a subset S C D is an element x € D
with y < x forevery y € S. A least upper bound of S is an upper bound which is < every
upper bound of S. It is easy to see that if a subset S of a partial order D has a least upper
bound, the least upper bound is unique (by antisymmetry).

If (D, <) is a partial order, then a subset S € D is directed if every finite Sy C S has
an upper bound in S. One property of directed sets is that every directed set is nonempty.
The reason is that even the empty subset of a directed S must have an upper bound in
S. It is easy to see that if S € D is linearly ordered, which means that x <y or y <x
for all x, y € S, then § is directed. Another example of a directed set is the partial order
{ao, bo, a1, by, az, b3, ...} with a; < aj, b; for all i < j and similarly b; < aj, b; for all
i < j. This partial order consists of two linear orders, ap <a; <a» <...and by < b| <
by < ..., connected together so that a; and b; have upper bounds a;; and b;, but no
least upper bound.

A complete partial order, or CPO for short, is a partial order (D, <) such that every di-
rected S € D has a least upper bound, written \/S. Any set may be considered a complete
partial order using the discrete order. It is also easy to show that any finite partial order is
a CPO.

A non-example is that with respect to the ordinary arithmetic ordering, the natural
numbers are not a CPO. The reason is that the set A/ itself is directed, but has no least
upper bound. If we add an extra element oo greater than all the ordinary numbers, then we
have a CPO. Any closed interval of the real line, under the standard order is easily seen to
be a CPO. A nontrivial closed interval of the rational numbers fails to be a CPO, however,
since there are increasing sequences without least upper bounds, namely, the sequences of
rationals whose least upper bounds would be irrational.

A trivial but very useful fact is that if S, 7 € D are directed, and every element of S is
less than or equal to some element of 7, then \/S < \/T. In particular \/S = \/T if every
element of either set is < some element of the other. This is used in Exercise 5.2.6 at the
end of this section.

In interpreting fix, we will be particularly interested in CPOs that have least elements.
The reason is that every continuous function on a CPO with a least element has a fixed
point, as we shall see. If D = (D, <) is a partial order with least element, then we say D is
pointed. In this case, we write L p for the least element of D. When the CPO is clear from
context, we will omit the subscript from L p.

A simple class of pointed CPOs are the so-called lifted sets. If A is any set, then we write

310 Models of Typed Lambda Calculus

A | for the CPO whose elements are A U {_L}, ordered sothatx < yiff x = y orx =_. The
CPO A, is commonly called “A lifted.”” We may also lift any CPO D = (D, <p). The
result, D, has elements D U {L}, where L is distinct from all elements of D. We order
D, sothat x <y iff x =1 or x, y € D with x <p y. In the case that <p is the discrete
order, this is the same as the lifted set D .

Lemma 5.2.1 If D is a CPO then D is a pointed CPO (CPO with a least element).

Proof The proof is easy. The directed subset {_L} of D, has least upper bound L. A
directed subset S of D that is not the singleton {_L} has the same least upper bound as the
subset S — {_L} of D. Therefore every directed subset of D has a least upper bound. The
least element of D is clearly L.]

Two examples that are of particular interest in connection with PCF are A, the lifted
natural numbers, and B, the lifted booleans. The CPO N looks like this

L

Since this picture is quite flat, a lifted set is sometimes referred to as a flat CPO.

If D={(D, <p) and £ = (E, <g) are CPOs, then we may define a cartesian product
CPO as follows. We let D x £ = (D x E, <pxg), where D x E is the familiar set of
ordered pairs, and the ordering <py g is defined as follows.

(d,e) <pxp{d,e) iff d<pd'ande <g¢
If § € D x E, itis useful to define sets Proj, S = {d | (d, e) € S} and Proj,S ={e| (d, e) €
S}.

Lemma 5.2.2 Suppose D and £ are CPOs. Their product, D x &, is a CPO which is
pointed (has a least element) if both D and £ are pointed. Moreover, if SC D x E is
directed, then \/S = (\/S1, \/$2), where S; = Proj;S.

Before reading the proof, you might find it useful to draw the partial order B, x B,
which has nine elements. Find the least element and check that every directed set has a
least upper bound.

5.2 Domain-theoretic Models and Fixed Points 311

Proof We first check that each directed set in D x &£ has a least upper bound. Let S C
D x E be any directed set and define sets S| and S by S; = Proj;S. We prove the lemma
by showing that if S is directed, then S| € D is directed and S; C E is directed. It is then
easy to check that the least upper bound of S is the pair (\/S;, \/S2). We leave this last
step to the reader.

To show that Sy is directed, consider any finite subset T C §|. We must show that T
has an upper bound in Sj. For every d € T there is an element ¢ € E with (d, e) € S, by
definition of Sy. This means that there is a finite subset R € S with Proj, R = T. But since
the first component of an upper bound of R gives us an upper bound of T, it follows that
T has an upper bound in Sy. Similar reasoning shows that S, is also directed.

It is easy to see that if D and £ have least elements L p and L g, then (L p, Lg) is the
least element of D x &. .

Exercise 5.2.3 Suppose < is a reflexive and transitive order on D, and define the relation
<onDbyx < yiffx <yandx # y. Show that < is transitive iff < is antisymmetric.

Exercise 5.2.4 Let S be a set with at least two elements and consider the following sets
of sequences, partially ordered by the prefix ordering s <prefix s’ iff sequence s is an initial
segment of sequence s”:

S* finite sequences from S
S* finite, nonempty sequences from §
S§°° finite and countably infinite sequences from S

A countably infinite sequence is given by a function from the natural numbers to S.
(Specifically, a sequence may be regarded as a function f: N — S, with f(n) giving the
nth element of the sequence.)

(a) Say briefly why all three cases are partial orders. Since §* C §* C §%, it suffices to
check that S* is partially ordered.
(b) Which partial orders have a least element? What is it?

(c) What do directed sets in all three partial orders look like? In particular, if a set {s, s’}
with two elements is directed, what is the necessary relationship between s and s'?

(d) Which of these three partial orders are CPOs?
Exercise 5.2.5 Let P =N — N be the set of partial functions on the natural numbers,

where a partial function f:N — N is a set of ordered pairs, f C N x N, such that if
(x,y), (x',y') € f with x = x’, then y = y’. We partially order P by set inclusion.

312 Models of Typed Lambda Calculus

(a) Describe the directed subsets of P.
(b) Give an example of an infinite subset of P which is not directed.

(c) Show that every directed subset of P has a least upper bound.

Exercise 5.2.6 An alternate definition of CPO uses chains instead of directed sets. The
general proof that these definitions are equivalent requires well-ordered chains, for ordi-
nals larger than w, and the axiom of choice. However, for countable CPOs the proof is
much simpler. (A set A is countable if there is a function f: ' — A from the natural num-
bers onto A.) If D is a partial order, then an w-chain in D is a non-decreasing, countable
sequence dp < dj <dp <...of elements of D. A partial order D is an w-chain CPO if ev-
ery w-chain in D has a least upper bound. Show that if D is a countable partial order, then
D is an w-chain CPO iff every directed subset of D has a least upper bound. (A related
result for arbitrary CPOs is given in [Mar76]; see also [SP82, Page 775].)

Exercise 5.2.7 In the proof of Lemma 5.2.2, we define two sets Proj,S and Proj, S from
S and show that if S is directed then so are both of these sets. Prove that the converse of
this statement is false by finding a subset S of B, x B that is not directed, but with both
Proj, S and Proj, S directed.

5.2.3 Continuous Functions

The continuous functions on CPOs include all of the usual functions we use in program-
ming, and give us a class of functions with fixed points. In this section, we show that the
collection of all continuous functions from one CPO to another forms a CPO. This is an
essential step towards constructing a model with each type a CPO, since in order to do so,
function types must be interpreted as CPOs.

Suppose D = (D, <p) and € = (E, <g) are CPOs, and f: D — E is a function on the
underlying sets. If S € D, we will write f(S) for the subset of E given by

f($)={fd) | deS)}

We say f is monotonic if d <d’ implies f(d) < f(d’). It is easy to see that if f is
monotonic and S is directed, then f(S) is directed. A monotonic function f is continuous
if, for every directed S € D, we have f(\/S) = \/ f(S).

A degenerate but important example is that if D is discretely ordered, then every func-
tion on D is continuous. A constant function on any CPO is also trivially continuous.
Another example is that any continuous function, in the ordinary sense of calculus, on a
closed interval [x, y] of the real line is also a continuous function when we regard [x, y]
as a CPO. However, the converse fails, since a continuous function, as defined for CPOs,
need only be continuous “from the left.”” (See Exercise 5.2.12 below.)

5.2 Domain-theoretic Models and Fixed Points 313

It is easy to find examples of continuous functions on lifted sets, since any monotonic
function from a lifted set A to any CPO is continuous. The reason is that in A, all
nontrivial directed sets have the form {L, a} and every monotonic function f must map
V{Ll,a}=ato

V(L. ah) =V{f), f@}= f(a).

It is useful to work out a general construction for continuous functions from one lifted
CPO to another. If D and £ are CPOs, and f: D — E is continuous, we define the lifted
Sunction f1:(DU{Ll}) »> (EU{Ll}) by

fd) ifdeD
L otherwise

fid) =

We summarize the main properties of lifting in the following lemma. If f is a function on
pointed CPOs with f(L) =1, then we say f is strict.

Lemma 5.2.8 Let D and £ be CPOs. If f: D — £ is continuous, then f,: D) — £ is
strict and continuous.

An important special case is that if A and B are sets and f: A — B,then f;: A} — B,
is a strict continuous function.

Proof A lifted function f,:D; — £, is strict by definition. We assume that f: D — £
is continuous and show that f is continuous. To show this, let S be any directed set in
D, . We must show that f; (\/S) = \/ fL(S). The main idea is that either S = {} or the
difference between f and f| does not matter.

If S={L1}, then f1(\/S) = fL(L)=L=VFfi(S).If S#{L} thenlet ' € Dbe S —
{L}. Since § € D and every element of S’ is greater than L of D , we have \/S =
VS e€Dand Vfi(S) =\ fL(8) =V f(S). Since f is continuous, we have f1(\/S) =
FOVS) =V f(S) =V fL(S). This proves the lemma. "

It is worth noting that strict functions are not sufficient to model lambda calculus, and
therefore PCF; we need non-strict functions. The reason is that we can define constant
functions using lambda terms, and constant functions do not necessarily map L to L.
In particular, if we interpret nat as the flat CPO N, the interpretation of (fix Ax: nat. x)
will be L. Therefore, the value of the term (Ax:nat.3)(fix Ax: nat. x) will be the result
of applying a constant function to L. To be faithful to PCF, the interpretation of this ap-
plication must be 3, since we can prove (Ax: nat. 3)(fix Ax: nat. x) = 3, not L. Therefore,
we cannot model PCF, or typed lambda calculus, using only strict functions. On the other
hand, there is a close connection between strict functions and eager PCF, described in Sec-
tion 2.4.5.

314 Models of Typed Lambda Calculus

To associate a CPO with each type, we must be able to view the collection of continuous
functions from one CPO to another as a CPO. We will partially order functions point-wise,
as follows. Suppose D = (D, <p) and £ = (E, <g) are CPOs. For continuous f, g: D —
E,wesay f <p_.f g if, forevery d € D, we have f(d) <g g(d). We will write D — £ =
(D — E, <p_,) for the collection of continuous functions from D to &, ordered point-
wise. Some useful notation is that if S € D — E is a set of functions, and d € D, then
S(d) C E is the set given by

Sd)y={f)]f €S}

Example 5.2.9 There are eleven monotonic functions from B to itself, listed in the
following table.

AES f(true) f (false)

fo 1 1 1

f 4 true 1

f2 1 false 1

/3 L L true
Jfa 1 1 false
/s 4 true true
Je 1 false true
i 1 true false
/3 L false false
fo true true true
fio false false false

All are continuous since B, is finite. These functions are ordered as shown in Figure 5.1.
The extension nor, : B; — B of negation is function fs in this table. Although rnor: B —
B has no fixed point, it is easy to see that L is a fixed point of not | . [

Lemma 5.2.10 For any CPOs D and &, the collection D — £ of continuous functions,
ordered point-wise, is a CPO. In particular, if S € D — E is directed, the least upper
bound is the function f given by f(d) = \/S(d). The CPO D — £ has a least element
if £ does.

Proof 1t is easy to check that D — £ is a partial order and that if £ has a least element
then Ax:D. Lg is the least element of D — &£. It remains to show that every directed

5.2 Domain-theoretic Models and Fixed Points 315

fo fio

fs e f T

fi h f3 fa
fo

Figure 5.1

Ordering of continuous functions B; — B

set has a least upper bound. Suppose S € D — E is directed. We first show that for any
d € D, the subset S(d) C E is directed. By definition of S(d), any » elements of this set
will have the form g (d), . .., g,(d) for some g1, ..., g, € S. Butsince § is directed, these
n functions must have some upper bound g € S. By the point-wise ordering on S, it follows
that g(d) € S(d) is an upper bound in S(d). Therefore S(d) is directed and it makes sense
to define the function f: D — E by f(d) = \/S(d).

The next step is to verify that f is the least upper bound of S. It is easy to see from
the definition of S(d) and the definition of the ordering on functions that g: D — E is an
upper bound of S iff g(d) is an upper bound of S(d) for every d € D. Since f satisfies this
condition, and is the least such function, f is the least upper bound of §.

The final step of the proof is to show that f is continuous. This is necessary, since
otherwise we have not shown that the least upper bound of § belongs to the set of con-
tinuous functions D — E. Suppose T C D is directed. Then we have the following cal-
culation.

316 Models of Typed Lambda Calculus

FNT)=V{e(VT)|g €S}
=\/{V&(T)|g € S} by continuity of each g € S
=Vigt)igeS, teT)
=V{Vigt)|geS}teT)
=VIif@®)|teT)
=V (D)

The reader is advised to study this calculation and understand why each step makes sense.
a

If D and £ are CPOs, we will write f: D — £ to indicate that f is a continuous function
fromDto £.

It is not hard to show that n-ary function f: D; x ... x D, — E is continuous, as a
function on the product CPO, iff it is continuous in each argument, varied separately. This
is explained in more detail in Exercise 5.2.17. We also have the following general list of
continuous operations.

Lemma 5.2.11 Pairing, projection, application and composition are continuous. In more
detail,

(@) f SC Dand T C E are directed, then (\/S, \/T) =\/{(s,t)|s € S,t €T},

(b) If S € D x E is directed, then Proj;(\/S) = \/{Proj;(x) | x € S},

() f SCD— Eand T C D are directed, then \/S(\/T) = \V{f(x)| f€S,xeT},
dIfSCD—Eand T CE— F are directed, then (\/S)o (\/T)=\{go f|f €
S,geT}

The proof of this lemma is Exercise 5.2.18 below. An interesting example, parallel-or,
appears in Exercise 5.2.19.

Exercise 5.2.12 Let [x, y] be a closed interval of the real line, and let f:[x, y] — [x, y].
Recall that [x, y] is a CPO, when ordered in the usual way. Show that if f is monotonic
and continuous, in the usual €, § sense of calculus, then f is a continuous function on
CPOs. Show that the converse fails by finding a CPO-continuous function g that is not
€, §-continuous.

Exercise 5.2.13 A partial order (P, <) is essentially flat if every directed subset of P is
finite.

5.2 Domain-theoretic Models and Fixed Points 317

(a) Show thatif (P, <) is an essentially flat partial order, then (P, <) is a CPO.

(b) Suppose (D, <p) and (E, <g) are CPOs and f: D — E is monotonic. Show that if
D is essentially flat, then f is continuous.

Exercise 5.2.14 Consider the following alternative ordering on functions:
f<p-pg iff Yd <pd € D. f(d) <g g(d).

Show that this is equivalent to the ordering defined in this section for continuous functions
fromCPODto .

Exercise 5.2.15 Find CPOs D and £ and a subset S of the continuous functions from D
to £ such that each S(d) is directed but S itself is not.

Exercise 5.2.16 Let f:D — D be continuous. Show that for each n > 0, we have

L) > fr).

Exercise 5.2.17 1If f:D) x ... x D, — E, then there are two ways that we might
think of f being continuous. The first is that we could fix n — 1 arguments, and ask
whether the resulting unary function is continuous from D; to E. The second is that
since the product D) x ... x D, of CPOs is a CPO, we can apply the general defi-
nition of continuous function from one CPO to another. Show that these two coincide,
i.e., a function f: D) x ... x D, — E is continuous from the product CPO D; x ... X
D, to E iff each unary function obtained by holding n — 1 arguments fixed is con-
tinuous.

Exercise 5.2.18 Prove the four parts of Lemma 5.2.11 as parts (a), (b), (¢) and (d) of this
exercise.

Exercise 5.2.19 Show that the parallel-or function described in Section 2.5.6 is contin-
uous. More specifically, show that there is a continuous function por: B — B — B
satisfying

portrue x =true
por x true = true
por false false = false

by defining the function completely and proving that it is continuous. You may use the
names for functions in B, — B, given in Example 5.2.9.

318 Models of Typed Lambda Calculus

5.2.4 Fixed Points and the Full Continuous Hierarchy

Our current motivation for studying domain-theoretic models is to construct Henkin mod-
els of typed lambda calculi with fixed-point operators. The type frame, .4, called the
full continuous 1>~ hierarchy over CPOs (Abo, <0), .-, (Abk, <k) is defined by taking
Abo AP as base types, and

AO'XT :AU X At
A°7T =all continuous f: (A%, <,) — (AT, <;)

with A?*7 ordered coordinate-wise by <, x; and A° 7 ordered point-wise by <,_, .. By
Lemmas 5.2.2 and 5.2.10, each (A, <;} is a CPO. The main result of this section is that
the full continuous type hierarchy over any CPOs forms a Henkin model, with least-fixed-
point operators at all pointed types. Before proving that the full continuous hierarchy is a
Henkin model, we consider the interpretation of fix.

We say a is the least fixed point of f if a = f(a) and, whenever b = f(b), we have
a < b. As suggested in Section 5.2.1, the least fixed point of any function f is the least
upper bound of the set obtained by repeatedly applying f to the least element of its
domain.

Lemma 5.2.20 If D is a pointed CPO and f:D — D is continuous, then f has a least
fixed point

Jxp f=VIf"(L)In =0}
In addition, the map fix, is continuous.

Proof Let f:D — D be continuous. Since f is monotonic, and L < f(L1), we can see
that f7(L) < fmT1(L). It follows that {f"(L)|n > 0} is linearly ordered and therefore
directed. Let a be the least upper bound a = \/{f"(L) |n > 0}.

We must show that a is a fixed point of f. By continuity of f,

fl@=f(\Vif"(Lytn>0})
=V {f"*(L)|n >0}

But since { f*(1)} and {f(”'H)(.L)} have the same least upper bound, we have f(a) = a.

To see that a is the least fixed point of f, suppose b = f(b) is any fixed point. Since
1<b, we have f(L) < f(b) and similarly f*(1) < f*(b) for any n > 0. But since b is
a fixed point of f, f"(b) = b. Therefore b is an upper bound for the set { f"(1) |n > 0}.
Since the least upper bound of this set is a, it follows that a < b.

5.2 Domain-theoretic Models and Fixed Points 319

The final step is to show that the function fix, mapping f to \/{f"(L)} is itself con-
tinuous. Let us suppose that § € D — D is directed, with \/S = f. We must show that
fixp f =V {fixp g lg € S}. By continuity of function application (Lemma 5.2.11c¢), each
f"(L) is the least upper bound of the set of all g”(L) with g € S. Therefore,

fixp f=V{f"(L)n >0}
[1.5ex]=\/{g"(L)|n>0,g €S}
It is easy to see that {g"(L)|n >0, g € S} and {fix, g | g € S} have the same least upper

bound, since any upper bound for the g"”(L)’s must be an upper bound for the (fix, g)’s.
Therefore

fixp f=\VfixpglgeS)
This proves the lemma. -

A trivial example is fix id, where id: D — D is the identity function on the pointed CPO
D. We can calculate the least fixed point of id as follows.

Sfixid =\/{id"(Lp)|n >0}
=V{Lilp}
=1p

This calculation clearly gives the right answer, since L is a fixed point of the identity
function, and no element of D is less than L.

Example 5.2.21 Let PN be the collection of all subsets of the natural numbers, A,
ordered by set containment. It is easy to check that this is a CPO since the union of a set of
directed subsets is an element of PN/, (In fact, PN is a special kind of partial order called
a lattice.) The least element of PA/ is the empty set, #. We will show that the function f
with

f(A)= AU {theleasti € A notin A, if one exists }

is continuous and determine its least fixed point.

It is easy to see that f is monotonic, since if A C B C N, and i is the least number
not in A, then either i € B C f(B), or f adds i to B. To check continuity, suppose S is
some directed set of subsets of . We must show that f({_JS) = Jf(S). Let n be the least
natural number not in |_JS and let A be the set of all / that are the least natural number not
in some set B € S. Since f(|JS) =JSU {n} and | Jf(S) = JS U 4, it suffices to show
that every i € A that is different from » is in some B € S. Since 7 is not in any B € S,

320 Models of Typed Lambda Calculus

no element of A is greater than n. But if any i € A less than n was not in any B € §,
then f would add this i to JS. Therefore every i € A different from n must be in some
BesS.

Since f is continuous, its least fixed-point is the union of the sets in the sequence
a, f@y, f(f@, ..., fk(@), But it is easy to see that fk(@) ={0,...,k—1}, and
therefore fix f = N. We can also see that AV is a fixed point of f directly, and it must be
the least fixed point since f(A) # A for any A C A not containing all the natural numbers.

n

Example 5.2.22 Let X be an algebraic signature and let £ be the set of all well-formed
equations between T-terms. Let C be the set of all subsets of £. We may regard C as a
CPO, ordered by set containment. Let F:C — C be the function mapping any set H € C
to the set of all equations that are either axioms of the algebraic proof system, elements of
H, or provable from equations in H using a single inference rule. In this example, we will
demonstrate the following properties of provability.

(a) The function F' is monotonic and continuous.
(b) The least fixed point of F is the set of all valid formulas.

(c) Let H e Candlet T(H) = \/{F"(H)|n = 0}. Then an equation E is in T (H) iff E is
provable from H.

It is useful to introduce some additional notation. Let A be the set of all equations that
are instances of axioms of the algebraic proof system. For any set of equations H, let
P (H) denote the set of all equations that are provable from equations in H U A using a
single inference rule. These definitions allow us to write F as

F(Hy=AUHU P(H).

(a) We show that F is monotonic as follows. Suppose H; C Hj;. It suffices to demon-
strate that P(H) € P(Hy). If E € P(H), then let S C H; U A be the equations used
as hypotheses in the inference rule that yields E. Since S C (H; U A) C (H, U A), we
can see that E is also provable in a single step from equations in H, U A. Therefore
E € P(H>).

To demonstrate continuity, let C be a directed subset of C. Recall that the least upper
bound of C is the ordinary union |C. Since C is directed, any finite collection of subsets,
S1,..., 8t € C, are contained in some S 2 Sy, ..., Sy alsoin C.

We must show that F (| JC) = JF(C). Since F(|JC)=AU|JC U P(JC) and

5.2 Domain-theoretic Models and Fixed Points 321

UF(©)=U{AUSU P(S)|S € C}
=AU (SIS e CYUULP(S)IS € C}
=AUJCUP(C)

it suffices to show that P(|_JC) = |JP(C). By monotonicity, we have P(S) C P(| JC)
for each S € C, and therefore | JP(C) € P(|JC). Therefore, we only need to show that
P(JC) C|JP(C). For any equation E € P(|JC), there is a finite set S C | JC of equa-
tions used to prove E in a single step. Since S is finite, there is a finite list of sub-
sets, S1, ..., 8¢ € C, with S C S; U...U 8. Since C is directed, there must be a single
S’ e C with (S;U...U Sy) C §'. From this, we can conclude that E € P(S’) and therefore
E €| JP(C). This shows that P(| JC) € | JP(C) and concludes the proof of continuity.
(b) By induction on n, we may prove that F"({) is the set of all equations provable from
axioms using proofs of depth less than n, where the depth of a proof is the depth of the
tree we obtain by writing out the proof with each equation E the parent of all the equations
E1, ..., Ey used as hypotheses in the inference rule yielding E. Since every proof is finite,
fix F = J{F"(®) | n > 0} is the set of all equations provable from the axioms.

(c) Using an inductive argument similar to the one sketched in part (b), we may show that
F"(H) is the set of all equations provable from axioms and equations in H using proofs
of depth less than 7. Since every proof has finite depth, T(H) = |J{F"(H) | n > 0} is the
set of all equations provable from axioms and elements of H. n

In the remainder of this section, we show that the full continuous hierarchy is a Henkin
model. The following two lemmas are essential to the inductive proof of the environment
model condition. The second is a continuous analogue to the s-m-n theorem for recursive
functions.

Lemma5.2.23 If f:C — (D — &) and g: C — D are continuous, then so is the function
App f g given by

(App fg)c=(fc)(go)
for all ¢ € C. In addition, the map App is continuous.

Lemma 5.2.24 If f:C x D — £ is continuous, then there is a unique continuous func-
tion (Curry f):C — (D — &£) such that for all c € C and d € D, we have

(Curry f)cd = f{c, d).

In addition, the map Curry is continuous.

322 Models of Typed Lambda Calculus

Proof of Lemma 5.2.23 The monotonicity of App f g and of App itself is left to the
reader. We first show that App f g is continuous. If § C C is directed, then we can make
the following calculation:

ViApp fg)clce S} =V{(fo)(ge)lce S}
={fclceSH(V{gclceS}) by Lemma5.2.11c
= f(\/S) g(\/S) by continuity of f, g

= App f &) (VS)

To show that App itself is continuous, suppose S| € (C — D — E) and S € (C — D)
are directed. We can check continuity by this calculation:

ViApp fglfe S, geSal=Vi{cr (fogolfeS, g€ S
=cH {(fo)(ge)| feS), ge S} byLemmaS5.2.10
=c—> (V{feclfeSh (Vigelg € $2)) by Lemma5.2.11c
=cr> ((VS)o) ((VS2)e) by Lemma 5.2.11¢
=App (V51 (V' S2) .

Proof of Lemma 5.2.24 As in the proof of Lemma 5.2.23, we leave monotonicity to
the reader. To show that Curry f is continuous, we assume that S C C is directed. Using
similar reasoning as in the proof of Lemma 5.2.23, we have the following continuity
calculation.

VA{(Curry ficlce S}=V{d flc,d)|ce S}
=d \/{f{c.d)|c e S)by Lemma5.2.10
=dw> f(\/S, d) by Lemma 52.11
= (Curry f)VS

To show that Curry itself is continuous, we assume that S € (C x D — E) is directed and
make a similar calculation:

V{Curry fl1 feSt=Vilc—>dr flc.d)| feS}
=c—> \{d— flc,d)| f €S} by Lemma5.2.10
=cr> (d— \{flc,d)| f €S}) by Lemma 5.2.10

5.2 Domain-theoretic Models and Fixed Points 323

=cr> (d> (/) (c,d)) by Lemma 5.2.11
= Curry (\/S)

This proves the lemma. .

We now show that the full continuous hierarchy is a Henkin model.

Lemma 5.2.25 The full continuous hierarchy over any collection of CPOs is a Henkin
model.

In Chapter 8, using logical relations, we will prove that if all base types are infinite, then
B, n-conversion is complete for equations that hold in the full continuous model.

Proof 1t is easy to see that the full continuous hierarchy for A%~ is an extensional ap-
plicative structure. We prove that the environment model condition is satisfied using an
induction hypothesis that is slightly stronger than the theorem. Specifically, in addition to
showing that the meaning of every term exists, we show that the meaning is a continuous
function of the values assigned to free variables by the environment. We use the assump-
tion that meanings are continuous to show that a function defined by lambda abstraction is
continuous.
We say [T > M: t]} is continuous if, for every x:0 € I' and nn = T', the map

acA° = [Te> M:tln[x — a]

is a continuous function from A% to A®. By Exercise 5.2.17, this is the same as say-
ing [l > M:] is continuous as an n-ary function A°! x ... x A?” — A%, where I' =
{x1:00, ..., Xp: 00}

Using Lemmas 5.2.24 and 5.2.23, the inductive proof is straightforward. It is easy to see
that

[xi:01, ..., x: 00> xi2 000 = n(x;)

is continuous, since identity and constant functions are continuous, and similarly for the
meaning of a constant symbol. For application, we use Lemma 5.2.23, and for lambda
abstraction, Lemma 5.2.24. =

We have the following theorem, as a consequence of Lemmas 5.2.20 and 5.2.25.

Theorem 5.2.26 The full continuous 2>~ hierarchy A over any collection of CPOs is
a Henkin model with the property that whenever A is pointed there is a least fixed point
operator fix, € A° 7.

324 Models of Typed Lambda Calculus

Recall that if AT is pointed, then A° 7 is pointed and if both A% and A* are pointed,
then A?*7 is pointed. In particular, if we choose pointed CPOs for the type constants,
then every A% will be pointed and we will have least-fixed-point operators at all types.
We consider a specific case, a CPO model for PCF, in the next section. The extension of
Theorem 5.2.26 to sums is described in Exercise 5.2.33.

Exercise 5.2.27 Find a CPO D without least element and a continuous function f: D —
D such that f does not have a least fixed point (i.e., the set of fixed points of f does not
have a least element).

Exercise 5.2.28 Calculate the least fixed point of the following continuous function from
B, — B, using the identity given in Lemma 5.2.20.

1L Alg(true), g(false)}
f=Arg:By — B,.} true — true
false +— g(true)

where A{g(true), g(false)} is the greatest lower bound of g(true) and g(false). You may
want to look at Example 5.2.9 to get a concrete picture of the CPO B — B.

Exercise 5.2.29 Let S be some set with at least two elements and let S be the
set of finite and infinite sequences of elements of S, as in Exercise 5.2.4. This is a
CPO with the prefix order. For each of the following functions on S°°, show that the
function is continuous and calculate its least fixed point using the identity given in
Lemma 5.2.20. We assume a, b € S and write the concatenation of sequences s and s’
asss.

(a) f(s) =abs, the concatenation of ab and sequence s.

(b) f(s) =ababs’, where s’ is derived from s by replacing every a by b.
y

(¢) f(s)=as’', where s’ is derived from s by replacing every a by ab.
g

Exercise 5.2.30 Recall from Example 5.2.21 that the collection PN of all sets of natural
numbers forms a CPO, ordered by set inclusion. This exercise asks you to show that
various functions on PN are continuous or calculate their least fixed points using the
identity given in Lemma 5.2.20.

(a) Show that if f: N — N is any function and Ag € N any subset, then the function
F:PN — PN defined by

F(A)=A0U{f(n)|neA}

is continuous.

5.2 Domain-theoretic Models and Fixed Points 325

(b) Find the least fixed points of the functions determined by the following data according
to the pattern given in part (a).

@) Ao={2}, f(m)=2n

(ii) Ag= {1}, f(n) = the least prime p > n

(c) Show that if f:Pgip,N'— N is any function from finite subsets of A to N and
Ao € N is any subset, then the function F: PN — PN defined by

F(A)=AgU{ f(A")| A’ C A finite }

is continuous.

(d) Find the least fixed points of the functions determined by the following data according
to the pattern given in part (c).

(i) Ao=1{2,4,6}, f(A) = ZneA n.

(i) Ao=1{3,5,7}, f(A) =[] ean-

Exercise 5.2.31 1f D is a partial order and f:D — D, then a pre-fixed-point of f is an
element x € D with f(x) < x.

(a) Show that if D is a CPO (not necessarily pointed) and f: D — D is continuous, then
the set of pre-fixed-points of f is a CPO, under the same order as D.

(b) Show that if D is a pointed CPO and f:D — D is continuous, then the set of pre-
fixed-points of f is a pointed CPO (under the same order as D) whose least element is the
least fixed-point of f.

Exercise 5.2.32 Lemma 5.2.25, showing that the CPOs form a Henkin model, is proved
using the environment model condition. An alternative is to use the combinatory model
condition and show that the full continuous hierarchy has combinators. Prove that for all
types p, o, T, the combinators K, ; and S, 4. are continuous.

Exercise 5.2.33 This exercise is about adding sum types to the full continuous hierarchy.

(a) The disjoint union of two CPOs, D = (D, <p) and £ =(E, <g),is D+ & =(D W
E, <p.+E), with the disjoint union of the two sets ordered by the least relation satisfying

0.d) <p+g (0,d") if d<pd’ and
(1,e) <prr {l,¢) if e<ge.

(Recall that D W E = ({0} x D) U ({1} x E).) We say “least relation satisfying . . . ” since
we do not want any ordering between (0, d) and (1, e). Show that the disjoint union of two
CPOs is a CPO that has no least element.

326 Models of Typed Lambda Calculus

(b) Show that if we extend the A**™ hierarchy to sum types by A°*T = A% + AT, we
obtain a AT~ Henkin model. By the combinatory condition explained in Section 4.5.9,
it suffices to provide continuous Inleft” ", Inright®® and Case” ™* satisfying the required
equational axioms.

(c) If we want A? 7 to be pointed, so that we may define elements of this type recursively,
then we must alter the construction given in part (a). Specifically, we define the separated
sum of CPOs D= (D, <p) and £ = (E, <g) by

D(+) € =(({0} x D)U ({1} x E) U{L}, <p(+)E)

where <p4)£ is identical to <p4 g except that L is less than every (0, d) and (1, e} and,
of course, 1 <_1. Show that the separated sum of any CPOs is a pointed CPO.

(d) By Exercise 2.6.4, we cannot expect to obtain a Henkin model if we interpret sum
types as separated sums. The reason is that if we have a Henkin model, then all of the
equational axioms associated with sums must hold (including the extensionality axiom
(Case)3). But since separated sum types are pointed, we have fixed-point operators on
each sum type, and therefore an inconsistency by Exercise 2.6.4. Show, however, that if
we modify the AT >~ applicative structure defined in part (b) by using separated sums
instead of disjoint unions, we obtain a structure that satisfies all the conditions for a
A+~ Henkin model except the extensionality condition for sums.

(e) A third form of sums on CPOs, used in the semantics of eager, or call-by-value
languages, is called the coalesced sum. This is defined only for pointed CPOs. If D =
(D, <p) and £ = (E, <g) are pointed CPQs, then we define the coalesced sum D @ £ =

(D® E, <pgr) by

DOE ={0} x (D —{LpMH U1} x (E—{LeghU L
(0,d) <per (0,d)ifd <pd

(1,e) <pgr (1,€) ife<pe

1l<pgr x allxe DB E

and no ordering between (0, d) and (1, e). Show that the coalesced sum of any pointed
CPOs is a CPO and, for not necessarily pointed D and £, we have D (+) £ = (D) &

(£1).

Exercise 5.2.34 An alternate form of products on CPOs, used in the semantics of eager,
or call-by-value languages, is called the smash product. This is defined only for pointed
CPOs. If D= (D, <p) and £ = (E, <) are pointed CPOs, then we define the smash
product D® £ = (D ® E, <pgk) by

5.2 Domain-theoretic Models and Fixed Points 327

D®E = (D—{Llph x(E—{Lghu L
(d,e) <pgp {d,e) if d<pd,e<gée
1<pgEx all xeD®E

Show that the smash product of any pointed CPOs is a CPO and, for any CPOs D and &,
wehave (D x &) = (D) ® (£)).

5.2.5 CPO Model for PCF

In this section, we consider the domain-theoretic semantics for PCF. This provides some
insight into properties of CPOs, and also provides the basis for semantic reasoning about
PCF. We show soundness of the PCF equational axioms system, and therefore the reduc-
tion rules, for our CPO model, called Apc. It is impossible for the PCF equational proof
system to be complete for proving all equations between PCF terms that hold in PCF. The
reason is that, as shown in Chapter 2, every partial recursive function is definable in PCF.
By soundness, and the fact that all the numerals denote distinct elements of the model, two
expressions of type nat — nat will be equal in PCF iff they operationally define the same
partial recursive function. Since equality between partial recursive functions is not recur-
sively enumerable, no recursive axiom system could be complete for Apcy. In Section 5.3,
we consider an extension to the equational axiom system, based on the CPO model, that
proves more properties of terms.

The model Apcy is the full continuous hierarchy over A% = A/} and A%%% = B, with
constants of PCF interpreted as described below.

Since the type constants of PCF are interpreted as pointed CPOs, and cartesian product
and continuous function space constructors preserve pointedness, all of the types of PCF
are interpreted as pointed CPOs. This gives us least-fixed-point operators at all types,
allowing us to interpret the fixed-point constants of PCF according to Lemma 5.2.20.

We interpret constants O, 1,2, ... and true, false as the standard natural number and
boolean elements of the lifted sets A/} and B, . It follows from Theorem 5.2.26 that if we
choose continuous functions for basic PCF operations 4, Eq? and conditional, then every
term of PCF will have a meaning in Apcg.

We interpret + and Eq? in A as the lifted versions, +, and Eq?,, of the standard
functions. In other words, we interpret 4 as the extension of addition that is strict in both

arguments, so that for every x € ARl

Loar+x = x+ Lo = Lnar
We treat the PCF equality test similarly, so that the PCF expression Eg? M N has value

true if M and N denote the same element of A/ different from L, value false if M and N
denote different non-_L elements of /|, and value L if either M and N denotes the bottom

328 Models of Typed Lambda Calculus

element of AV . Since the equational axioms of PCF only mention sums and equality tests
involving numerals 0, 1, 2, . . . and each numeral denotes a non-_L element of N, itiseasy
to see that the equational axioms are satisfied by this interpretation.

The interpretation of conditional in Apc is a little more subtle. The reader might first
guess that we could also interpret conditional as a strict function, with value L of the
appropriate type whenever any of its arguments is L of some type. However, this does
not work, since in the case that M denotes 1 but N does not, we would have

if false then M else N =1,

which contradicts an equational axiom of PCF. An interpretation of conditional that satis-
fies the equational axioms of PCF, and therefore coincides with the operational semantics,
is the following.

APCF'[M]]U if .Ach[[P]]r) = frue
Apcell if P then M else Nn= 1 Apcel[Nlln if Apcell Plin = false
4 otherwise

Since the equational axioms of PCF only mention conditional expressions when the first
argument is true or false, it is easy to see that the axioms are satisfied. This completes
the definition of Apcr. Since we have checked all of the equational axioms for constants,
we have the following immediate consequences of the general soundness theorem for
Henkin models (Theorem 4.5.17) and the connections between PCF equational axioms and
reduction discussed in Section 2.3.

Theorem 5.2.35 Let M and N be expressions of PCF over typed variables from I". If
I'> M = N:o is provable from the axioms for PCF, then the CPO model A satisfies the
equation'>- M = N:o.

Corollary 5.2.36 IfI' > M:o is a well-typed term of PCF, and M —> N, then the CPO
model Apc satisfies the equation ' M = N:o.

These soundness results show that the denotational semantics given by Apcr has the
minimal properties required of any denotational semantics for PCF. Specifically, if we can
prove M = N, or reduce one term to the other, then these two terms will have the same
meaning in Apcg. It follows that if two terms have different meaning, then we cannot prove
them equal or reduce one to the other. Therefore, we can use Apcr to reason about un-
provability or the non-existence of reductions. Some additional connections between Apcy
and the operational semantics of PCF are discussed in Sections 5.4.1 and 5.4.2. A weak
form of completeness called computational adequacy, proved in Section 5.4.1, allows us
to use Apcr to reason about provability and the existence of reductions. As remarked at

5.2 Domain-theoretic Models and Fixed Points 329

the beginning of this section, it is impossible to have full equational completeness for
Abpcr.

In the rest of this section and the exercises, we work out the meaning of some expres-
sions in Apcr and make some comments about the difference between the least fixed point
of a function and other fixed points.

Example 5.2.37 Recall that the factorial function may be written fact & fix, . .. F,
where F is the expression

F & Af:nat — nat.Ay:nat. if Eq? y O then 1 else yx f(y — 1).

We will work out the meaning of this closed term assuming that * and — denote multipli-
cation and subtraction functions which are strict extensions of the standard ones. In other
words, we assume that subtraction and multiplication have their standard meaning on non-
bottom elements of A/}, but have value L if either of their arguments is L.

Following the definition of fix in a CPO, we can see that the meaning of factorial is
the least upper bound of a directed set. Specifically, Apce[[fact] is the least upper bound
V[I_’"(J_) |n > 0}, where F = Apcel[F1. We will work out the first few cases of F”(L)
to understand what this means. Since all of the lambda terms involved are closed, we will
dispense with the formality of writing Apce([]| and use lambda terms as names for elements
of the appropriate domains.

FO(L) =Lyat—snar
Fl(L) = Ay:nat. if Eq? y O then 1 else yx* (FO(_L))(y -1
=Ay:nat. if Eq? y O then 1 else yx* (Luygr—nar)(y — 1)
= Ay:nat. if Eq? y O then 1 else L,4
F?(L) =Ay:nat.if Eq? y 0 then 1 else y* (F'(L))(y —1)
=Ay:nat. if Eq? y O then 1 else yx
(Ax:nat.if Eq? x 0 then 1 else L,,)(y—1)
=Ay:nat. if Eq? y O then 1 else yx (if Eq? (y — 1) 0 then | else .1,;)

Continuing in this way, we can see that F"(L) is the function which computes y! when-
ever 0 <y < n and has value 1,, otherwise. Since ,, represents “undefined,” this
means that F”(L) is defined for 0 < y < n, and undefined otherwise. A property of this
collection of functions is that for a particular argument y 7.1, there are two possible val-
ues for F"(L1) y.If n <y, then the value is 1, while if n > y, the value is y!.

330 Models of Typed Lambda Calculus

As spelled out in the statement of Lemma 5.2.10, the least upper bound of {F"(L) |n >
0} is the function mapping any y € AV} to the least upper bound of the set {F"(L) y|n >
0}. This set contains only L, if y =1, and has the two elements L and y! otherwise.
Therefore Apce[fact] is the function from A} to A} which maps L to L, and any
other y € N to y!. The strictness of factorial agrees with our computational intuition
and experience, since we do not expect any computation of fact M to terminate if the
expression M cannot be simplified to a numeral. But in the case that M reduces to a
numeral for y, we can reduce fact M to the numeral for y!. »

In general, the least fixed point of a function is the fixed point that is “computed in
practice.” We will prove a precise version of this statement in Section 5.4.1 by showing
that for programs (closed terms of observable type), the PCF operational and denotational
semantics coincide. An intuitive understanding of this correspondence comes from ob-
serving that the least fixed point of a function f has all the properties of fix f that we can
determine by applying fix-reduction some number of times. For example, if f is a function
from some function type to itself, then the function fix f will be least in the sense that it
is defined only where a value could be determined by reduction (or the equational proof
system), although functions which give non-_L results on more arguments could also be
fixed points of f. The following example illustrates the difference between the least fixed
point of a function and other fixed points.

Example 5.2.38 Consider the function F: (nat — nat) — (nat — nat) defined by
F & \f:nat — nat.\x:nat.if Eq?x1 then 1 else f(x —2)

where subtraction x — y yields 0 if y > x. In contrast to the function used to define facto-
rial, we will see that F has many fixed points. The reason is that F is a function mapping
even arguments to L. This allows us to find greater fixed points (in the point-wise order)
which map even arguments to natural numbers other than L. Before discussing alternate
fixed points further, we will work out the meaning of fix F .

As with factorial, we let F = Apcr[FI. The least fixed point of F is the least upper
bound of the set {F"(L)|n > 0}. The simplest way to understand this set is to begin by
working out the first few functions.

FO(—L) Z—Lnat-—mat
F'(L) =Ax:nat. if Eq? x 1 then 1 else (FU(L))(x —2)

=Ax:nat. if Eq? x 1 then 1 else Ll,4

5.2 Domain-theoretic Models and Fixed Points 331

F?(L) = Ax:nat.if Eq? x 1 then 1 else (F'(L))(x —2)
=XAx:nat.if Eq? x 1 then 1 else
(Ay:nat. if Eq? y 1 then 1 else L,4)(x —2)

=XAx:nat.if Eq? x 1 then | else if Eq? (x —2) 1 then 1 else L4

Continuing in this way, we can see that F”(_L) is the function which maps any odd x < 2n
to 1 and has value _L,, otherwise. The least upper bound f of all such functions is the
function mapping all odd x to I, and any other natural number to L. This corresponds to
the fact that if we try to compute the value of (fix F')x by reduction, we will succeed after
a finite number of reduction steps iff x is odd. If x is even, we can reduce the expression
indefinitely, but will never produce a numeral.

It is not hard to see that the fixed points of F above are precisely the functions g: nat —
nat satisfying the two conditions

g()=1
glx +2)=g(x)

Since these two equations do not determine a value for even x, any function mapping all
even x (and 0) to some number n will be a fixed point of F. All of these alternatives are
greater than f since any natural number # is greater than L in the ordering on the lifted
CPO of natural numbers. However, none of these alternative fixed points is the function
computed by reduction. (]

Exercise 5.2.39 Determine the value of each of the following expressions in the CPO
model described in this section. In each case, determine the least fixed point fix F by
identifying the directed set { F"(1) | n > 0} and working out enough expressions in the se-
quence FO(L), F'(L), F?(L), ... to confidently (and correctly) state the general pattern.

(a) fix (\f:nat —> nat.Ax:nat.(f x) + 1)

(b) fix (Af:nat — nat.rx:nat.if Eq?x0 then 1 else f(x — 1)+ f(x — 1))
You may assume that subtraction has its standard meaning on non-bottom elements of A/, ,
and has value L if either of its arguments is L.

Exercise 5.2.40 Suppose that we interpret conditional as strict in all arguments. In par-
ticular, assume that if x then y else z =1, ifeitherx =Lppo;, ¥y =Lpgr0rz =L,y.
What will be the interpretation of

fix (A\f:nat — nat.rx:nat.if Eq?x0 then 1 else f x)?

332 Models of Typed Lambda Calculus

Show that this does not agree with the result we may derive using either the reduction rules
or equational axioms for PCF. Then show that we do get the computationally correct result
with the non-strict interpretation of conditional described in this section.

Exercise 5.2.41 1t is well-known that it is not possible to write a program that de-
cides whether any other program halts. We may state this precisely for PCF using the
model Apcr. A solution to the “halting problem” in PCF would be a definable function
total?: (nat — nat) — bool with the property that for every f:nat — nat,

true ifVn ?éLnat f(n) 76-Lnats
9 -
total? f { false otherwise.

Show that there is no PCF expression defining fotal? by showing that this function is not
continuous. (Hint: You might want to try the problem for rotal?: (bool — bool) — bool
first, since there are fewer directed sets.)

Exercise 5.2.42 Consider an extension of PCF with a third type constant, tree, and the
additional operations listed below:

fetns:leaf : nat — tree
node : tree X tree —> tree
is_leaf? : tree — bool
Isub : tree — tree
rsub : tree — tree
label : tree — nat
eqns:[x, y:nat, t,t' : tree]
is_leafY(leaf x) = true
is_leaf Nnode t t') = false
label(leaf x) =x
Isub(node t t') =1
rsub(node t 'y =1’

This is similar to the data type of trees given in Table 3.3, except that the data stored at the
leaves are natural numbers instead of atoms. We construct a CPO model for this extension
to PCF by adding a CPO A""®¢ to Apce and interpreting cartesian product and function
types as in Apcg.

5.3 Fixed-point Induction 333

(a) Give a CPO A" for the interpretation of trees and describe continuous interpretations
for each of the functions in this extension of PCF. Hint: You may have to choose A%
carefully for part (b) to work out; A" need not be not pointed.

(b) Show that the equational axioms for the new functions are satisfied.

(c) Determine the meaning of the function fix F, where
F & Af:tree > nat. At:tree. if is_leaf?t then labelt else f(lsubt)+ f(rsubt),

by identifying the directed set {F"(L) |n > 0} and working out enough elements in the
sequence FO(L), F1(L), F?(L), ... to state the general pattern.

Exercise 5.2.43 PCF has two basic operations on natural numbers, addition and equality
test. In parts (a) — (c) of this problem, you are asked to prove that if equality is eliminated
from PCF, we cannot define equality using the other operations. More specifically, we say
that closed term EQ: nat — nat — bool defines nat equality if the equation EQ nn = true
is provable for any numeral n, and EQ n m = false is provable for distinct numerals n and
m. Parts (a) — (c) ask you to show that in the language PCF ~¢? obtained by dropping Eq?
from PCEF, there is no closed term defining nat equality. Part (d) asks a related question
about test for zero and predecessor.

(a) Show that if A is a CPO model of PCF ~¢? with A" finite, then there exist distinct
numerals n and m with A =n =m.

(b) Show that if A is a CPO model of PCF ~¢? with A™ finite, and there is a closed term
EQ: nat — nat — bool defining equality, then A |= true = false.

(c) Show that there is no closed PCF 7% term defining equality by finding a CPO model
satisfying all of the equational axioms for PCF ~¢ but with A" finite and A%*° the
standard three-element CPO B, .

(d) Let PCF ~¢472¢7% be the variant of PCF with Eq? omitted, and a constant Zero?:
nat — bool added. The equational axioms for this constant are Zero? 0 = true and Zero?
n = false for each numeral n different from 0. (The reduction rules are obtained by

reading these from left to right.) Show that predecessor is not definable in
PCF —eq+zerop.

5.3 Fixed-point Induction

The equational proof system for PCF is sound for the CPO model and other semantic mod-
els of PCF. It is also adequate to specify the result of any program, since it follows from
computational adequacy (proved in Section 5.4.1) that if P:nat is closed, and P denotes

334 Models of Typed Lambda Calculus

a number 7z in the CPO model ApcF, then we can prove P = n. However, the equational
proof system is not very powerful when it comes to proving equations between parts of
programs, such as terms defining functions. This is illustrated in Example 5.3.1 below. In
this section, we study an extension to the equational proof system that has been found,
in practice, to be sufficient for proving many equations between PCF terms. We also dis-
cuss fixed-point induction in predicate logic very briefly at the end of the section and in
the exercises. The resulting logic, first proposed in [Sco69], is commonly called LCF;, for
logic for computable functions. A general presentation of an implementation of LCF, with
examples, appears in [Pau87].

Example 5.3.1 If f:D — D and g: D — D are continuous functions on some CPO
D, then it is not hard to see that fix(f o g) = f(fix(g o f)). (This equation is used in
Exercises 2.3.3 and 5.3.3.) The reason is that

fix(fog)=VI{(fog)(L)|i=0}
=V{(fog)(L), (fogofog)l), (fogofogofog)l), ..}
=V{(fogo H)(L) |i=0}
= f(fix(g° 1))

by monotonicity, general facts about least upper bounds, and the associativity of composi-
tion.

In the rest of this example, we show that there is no equational proof of fix(f o g) =
f(fix(g o f)), treating f and g as variables of type ¢ — o, for any type o, using only
the equational proof system of PCF. Although a proof can be carried out for the entire
PCF proof system, we will simplify the discussion and consider only the restricted proof
system without (1) or (sp) (See Table 2.1). Intuitively, neither (n) nor (sp) should matter
here, since there are no lambda abstractions or pairs in either expression.

By Theorem 8.3.24, the reduction rules of PCF are confluent. Since the reduction rules
of PCF are exactly directed versions of the equational axioms, plus symmetry, transitiv-
ity and congruence rules, it follows from the general argument in Section 3.7.2 that the
equation fix(f o g) = f(fix(g o f)) is provable iff both terms reduce to a common term.
However, an easy induction shows that any term obtained by reducing fix(f o g) will have
an equal number of f’s and g’s, while terms obtained from f(fix(g o f)) will have one
more f than g. Therefore, we cannot prove fix(f o g) = f(fix(g o f)) using the equational
proof system. =

The extended proof system is based on the CPO interpretation of terms. In addition to
equations, we will use formulas which assert that the meaning of one term is an approxi-

5.3 Fixed-point Induction 335

mation of another. More specifically, we use assertions of the form M < N or, written out
with type assignments, I'> M < N : ¢. To be precise, an approximation C'>M < N : 0o
is satisfied at environment =" for CPO model A if A[TMTn < A[N1n. The proof sys-
tem given in this section is sound for deriving assertions that hold in all CPO models. A
common way of reading M < N is, “M is an approximation of N.”

One obvious inference rule is

'>M=N:o

I''sM<N:o (eq)

which allows us to derive approximations from equations. This rule may be used to derive

versions of the (8) and (n) axioms using approximation in place of equality. A “converse”

to this rule is

''sM<N:o, ' N<M:o
'sM=N:o

(asym)

which is sound since a partial order is anti-symmetric. This rules lets us derive equations
from approximations. Since < is transitive, we also have the rule

I''sM<N:o,’'bN<P:o

(trans)
r's-M<P:o
If we add a constant 1, to the language, for each type o, then we have the axiom
scheme
>1l,<M:o (bor)

since L is the least element of type o. We also know that the least element of a function
type is the function mapping each argument to L. This gives us the equational axiom
scheme.

>1l=Ax:0.l:0—>1 (botf)
We also have a congruence rule for each syntactic form. For application, the rule

FreMi<My:c—1, TN <Ny:o
s MIN; < Ma)N>: T

(acong)

tells us that every continuous function is monotonic. The congruence rule for lambda
abstraction

Mxo-M<N:1
b Ax:ioM <Ax:oN:o—>T1

(feong)

336 Models of Typed Lambda Calculus

is sound since we order functions point-wise.

The final rule is an induction rule for fixed points. From the equational axiom for
fixed points, we can prove that f(fix f) <fix f, and similar properties that follow from
fix f being a fixed point of f. However, in the standard equational proof system, there
is no obvious way to make use of the fact that fix f is the least fixed point of f. With
approximations instead of equations, we could write a rule

I''s MN=N:o
'sfixM<N:o

saying that fix M is an approximation to any fixed point of M. This follows from the more
powerful rule of “fixed point induction,” also called Scott induction after Dana Scott.

In stating the rule of fixed point induction, we write ® - A to mean that the equation
or approximation A is provable from the set ® of equations and approximations using the
axioms and inference rules given here, combined with the equational axioms and inference
rules of typed lambda calculus with fixed points and any additional equational hypotheses
(such as axioms for algebraic datatypes). If A has the form I', x:0 > M < N : 7, then we
write [P/x]A for the result ' > [P/x]M < [P/x]N : t of removing variable x from the
type assignment and substituting P for x in both terms, assuming I'> P:o. If A is an
equation, we define [P/x]A similarly. Using this notation, the rule is written as follows.

OF[L/x]A, &, [c/x]AF[F(c)/x]A
@ [fix F/x]A

constant ¢ not in ¥ (fpind)

If we think of A as a way of saying that the variable x has some property, then [L /x]A
says that this property holds for L. The second hypothesis, ®, [c/x]A - [F(c)/x]A, is
a way of saying that if this property holds for some arbitrary value c, then it holds for
F(c). It follows that this property holds for every element of the set {F*(L)|n > 0}, by
induction on . Using the fact that the value of any term depends continuously on each of
its free variables, we can easily verify that the property A holds for the least upper bound
of this set, namely fix F'. This gives us the conclusion of the fixed point induction rule.

A feature of fixed-point induction is that we reason implicitly about sets of the form
{F' 1| i > 0} without introducing natural numbers into the formal system. While the
soundness proof for fixed-point induction uses induction on the integers, the proof system
only uses formulas such as approximation or equality.

Example 5.3.2 To illustrate the use of fixed-point induction, we will show that if N is a
fixed point of M, then fix M < N. We assume I' > MN = N: o, which gives us

I'sMN<N:o

5.3 Fixed-point Induction 337

since equality implies approximation. This will be useful at a later step of the proof.

Let us now think about how we can use the fixed point induction rule. The conclusion
of the rule has the form [fix F/x]A, which matches the statement we wish to prove if we
take

A = TI,x:0cpx<N:o,

with x not free in N, and let F be M. Reading the fixed point induction rule from the
bottom up, we can see that it suffices to prove

[L/x]JA = T> 1L<N:o,
which is an axiom, and to show that we can prove
[Mc/x]JA = ToMc<N:o

if we take [c/x]A = TI' > ¢ < N : o as an additional hypothesis.
If we begin with ¢ < N, then by monotonicity (the “congruence rule” for application),
we have

I'sMc<MN:o

But since we have already proved M N < N above, this gives us

I'sMc<N:o

which is exactly what we need in order to finish the proof by fixed point induction. (]

Although we have only used fixed-point induction to prove approximations and equa-
tions, it is also possible to use this proof rule in a predicate logic. However, in the more
general setting, fixed-point induction is only sound if predicates are restricted in some way.
This is illustrated in Exercise 5.3.6. We say a predicate P is admissible or inclusive if, for
every directed S, if P(d) forall d € S, then P(\/S). It is easy to see that both = and < are
inclusive predicates on any D x D. Some closure conditions on inclusive predicates are
given in Exercise 5.3.7.

Exercise 5.3.3 Use fixed point induction to prove the following equations. A common
pattern, which you will probably want to use for parts (a) and (c), is to prove an equation
M = N by proving the pair of approximations M < N and N < M by separate fixed point
inductions. You can solve part (b) using induction on equations instead of approximations
(i.e., take A in the fixed point induction rule to be an equation) but you do not have to.

(a) fix(fog)=f(fix(gof))
Hint: To show the first approximation, take A = I', x:o0p>px < f(fix(go f)):ocand F =

338 Models of Typed Lambda Calculus

f o g. You will need to use the equational axiom (fix) once. The reverse approximation is
proved similarly.

(b) fix(Af:nat — nat. Ax:nat. f(x + 1)) = fix(Af: nat — nat. f)

Hint: For fun, try proving this directly. Then try proving that each term is equal to
J—nat—>nat~

(¢) Prove ((fix F)x y) + 1 = (fix F) x (y + 1), where

F & Af:nat — nat — nat. Ax:nat.\y:nat.if Eq?7x0 then y else f(x —1,y+
1). You may use the proof rule

fli=1
f(@GAf B then M else N)=if B then fM else fN

stating that any strict function f distributes over conditional.
Exercise 5.3.4 Show that the following rule is not sound.

OF[L/x]A, & AF[F(x)/x]A
@ [fix F/x]A

x not free in

Exercise 5.3.5 This exercise gives an alternative approach to Exercise 2.2.15 for the
problem of finding a pair of functions satisfying the recursive equations

f=Ffg
g=Gfg

where F:0 —> t — o0, G:0 — © — 1 and neither f nor g appears free in F or G. The
first step is to define a parameterized solution F’: T — o to the first equation and a similar
parameterized solution G”: 0 — 7 to the second.

Fodet Ag:t. (fix,(Af:0.F f g))
G' & Af:o. (fix,(0g:7.G £ 8))

These may now be substituted into the original defining equations to eliminate one variable
from each. Use fixed point induction to show that the two terms fix(Af: 0. F f (G’ f)) and
fix(hg:t.G (F' g) g), satisfy the original equations.

Exercise 5.3.6 Fixed-point induction is sound for equations and approximations because
= and < are both inclusive predicates. However, # is not inclusive, and fixed-point in-
duction is unsound for proving that two terms are not equal. Demonstrate this by using
fixed-point induction to prove fix F # fix F, where

5.4 Computational Adequacy and Full Abstraction 339

F ¥ Af:nat — nat.Ax:nat.if Eq?x0 then 0 else f(x — 1).

You may invent proof rules such as
MP#NP:t
M#N:o—r<
as needed, or simply describe the correctness of assertions such as 1 # (fix F) informally.

The main point is to demonstrate the problem with fixed-point induction and non-inclusive
predicates, not to develop a proof system for inequality.

Exercise 5.3.7 This exercise asks you to show that various operations yield inclusive
predicates. Suppose P, Q € D and {P; C D|i € I} are inclusive predicates and show the
following.

(@) PN Qand P U Q are inclusive.

(b) The complement, D — P, of P is not necessarily inclusive.

(c) If f: & — D is continuous, then Q = {e € E | P(f e)} is inclusive.

(d) Show that if {P; € D|i € I} is a family of inclusive predicates, then the intersection
M; P; is inclusive but the union U; P; need not be. Note that if R is a binary predicate
we interpret universal quantification Yx:o.R(x, y) as the intersection NgepR(d, y) and,
similarly, existential quantification as union.

5.4 Computational Adequacy and Full Abstraction

5.4.1 Approximation Theorem and Computational Adequacy

As discussed in Section 2.3, there are several general connections between axiomatic,
operational and denotational semantics that we might hope to establish for any language.
In Section 2.3.5, these are characterized using equivalence relations as

=qx € =den & =op
and
(Y programs M) (¥ results N) M =qx N iff M =400 N iff M =,, N.

Intuitively, the line of containments says that the axiomatic semantics are sound for the
denotational semantics, and that any programs identified in the denotational semantics
must be observationally equivalent in the operational semantics. The second line above

340 Models of Typed Lambda Calculus

says that the three relations should be identical as far as specifying the result of any
program.
For PCF, taking Apcr as the denotational semantics, we have

-

=ax = Tden:

by the soundness theorem of Section 5.2.5. It is also observed in Section 5.2.5 that the
equational axiom system is not (and cannot be) complete for Apcg, S0 the relations =,
and =g, are different. The main result of this section is that

=den S ~ops

with the two relations coinciding for programs. It therefore follows from the fact that the
reduction axioms are a subset of the equational axioms that

(Y programs M) (¥ results N) M =4 N iff M =40, N iff M =,, N,

which completes the positive results for PCE. We show in the next section that =4, and
=,p are different for PCF, but become identical when PCF is extended with parallel-or
(from Section 2.5.6). For concreteness, we work specifically with PCF in this section; it
is straightforward to extend the results to other versions of typed lambda calculus with
fix and any algebraic data types that have a confluent and terminating left-linear rewrite
system. (See Section 8.3.4.)

One way to establish connections between operational and denotational semantics is by
a direct logical predicate or logical relation argument. (One version of this approach is doc-
umented in [Gun92].) An alternative that seems to provide more insight is through a more
general result called the “approximation theorem.” This theorem gives a correspondence
between the meaning of a term and a set of “syntactic approximations” in normal form.
We prove an approximation theorem for PCF in this section and derive computational ad-
equacy as a corollary.

We may approximate the normal form of a term of PCF, or other versions of typed
lambda calculus with fix, by applying some number of reduction steps, then replacing
any subterm that is not in normal form by the constant ., for the appropriate type o.
In general, if M is a typed lambda term over some signature, possibly containing fix, then
we say N is an approximate normal form of M, and write N € anf (M), if N is a normal
form that may be obtained from M in this way. Note that even if a PCF term does not have
a normal form, this process may still produce a normal form in the extension of PCF with
1 constants at all types.

Example 5.4.1 Every approximate normal form of fix, is equal to some term of the form
Afio — 0. f*(L), n > 0. If we begin with fix, then the only way to replace a subterm

5.4 Computational Adequacy and Full Abstraction 341

by L and obtain a normal form is to replace fix by L, yielding L. If we reduce fix, to
Af:0 — 0. f(fix, f), then we can obtain a normal form by replacing fix, by L(s50)50,
for example. However, in the denotational model, we have

Afio—=o0 f(Loseyne) = Mio—o. f(Lls)

We can also obtain the latter term as an approximate normal form by replacing fix, f by
1,. We can reduce fix twice, then use S-reduction to obtain Af:0 — o. fz(ﬁx(,f). If
we replace fix, f by Lo, this gives us the approximate normal form Af:o — o. f2(L).
By case analysis and induction on the number of fix-reductions, we can show that every
approximate normal form of fix is equal to a term of the form Af:o — o. f*(L1). By
introducing reduction rules for L, such as L, ., M =1., we can in fact simplify each
approximate normal form to this pattern. However, we will not need to simplify the set of
approximate normal forms in this way. n

Example 5.4.2 The only approximate normal form of fix(Ax: t.x) is L. This is easy to
verify directly. If we want to produce a normal form without using reduction, then the only
possibility is to replace the entire term by L. The same applies if we reduce fix(Ax: 7. x)
to (Af:7— 1. f(fix f))(Ax:T.x) or (Ax:T.x)(fix(Ax: T.x)) or fix(Ax: T.x), which brings
us back where we started. (]

If a term M has a normal form, then M will have finitely many approximate normal
forms, all essentially resembling the normal form, but with some subterms possibly re-
placed by L. As illustrated in Examples 5.4.1 and 5.4.2 above, a term with no normal
form may either have finitely or infinitely many approximate normal forms. If M has
infinitely many approximate normal forms, then all of them may be regarded as finite ap-
proximations to an infinite structure called the Bohm tree of M. Due to the number of basic
operations in PCEF, the precise definition of Bohm tree for PCF is somewhat lengthy. Since
we will not need B6hm trees for arbitrary PCF terms (only the finite Bohm trees of finite
normal forms in Section 4.4.4), we will not consider them here. The reader interested in
Bo6hm trees may read about the simpler but essentially similar trees of untyped lambda
terms in [Bar84].

It is relatively easy to show that for any term I' > M: o, the meaning of each term
in anf(M) is an approximation to the meaning of M. To simplify notation, we write
[anf (M)]In for the set of elements

lanf(M)In ={IT' > N:olln | N € anf(M)}.

Lemma 5.4.3 LetT'> M: o be a PCF term and 7 any environment for Apcg satisfying I".
Then every element of the set [anf (M)]n is less than or equal to [T > M:o]ln

342 Models of Typed Lambda Calculus

Proof Using the proof system for approximation given in the last section, it is easy
to see that if N € anf (M), then A =T 1> N < M : 0. More specifically, we first reduce
M —> N’, and then replace chosen subterms of N’ by L of the appropriate type. Clearly,
A satisfies M = N’, and an easy induction on the structure of N shows that N < N’. n

We use a particular class of approximate normal forms to show that anf (M) is directed,
with least upper bound M. These are obtained by choosing a bound on the number of times
Jfix reduction may be applied to each subterm. For this purpose, we add a constant fix” to
the language, for each type o and natural number n. We refer to fix?, as the labeled fixed-
point operator with label n. The label gives an upper bound on the number of times we
may apply fix reduction to any copy of this operator. More formally, the reduction rules for
the labeled fixed-point operators are:

3t > Afio — 0. f(fixl f),
ﬁxg —> Afi0 >0 1,.

We say a term is labeled if it does not contain any fix without a superscript, and write
lab(M) for the set of labeled terms that become syntactically identical to M when we re-
place each fix], by fix,. Since each fix” may be reduced to aterm Af: 0 — o. f(f(... f(L
)...)) not containing any labeled fixed-point operator, the meaning of each labeled fixed-
point operator is completely determined. Since fix] reduces to an approximate normal
form of fix,, we have fix} < fix, in any CPO model.

We say M reduces to N by PCF, lab-reduction if M reduces to N by applying any num-
ber of PCF reductions and the two reduction rules for labeled fixed-point operators given
above. From Theorems 8.3.22 and 8.3.24, we have the following property of PCF, lab-
reduction.

Fact: PCF, lab-reduction is confluent and terminating on labeled terms.

A simple correspondence between PCF, lab-normal forms and approximate normal forms
is given in the following lemma.

Lemma5.4.4 LetI'> M:o beaPCFterm. If P € lab(M) and N is the PCF, lab-normal
form of P, then N € anf (M).

Proof Consider the reduction P = Py — Py — ... — P, = N of the labeled term to
normal form. For simplicity, we assume this reduction has a particular form. Specifically,
we count two reduction steps of the form

R - (fio—o. l)R - 1,

5.4 Computational Adequacy and Full Abstraction 343

as a single step and assume that every step of the form ﬁx?,R — (Af:0 —> 0. Ls)R is
followed by a reduction of this subterm to L. By confluence and termination of PCF, lab-
reduction, there is no loss of generality in this assumption about the reduction of P to
normal form. (If we construct P — ... — P, by always contracting the leftmost redex,
for example, then the sequence will satisfy our assumption.)

For each P;, we can define a term Q; with the property that M —> Q; and P € lab(Qé)
for some term Q' obtained from Q; by replacing one or more subterms with L. The main
idea, which can be made more rigorous by induction on i, is that we reduce M —> Q; by
following the same reductions as P —> P;, ignoring labels. The reason we may need to
replace some subterms by L is that the reduction rule for fix® may introduce L into #;. For
i =n, it follows that N may be obtained from M by reduction, followed by replacement
of one or more subterms by L. This completes the proof. n

The next step toward the approximation theorem is to show that the meaning of a term
M is the least upper bound of the meanings of terms in lab(M). This will let us prove the
approximation theorem by showing that anf (M) and lab(M) have the same least upper
bound. Using the notation

[lab(M)n ={Il' = N:olln | N € lab(M)},
we have the following semantic connection between terms and their labelings.

Lemma 5.4.5 Let "> M:0 be a PCF term and n any Apce environment satisfying I'.
Then the set [lab(M)]n is directed, with [T > M:a]ln = \/[lab(M)]n.

Proof We show that [lab(M)]ln is directed by observing a simple property of
labels. Suppose that N, P € lab(M) are identical terms, except that the label on one oc-
currence of fix in P is greater than the corresponding label in N. An easy induction on
terms shows that N < P. It follows that if N, P € lab(M) differ by several labels, with
each label in P greater than the corresponding label in N, then N < P. Therefore, if
N, P € lab(M), we can find a term Q € lab(M) with N, P < Q by labeling each fix in Q
with the maximum of the corresponding labels in N and P. This shows that [lab(M)]ln is
directed.

It remains to show that [[" > M: o]ln = \/[lab(M)Tn. This is surprisingly easy, using
induction on M. The base cases for variables or constants other than fix are trivial. The
case for fix is straightforward, by Lemma 5.2.20. This leaves application, which follows
from Lemma 5.2.11, and lambda abstraction. For lambda abstraction, using the induction
hypothesis, we have

344 Models of Typed Lambda Calculus

[[> Ax:0. M:0 — t]n = the unique f € A? T such that
Vd € A°. Appfd =T, x:0 > M:t]nlx — d]
= the unique f € A° 7 such that
Vd € A°. App fd = \/[lab(M)Tnix > d]

By Lemma 5.2.10, this f is the least upper bound of the directed set of functions in
[lab(’x:o. M)]n. This completes the proof. n

Theorem 5.4.6 (Approximation Theorem) Let" > M:o be a PCF term and 1 any Apce
environment satisfying I". Then the sets [[anf (M)] and [lab(M)]y are directed, with

> M:olln=\[lab(M)]n
= Vlanf(M)]n

Proof ltis already shown in Lemma 5.4.5 that [[" > M: o]ln = \/[lab(M)]n. Therefore,
it suffices to show that [[anf (M)]n is directed with \/[lab(M)1n = \/[lanf (M)]n.

It is useful to show that every approximate normal form is < some labelingof M. If N €
anf (M), then N is obtained by reducing M —> P and replacing subterms of P by L to
obtain a normal form. By connections between labeled and unlabeled reduction discussed
in Section 8.3.4, there is some labeling M* of M such that M* PCF, lab-reduces to a
labeling of P* of P. Since each fix that occurs in P must be eliminated in producing N, we
may show by induction on N that N < P* = M*. This shows that for every N € anf (M)
there is some labeling M* of M with N < M*,

We can now see that [[anf (M)]ln is directed using Lemma 5.4.4. If Ny, N; € anf (M),
then there are terms Py, P; € lab(M) with N; < P;. But since lab(M) is directed by
Lemma 5.4.5, there is some term Q € lab(M) with Py, P, < Q. It follows from Lemma
5.4.4 that the normal form of Q is an upper bound of N; and N; in anf(M). Similar
reasoning using Lemma 5.4.4 shows that \/[lab(M)1n = \/[anf (M)]n. This proves the
theorem.]

Computational adequacy of a model A is the property that if .4 |= P = N, for program
P and result N, then eval(P) = N. Computational adequacy for Apcy is an easy corollary
of the approximation theorem.

Corollary 5.4.7 The model Apcr is computationally adequate for PCF.

Proof Suppose that P is a program and R is a result with Apex E= P = R. By the ap-
proximation theorem, the meaning of P in Apcr is the least upper bound of its approximate
normal forms. But since the observable types nat and bool are interpreted as flat CPOs in

5.4 Computational Adequacy and Full Abstraction 345

Apcr, there must be some N € anf(P) with Apcr = N = R. An analysis of PCF normal
forms, when the language contains added constants 1, shows that N = R. Specifically, it
is an easy induction on terms to show that if Q is a normal form of type nat or bool con-
taining L, then Q =1 in the CPO model. Therefore, if N € anf(P) is equal to R in the
model, and R is not L, then we must have N = R and therefore P —> R. []

We can use adequacy to show that =4,, € =, for PCF.

Corollary 5.4.8 Forany PCFterms ' M:0 and "> N:o, if Apes ET'>M = N:o,
then M =,, N.

A more general form of this property, with an essentially similar proof, is given in
Exercise 5.4.20.

Proof If Apcr =T > M = N:o, then by the soundness of the equational proof system,
we can see that for any context C[] with both C[M] and C[N] programs, say of type nat,
we have

Apcr =T > C[M]=C[N]: nat.

If both denote some numeral, then by computational adequacy (Corollary 5.4.7) we
have eval(C[M]) = eval(C[N]). If neither denotes a numeral, then by soundness both
eval(C[M]) and eval(C[N]) must be undefined. Thus eval(C[M]) ~ eval(C[N]) and
M =, N. []

Exercise 5.4.9 Using the approximation theorem, prove that the inference rule used
in Exercise 2.3.3 is sound for Apcs. More specifically, show that if M —> NM, then

\/ anf (M) =\/ anf (fix N).
5.4.2 Full Abstraction for PCF with Parallel Operations

As mentioned in Section 2.3.5, a denotational semantics is fully abstract if =4, coin-
cides with =,,. We have shown that for PCF, =4.,, € =,;, so we have one “half” of
full abstraction. However, full abstraction fails for PCF and Apcr. This was first observed
by Plotkin [Plo77], with related observations about the nondefinability of parallel-or made
independently by Sazonov [Saz76]. After showing why full abstraction fails, we demon-
strate full abstraction when parallel-or is added to PCF.

In general terms, the reason full abstraction fails for PCF is that parallel-or, described
in Section 2.5.6, is continuous (by Exercise 5.2.19) but not definable in PCF. More specif-
ically, as shown in Theorem 2.5.19 in Section 2.5.6, there is no PCF expression POR with
the following behavior

346 Models of Typed Lambda Calculus

true if M —> true or N —> true
PORM N —> Jalse if M —> false and N —> false
no normal form otherwise

for all closed boolean expressions M and N. However, we can write a PCF term to test
whether its argument has this behavior. Specifically, let us adopt the abbreviation

diverge, ' fix, Ox:0.x),
omitting the type subscript when clear from context, and consider the term

Is_POR? %f A P:bool — bool — bool.
if P true diverge then
if P diverge true then
if P falsefalse then diverge else true
else diverge
else diverge

If we could define POR in PCF, then we could reduce Is_POR? POR —> true.
However, by Theorem 2.5.19, the result of applying Is_POR? to any closed PCF term
M: bool — bool — bool will have no normal form and therefore have value 1, in the
model Apcy.

We show below, using Lemma 2.5.24, that

Is_POR? =,, AP: bool — bool — bool.diverge.
However, clearly
Is_POR? #gen A P: bool — bool — bool. diverge

since the two differ when applied to the element of Ab00—>b0ol=bool corresponding to POR.
We show that the two terms are operationally equivalent by contradiction. Suppose there
is a context C[] such that both C[Is_POR?] and C[X P: bool — bool — bool. diverge] are
programs, one terminating and the other not. (If both terminate with different results, we
can change the context C[] to satisfy this assumption.) If C[Is_POR?] reduces to a result
N, then by Lemma 2.5.24 there is an evaluation context EV[] such that

ClIs_POR?] '3 gv[Is_POR?]

Since EV[Is_POR?] has type nat or bool, we can see that EV[] has the form ev/[[IM]. If
M is not closed, then any free x must be lambda-bound in EV[]. But since ev([Is_POR?]
has type nat or bool, this lambda abstraction in EV[] must be applied to an argument,
contradicting the definition of evaluation context. Therefore,

5.4 Computational Adequacy and Full Abstraction 347

Cls_POR?) 2 gv'[Is_POR?M]

with M closed. But since parallel-or is not definable by any closed PCF term, by Theo-
rem 2.5.19, we can see by Lemma 2.5.21 that C[Is_POR?] does not have a normal form.
Since we also have

CIAP: bool — bool — bool. diverge] %25 £V’
[(AP: bool — bool — bool. diverge)M |

we can see that neither program reduces to a normal form. The assumption that C[AP: bool
— bool — bool.diverge] has a normal form leads to a similar contradiction. Therefore, the
two programs must be operationally equivalent.

In the rest of this section, we will show that if parallel-or is added to PCF, then Apc; is
fully abstract. This extension, PCF + por, is obtained by adding the constant por: bool —
bool — bool, interpreted as the continuous parallel-or function, with the following reduc-
tion axioms.

portrueM — true
por M true — true
por false false — false

Since these axioms are all left-linear, the reduction system for PCF + por may be proved
confluent, and PCF, lab, por-reduction confluent and terminating, as in Theorems 8.3.22
and 8.3.24. It is therefore straightforward to extend the approximation theorem and com-
putational adequacy results of the last section to PCF + por.

The main technical step in showing full abstraction for PCF + por is to show that
enough elements in Apcr are definable in this language. This requires careful analysis of
the CPOs that are used in Ape. Specifically, we show that all CPOs in A are “algebraic,”
which involves the additional concept of pairwise consistent completeness. It follows from
algebraicity that if two terms are denotationally different, they can be distinguished using
only certain “compact” elements. Therefore, we prove full abstraction by proving that
every compact element of Apcr is definable in PCF + por. The full abstraction theorem
in this section is originally due to Plotkin [Plo77]; the proof we use is a variant due to
Meyer [Mey92al.

An important idea is the notion of “compact element” of a CPO. It is trivially true that
every element of a CPO is the least upper bound of the elements < to it. What distinguishes
the compact elements is that they are not the least upper bound of any set of elements that
are strictly less. More precisely, if d is an element of CPO D, then d is compact if, for
every directed S € D with d < \/S, we have d < d’ for some d’ € S. In the CPOs used

348 Models of Typed Lambda Calculus

in Apcg, every compact element is definable (possibly using parallel operations), so every
compact element is “finitely computable” in some way. For this reason, compact elements
are sometimes called finite elements. If D is a CPO, we write K (D) for the set of compact
elements of D.

We will be interested in CPOs where each element is the least upper bound of the
compact elements below it. We say a CPO D is algebraic if every d € D is the limit of
its compact approximants, i.e.,

d=\/{a<d|aecK(D))

It is easy to see that every discrete or flat CPO is algebraic. In addition, the product D x £
of two algebraic CPOs is algebraic, with compact elements K (D) x K(£). However,
there exist algebraic CPOs D and € such that D — £ is not algebraic. For this reason,
when working with algebraic CPOs, it is common to identify stronger conditions that are
preserved by products and function space constructions.

There are several consistency conditions in the literature on domain theory. (See
[Gun92, GS90], for example.) We will use a relatively strong condition, since this will
simplify the proof that all compact elements are definable. If D is a CPO and d,d’ € D,
we say d and d’ are consistent if there is some d” € D with d,d’ < d”. In words, two
elements are consistent if they have an upper bound. We write d 1 d’ if d and d’ are consis-
tent. A subset S C D is pairwise consistent if every pair of elements from S is consistent
and a CPO D is pairwise-consistent complete if every pairwise-consistent subset has a
least upper bound. Since “pairwise-consistent complete CPO” is quite a mouthful (even if
you are reading silently to yourself), we will abbreviate this phrase to PCPO. To repeat the
definition, a PCPO is a partial order D = (D, <p) with the property that every S C D that
is either directed or pairwise consistent has a least upper bound, \/S. A weaker condition
that is more commonly used in the literature is described in Exercise 5.4.17. It is easy to
see that every PCPO is pointed, since the empty subset is pairwise consistent.

An interesting, and perhaps unexpected, property of PCPOs is that every set has a
greatest lower bound.

Lemma 5.4.10 If D is a PCPO (pairwise-consistent complete CPO) and S C D is any
subset, then § has a greatest lower bound A S.

Proof The set Ls={d € D|d <d’ forevery d’ € S} of lower bounds of § is pairwise
consistent, so it has a least upper bound \/Lg. It is easy to check that this is the greatest
lower bound of S. .

The next lemma about PCPOs is that any CPOs built from PCPOs by our usual con-
structors is a PCPO.

5.4 Computational Adequacy and Full Abstraction 349

Lemma 5.4.11 Every flat CPO is a PCPO (pairwise-consistent complete CPO). If D and
& are PCPOs, then so are D), D x £ and D — £. Moreover, if S € D x E is pairwise
consistent, then \/S = (\/ (Proj,S), \/(Proj,S)) and if S € D — E is pairwise consis-
tent, the least upper bound of S is the function f given by f(d) = \/S(d).

Proof The cases for flat and lifted PCPOs are straightforward and left to the reader.
For a product CPO, we note that if (d, e) 1 (d’,€’), then d 1 d’ and e 1 €'. Therefore,
if $ € D x E is pairwise consistent, then so are the sets Proj;S and Proj,S. The proof
that \/S = (\/(Proj, S), \/ (Proj,S)) is the same as for Lemma 5.2.2. The argument for
D — £ is similar, showing first that for each d € D, the set S(d) is pairwise consistent.
The argument given in the proof of Lemma 5.2.10 shows that the function f given by
f(d) =\/S(d) is continuous and the least upper bound of S. n

Our next goal is to show that if D and £ are algebraic PCPOs, then so is D — £. This
will allow us to conclude that every CPO in Ay is algebraic. Before we show that D — &€
is algebraic, however, we introduce notation for some simple compact elements of D — £,

Fora € D and b € E, we define the step function a \ b: D — E by

b ifd>a
1 otherwise

(a N\ b)d)= [

It is left as Exercise 5.4.16 to show that if a € D is compact, the step function a \{ b is
continuous. In general, we will be interested in step functions a N\ b with both a and b
compact, since these are used to define the compact elements of a function CPO.

It follows from the following lemma that every continuous function is the least upper
bound of a set of compact step functions. However, the shortcoming of step functions
alone is that there are functions that are not the least upper bound of any directed set of
step functions. To form a directed set of functions less than some continuous function, we
need to consider least upper bounds of finite sets of step functions.

Lemma 5.4.12 Let D and £ be algebraic PCPOs. Then D — £ is an algebraic PCPO
whose compact elements are least upper bounds \/{a; \ b1, ..., a, \4 by} of finite sets of
step functions, with all ¢; € D and b; € E compact and such that if a; 1 a;, then b; 1 b;.

Proof We know, by Exercise 5.4.16, that if a € D and b € E are compact, a \ b is
continuous. To show that @ N\ b is compact, suppose S C D — £ is a directed set with
(@a\ub) <\/S. By Lemma 5.2.10, f =\/S is given by f(d) =\/S(d). In particular,
we have (a \ b)(a) = b < \/S(b). But since b is compact, it follows that there is some
g € S with b € g(b). It is not hard to check that a \y b < g, since by monotonicity (a
b)(d) = b < g(d) for d > b, and otherwise (a \ b)(d) =L < g(d). This proves thata \ b
is compact.

350 Models of Typed Lambda Calculus

It is easy to see that two step functions, a; \ | and az \| by, are consistent pre-
cisely if a; 1 a; implies b; 1 by. By Exercise 5.4.15, the least upper bound of two con-
sistent compact elements is compact. It follows that any finite least upper bound \/{a; \,
bi,...,an \ by} is compact if all a; € D and b; € E are compact and, a; 1 a; implies
bi 1 b;.

The next step is to show that for every continuous f:D — &, the set Sy of all compact
elements below f is directed and has least upper bound f. We know from Exercise 5.4.15
that S is directed, since any pair of compact elements below f are necessarily consistent.
We proceed by showing that f = \/S, where S = {a \{ b|a, b compact and f(a) > b}. It
follows easily from the final step of the proof that \/S = \/Sy. Since S is bounded by f, S
is pairwise consistent and so, since D — £ is a PCPO, \/§ exists. It remains to show that
f=\Vs.

Consider any d € D. Since D is algebraic, we have

fd)=fN{a<dlaec KDHh=\f({a=d|aecKD)}.

Therefore, if compact b < f(d), we have b < f(a) for some compact a < d and hence
the step function a N\ b is in S. It follows that every compact b < f(d) is < \/S. Since
this holds for all d € D, we have f <\/S, which completes the proof that D — £ is
algebraic.

The final step of the proof is to show that all compact elements of D — £ have the form
Viai \(b1, ..., a, \\ by} withall a; € D and b; € E compact and, if a; 1 aj,thenb; 1 b;.
Suppose g: D — £ is compact and let S be the set of all functions of this form that are < g.
As we have shown above, \/S = g. But then, since g is compact, we have g < h for some
h € S. But by definition of S, & < g. Therefore, g = h and g must have the required form.
n

The final lemma before proving the full abstraction theorem establishes the definabil-
ity of all compact elements in PCF + por. As shown in Exercise 2.5.29, we can define
parallel-conditionals PIF n4 on type nat and PIF poo On type bool from parallel-or. From
these, we may define a parallel-conditional of each type, by

PIFs ; & Ax:bool.Af:0 —> 1.0g:0 — T.
Ay:o.PIF:x (f y)(gy)
PIF sy & Jx:bool.\p:o X T.Aq:0 X T.
(PIF; x (Proj, f) (Proj,g), PIF;x (Proj,f) (Proj,g))

It is easy to see that semantically,

5.4 Computational Adequacy and Full Abstraction 351

y if x = true
PlFsxyz= z if x = false
YAZ ifx=1
It is also easy to define a “bounded least upper bound” function BLUBy;: 0 — 0 — 0 — o
on each type with the semantic property that
BLUB;xyz=(x AYy) V(X AN2).

This is left as Exercise 5.4.18, which contains a hint. The reason that BLUB,; is called a
“bounded least upper bound” is that when x > y, z we have BLUB, x yz =y V z. These
functions will be used in the proof of the following lemma.

Lemma 5.4.13 If a is a compact element of Apcr, then a is definable by a closed PCF +
por term.

Proof We use induction on types to show that for all compact a, a’ € A,

1. The step function a \ true is definable,
2. If a and &’ are inconsistent, then (a \ true) v (a’ \| false) is definable,

3. The compact element a is definable.

The proof is by induction on types.

The base cases, conditions (1)—(3) for nat and boo!, are all straightforward. The most
difficult is (2), which we prove for nat. If a, a’ € N} are inconsistent, then neither can be
.. This allows us to write (a \| true) v (a’ \\ false) as

Ax:nat.if Eq? x [a]then true
else if Eq?x [a'] then false else diverge

where [a] is the PCF numeral for a.

Since PCF has product and function types, there are two induction steps. We prove
the lemma for function types, and leave the simpler arguments for product types as Ex-
ercise 5.4.19. For a function type ¢ — 1, we know by Lemma 5.4.12 that a has the form

a=\{a1 \bi,....an \ b},

where ay, ..., an, b1, ..., by are compact and a; 1 a; implies b; 1 b;.
1. We define the step function a \ true by

Afio — t.((by \y true)(f ay)) and ... and ((b, \(true)(f a,))

where all (b; \ true) and a; are definable by the induction hypothesis. To see that this

352 Models of Typed Lambda Calculus

term is correct, recall that a < f iff each a; \(b; approximates f, which is equivalent to
f(a) = b;, foreach i.

2. Suppose a and a’ are inconsistent compact elements. Expressing each as the least upper
bound of a finite set of step functions as in Lemma 5.4.12, it is easy to see that there must
be some compact b € A° with ab and a’b inconsistent and compact. This allows us to
define (a “\ true) v (a’ | false) by

Af:0— .
if ((ab \ true) v (a'b \ufalse))(fb) then (a \true) f else not ((@' \ true) f)

where a \ true and a’ | false are definable by (1), and b and (ab \ true) v (a’b \ false)
are definable by the induction hypothesis.

3. This is the most complicated condition. We proceed by induction on n, the number of
step functions used to construct a. If n = 1, then @ = a; \(b; and we may define a by

Ax:o.if (a1 \ true)x then b; else diverge,

where a; \(true and b; are definable by the induction hypothesis.

For n > 1, there are two cases. The first is that the set {a, . .., a,} is pairwise consistent.
Since {by, ..., by} must also be pairwise consistent, we may let b = \/{by, ..., b,)}. Since
a < Ax:o.b, we define a by

BLUB (Ax:0.b) (a1 \yb1) (V{az \(b2, ..., ay \\ bn})

where (a; N\, b1) and \/{ax \\ b2, ..., a, \ by} are definable by the hypothesis of the
subinduction on number of step functions and b is definable by the main induction hy-
pothesis.

The remaining case is to define a when the set {ay, ..., a,} is not pairwise consistent.
This is where we finally use a parallel operation. Without loss of generality we may
assume a; and a are inconsistent. Let

a™V =\/{ay \\ b2, ..., an \ bn}

a™? =\/{a; \(b1, a3 \(b3, ..., an \\ bn}

which are both definable by the hypothesis of the subinduction. Then we may define a by
Axio. PIF; (((a1 \ true) v (az \ false)) x) (a™Px) @™°Vx).

In words, this function checks its argument to see if it is approximated by either a; or
ay. In the first case, since a; and aj are inconsistent, the step function a; N\ b, does not
contribute to the value of ax and we obtain the correct result since ax = a™°?x. In the

5.4 Computational Adequacy and Full Abstraction 353

second case, we similarly have ax = a™°Dx. The third possibility is that neither a; < x
nor a; < z. In this event, neither a; \y b; nor az \ b, contributes to value of a x, and
we have ax = (@™Dx) A (@™?x). Since this is exactly the result given by PIF, this
definition of a is correct for all x € A?. This concludes the proof.

Theorem 5.4.14 (Full Abstraction) For PCF + por, the relations =g4,,,, determined by
Apgcr and =,p, determined by the reduction system, are identical.

A more general form of full abstraction, with a similar proof, is given in Exercise 5.4.20.

Proof Since we have =gen € =,p by Corollary 5.4.8 of the approximation theorem, it
remains to prove the reverse inclusion. We assume that M #4., N and show M #,, N, for
PCFterms '> M:o and "> N: 0. Since the CPOs in Ay are all algebraic, there is some
environment 7 and compact a € A, witha <{[['> M:o]lnpbutnota < [[T'> N:oln (or
conversely, with the roles of M and N reversed). By Lemma 5.4.13, the step function
a \ true is definable in PCF + por. By computational adequacy (Corollary 5.4.7), (a
true) M —> true while by soundness, (a “\ true) N has no normal form. Therefore M #,,
N. This proves the theorem. L]

Exercise 5.4.15 Show that if D is a PCPO with a, b € D consistent compact elements,
then a v b = \/{a, b} is compact.

Exercise 5.4.16 Show that if a is compact, the step function a | & is continuous. Give
an example of a CPO D and elements d,d’ € D such that d N\ d’ is not a continuous
function from D to D.

Exercise 5.4.17 A CPO D is bounded complete if every subset S C D that has an upper
bound has a least upper bound. In other words, \/S exists whenever S is either directed or
bounded. We will abbreviate bounded complete CPO to BCPO.

(a) Show that every PCPO is a BCPO.

(b) Find a BCPO that is not a PCPO.

(c) Show that Lemma 5.4.12 holds if we replace PCPO by BCPO.

(d) Find the step in the proof of Lemma 5.4.13 that requires pairwise-consistent complete-

ness instead of bounded completeness.

Exercise 5.4.18 Show how to define a bounded least upper bound function for each type.
For nat, the definition is

BLUB,,, % Ax:nat.)\y:nat.Az:nat.

if por (Eq?x y)(Eq?xz) then x else diverge,,,.

354 Models of Typed Lambda Calculus

The definition for bool is similar. The definitions for function or product types resemble
the inductive definitions of PIF.

Exercise 5.4.19 Prove conditions (1)—(3), used in the proof of Lemma 5.4.13, for a
product type o x t, assuming all three hold for types o and t.

Exercise 5.4.20 The form of full abstraction proved in this section is sometimes called
equational full abstraction to distinguish it from an inequational (or approximation) form.
To state inequational full abstraction, we define M <g., N if the meaning of M is < the
meaning of N in every environment and M <,, N if, for every context C[] such that C[M]
and C[N] are programs and every result R, if eval(C[M]) = R then eval(C[N]) = R.

(a) Using adequacy, prove <ge, & <), Which is the inequational form of Corollary 5.4.8.

(b) Using the lemmas given in this section, prove <,, & <gen, Which, with (a) establishes
the inequational form of Theorem 5.4.14 for PCF + por.

Exercise 5.4.21 In the proof of Theorem 5.4.14, we show that if M #4., N then M #,,
N using a context of the form C[] = F[]. We might also wish to show that if M #4., N
then these terms can be distinguished using a special form of context called an elimination
context, a form also used in Section 8.3.4. Elimination contexts are defined inductively by

Ell =:= [11EI1IM]]| EProj; [1]

Without using Theorem 5.4.14, prove by induction on types that if M #4., N, then M and
N are operationally distinguishable by an elimination context.

5.5 Recursion-theoretic Models

5.5.1 Introduction

While domain-theoretic models are commonly used in programming language semantics,
the traditional study of computability and complexity uses Turing machines or equivalent
machine models. These machine models all compute precisely the partial recursive func-
tions on the natural numbers, as described in Sections 2.5.4 and 2.5.5. One way of estab-
lishing a connection between program semantics and traditional computability is through
semantic models based on recursive function theory. An intuitive reason that we should
be able to construct models with every function Turing computable is that every lambda-
definable function is computable by reduction. We therefore expect that a hierarchy con-
taining all the computable functions will contain all the lambda-definable functions and
form a Henkin model. A difference between computability theory and models of lambda

5.5 Recursion-theoretic Models 355

calculus is that models must satisfy equations between terms, whereas computability the-
ory admits many possible algorithms computing the same function. In the jargon of the
field, lambda calculus is an extensional theory of functions while computability theory is
an intensional theory. This is clearly illustrated in the construction of partial equivalence
relation models, which use equivalence classes of codes for computable functions.

Since models of A>>7 involve sets of functions and sets of pairs, we need a general
notion of computability that applies to sets other than the natural numbers. The main
idea used in this section is that we can extend computability to any set by associating
one or more natural number “codes” with each element. This leads us to the definition
of modest sets. While the most common modest set models are based on standard Turing-
machine computation, it is also possible to use “codes” from any structure that allow us to
represent functions and pairs. Since the codes themselves play a more fundamental role
than the elements they code, we may also take a more abstract view of these models
by representing elements of each type as equivalence classes of codes. This leads to a
class of models in which every type is interpreted as a binary relation (partial equivalence
relation, or per) over some set of codes. These models are particularly convenient for
interpreting languages with polymorphism or subtyping, as we shall see in Chapters 9 and
10.

Modest sets are defined in Section 5.5.2, where we also define product and function
space constructions on modest sets. These are used in Section 5.5.3 to construct a Henkin
model called the full recursive function hierarchy over any collection of modest sets.
In Section 5.6, an equivalent formulation using partial equivalence relations instead of
modest sets is developed, followed by a generalization from the natural numbers (used as
codes for partial recursive functions) to other structures with similar properties. Section 5.6
concludes with a section outlining the issues involved in interpreting fixed-point operators
in recursive models.

The framework of modest sets was first formulated in [Hyl82], where sets with partial
enumeration functions were characterized as the “effective objects” of a natural category.
These were later dubbed the “modest sets” by Dana Scott (see [Hyl88]). A number of
related ideas appear earlier in Kleene realizability [Kle45, Kle71], a study of first-order
recursive functions [MS55], recursion in higher types [Kre59], the model HEO described
in [Tro73], and the development of numbered sets carried out by Malcev and Ershov
[Mal70, Ers71, Ers72, Ers76].

In the rest of this introductory section, we review well-known properties of recursive
functions that are needed for the development of modest sets and related structures.

As discussed in Section 2.5.4, the standard notion of computability on the natural
numbers may be characterized using Turing machines, the inductive definition of par-
tial recursive functions, or definability in PCF. To simplify the presentation and some

356 Models of Typed Lambda Calculus

of the proofs, we will use the definition of the partial recursive functions, given in Sec-
tions 2.5.4 and 2.5.5, and the characterization of these functions using Turing machines,

interchangeably.
Let PR be the set of all unary partial recursive (computable) functions on the natu-
ral numbers and let ¢, ¢1, ... be some enumeration that contains all functions in PR.

We only need one-argument functions since we may treat multi-argument functions using
either a recursive pairing function or Currying. We say that i is an index of the partial re-
cursive function ¢;. Since ¢; and ¢; may be the same function, for i # j, a partial recursive
function may (and in fact always does) have more than one index. The reader familiar with
recursive function theory will know that there are several ways that an enumeration of PR
might be determined. Specifically, every recursive function has a description, as a “pro-
gram” or definition in some language. We may take these descriptions and arrange them in
some order, letting ¢y be the function computed by the first program, ¢; the function com-
puted by the second, and so on. We assume this is done in such a way that we can compute
the ith function on argument » (as a function of i and n), compute the number & such that
¢r is the composition of ¢; and ¢;, and similarly for other simple operations on functions.
It is traditional in recursive function theory to call any enumeration with these properties
an acceptable enumeration of the partial recursive functions and only to consider accept-
able enumerations.

It is easy to define computable pairing and projection functions on the natural numbers,
as outlined in Exercise 2.5.13. To fix notation, let us write pr for the function

prin,m)=n+m)(n+m+1)/24+m
and (n)i, (n); for the numbers such that
(pr(n,m)); =n and (pr(n,m)); =m.

We can also represent any sequence of natural numbers by single natural number, using
nested pairing, as in Lisp and as described in Exercise 2.5.13. We will use the s-m-n theo-
rem from recursion theory, namely, given any recursive function f (X1, ..., Xm, Y15 ..., ¥n)
of m + n arguments, and natural numbers ay, ..., an, we may effectively find a recur-
sive function g of n arguments such that g(y1, ..., y») = f(a1,...,am, ¥, ..., ¥n). Since
computation on recursive functions is carried out using indices, this really means that there
is a computable function which, given an index i for f, and numbers ay, . .., a,,, returns
an index for g. A time-honored general reference on recursive function theory is [Rog67].
Some computer science students find [Cut80], which uses computability based on register
machines, more accessible.

5.5 Recursion-theoretic Models 357

5.5.2 Modest Sets

We will define the computable functions on a set, A, by choosing a function e4 from the
natural numbers to A and appealing to standard computability on the natural numbers.
Specifically, a modest set is a pair (A, e4), where A is aset and e4: N — A is a surjective
partial function from the natural numbers to A. We refer to e4 as the partial enumeration
Sfunction for A. Intuitively, if e4(n) = a, we think of n as the “code” for the element a of
A; this is elaborated below. The function ¢4 must be surjective, since in order to define
computability on A, every element of A must have a numeric code. This forces A to be
countable. However, ¢4 need not be a total function. In fact, if we wish to form a modest
set of total recursive functions, it is necessary to have ¢4 (n) be undefined for some natural
number n, as illustrated in Exercise 5.5.9 below. Since e4 will be used simply to define a
class of recursive functions on A, we will not require effective procedures for determining
whether given n, m € A code the same (or any) element of A.

Computer scientists may gain stronger intuition for modest sets by identifying natural
numbers with bit strings, and considering computer representations for various data. In
more detail, we may regard any natural number as the sequence of bits obtained by writing
the number out base two. If we wish to compute with any kind of value, we must repre-
sent it by some sequence of bits, and therefore a natural number. It is quite common to
have more than one representation for a single value, such as in representing functions
by their compiled code. Since there are many possible programs computing a given func-
tion, there are many possible bit strings representing a single mathematical function. On
the other hand, each sequence of bits obtained by compiling code represents only one
function. Therefore, we have a partial function from natural numbers to the values we are
representing; if a natural number codes a value, then it is the code for exactly one value.

A trivial example of a modest set is (A, An.n), the natural numbers enumerated by the
identity function. Several other examples are listed below.

Example 5.5.1 The pair (PR, An.¢,) is a modest set whose elements are functions. The
enumeration function An.¢,, mapping n to the nth partial recursive function, is total and
surjective, but not one-to-one.]

Example 5.5.2 1f 7ot is the set of total recursive functions, and e;, is the map

bn if ¢, is total
undefined otherwise

eror(n) = {

then (7ot, e;5;) is a modest set. In this example, there is no effective procedure for deter-
mining whether e, (n) is defined, or whether e;,;(n) = e;5;(mm), given natural numbers n
and m. u

358 Models of Typed Lambda Calculus

Example 5.5.3 The set of typed lambda terms forms a modest set, with enumeration
€rerms Mapping # to the term M with Godel code [M] = n. Just as we have not been overly
specific about how recursive functions are enumerated (or “coded by natural numbers”),
we will not generally be concerned with how a lambda term is assigned a number. All that
matters, when we assign Godel numbers to syntactic expressions, is that we can compute
standard operations on syntax from the Godel number of a term. For example, we assume
there are computable functions on codes that determine whether a term is a variable,
lambda abstraction, or application, and compute the codes of any subexpressions. This is
illustrated in Exercise 5.5.14, which gives a specific coding of terms. General discussion
of Godel numbering may be found in standard texts on logic [End72], but it is unlikely
that the reader will require additional information. An intuitive way of assigning natural
numbers to terms, familiar to computer scientists, is to associate a bit string of some
fixed length (e.g., one or two bytes) with each symbol of the language, and use the binary
number obtained by concatenating bit strings as the Godel number of a term.]

Example 5.5.4 In the proofs of Theorems 4.5.22 and 4.5.28, we construct a Henkin
model whose elements are equivalence classes of terms. A type A° ={[M:c]|T > M:0}
of this term model may be enumerated by the function e, with e, (m) =[M: o] iff m is a
Godel number (code) for some term in the equivalence class [M: o]. (Godel numbering of
terms is described in Example 5.5.3.) In Exercise 5.5.13, it is shown that the B, n-term
model is isomorphic to an applicative structure of modest sets and recursive functions.
Exercise 5.5.14 shows that not all recursive functions appear in the term model. L]

An aspect of modest sets that is sometimes confusing is that the partial enumeration
function is not forced to be the “natural” assignment of codes. For example, there is a
modest set (PR, e) where e is not an acceptable enumeration of the partial recursive
functions (in the sense described in Section 5.5.1). For this modest set, the usual, com-
putable operations on partial recursive functions may not be recursive functions from
(PR, e) — (PR, e) and, conversely, the recursive functions on this modest set need not
be computable in the standard sense. However, there is no easy way to sharpen the defi-
nition of modest set to exclude such structures. Perhaps the situation is best summarized
by saying that if a modest set uses the “standard” partial enumeration function (or one
that is recursively equivalent), as in (PR, An.¢,) of Example 5.5.1, then computability on
modest sets will coincide with the standard notion of computability on the underlying set.
However, if we consider a modest set with a “nonstandard” enumeration function, then
modest set computability will be a nonstandard form of computability.

We will often wish to refer to the set of codes of an element. For any modest set (A, e4)
and element a € A, we will write |a| 4 for the set of natural numbers

5.5 Recursion-theoretic Models 359

lala={n | ea(n) =aj}.

We will omit the subscript when it is clear from context. Note that since ey4 is a function,
the sets |a| and |b| are disjoint whenever a # b. Furthermore, it is easy to see that if
[-]: A— P(N) is some function assigning disjoint, nonempty sets to distinct elements
of A, then | - | determines a unique partial surjection e: N’ — A. Thus a modest set may be
defined by giving | - | instead of e.

It is relatively easy to make the cartesian product of two modest sets into a modest set,
using recursive pairing operations on natural numbers. If A = (A, e4) and B = (B, ep) are
modest sets, then we let A x B = (A x B, es_, p) be the collection of all ordered pairs,
A x B, enumerated by

eaxp(n) ={a,b) iff es((n))) =aandep((n))=">o.
Lemma 5.5.5 If A and B are modest sets, then A x B is a modest set.

Proof We must check that e4 g is a surjective partial function. It is a partial function
since ¢4 and ep are partial functions. The partial function e 4 p is surjective since e4 and
ep are surjective, and if e4(n) = a and eg(m) = b, then ez x g (pr(n, m)) = {(a, b).]

Intuitively, the recursive functions on modest sets are the functions that may be com-
puted by recursive functions on codes. To be more precise, let f: A — B be a total
function on the underlying values of modest sets (A, e4) and (B, eg). A partial function

g: N — N tracks f if
n € |al implies g(n) | and g(n) €| f(a)l,

where g(n) | means that the partial function g is defined on n. We say f is recursive (or
computable) if there is a partial recursive g tracking f. Note that while f is total, g may
be partial. More specifically, we assume that f: A — B is total on A, and require g to be
defined on every number that codes an element of A. However, g may be undefined on
natural numbers that are not codes for elements of A.

When f is recursive, we write | f| for the set of codes of partial recursive functions
tracking f, i.e.,

|fl=1{n | ¢n tracks f}.

If A= (A, es) and B = (B, eg) are modest sets, thenwelet A - B = (A — B, es_.p) be
the collection of all total recursive functions from A to B, enumerated by e4_, g(n) = f iff

nelfl

Lemma 5.5.6 If A and B are modest sets, then A — B is a modest set.

360 Models of Typed Lambda Calculus

Proof We must check that e4—, p is surjective and a partial function. It is surjective
since every recursive function has a code. By the definition of tracking, we can see that
if n € | f|, then n determines the value of f(a) for all a € A. Therefore, if n € | f| and
n € |gl|, then f and g must be the same function from A to B. It follows that e4, g is a
partial function. "

Two modest sets (A, e4) and (B, ep) are isomorphic if there is a function f: A — B that
is bijective (one-to-one and onto). These modest sets are recursively isomorphic if the bi-
jective function f: A — B is recursive. When we say two modest sets are isomorphic, we
will always mean that they are recursively isomorphic, unless specifically noted otherwise.

Exercise 5.5.7 1f A= (A, es) and B = (B, ep) are modest sets, then we let A + B =
(AW B, es+p) be the disjoint union, AW B = ({0} x A) U ({1} x B), enumerated by

{0, a) if (n);1 =0 and (n); € |a|
ea+p(n) = (1,b) if (n);=1and (n); € |b|
undefined otherwise

Show that if A and B are modest sets, then A + B is a modest set.

Exercise 5.5.8 Let Ny = (N, e;) and N; = (N, e3) be two modest sets whose underlying
set is the natural numbers and let f: ' — A be a total recursive function on the natural
numbers. Show that f: Ny — N, is also a recursive function from modest set N} to N, or
give a counterexample for some specific enumeration functions e; and e;.

Exercise 5.5.9 Since application is lambda definable, and we want the meaning of every
lambda-definable function to be computable, it is essential that given a code n for a func-
tion f and a code m for an element a in the domain of f, we can compute a code for f(a).
Given this, show that if A/ is the modest set of natural numbers, enumerated by the iden-
tity, there is no fotal function ex—, s for the modest set of total recursive functions from
N to N. (Hint: It may be helpful to know that some set is not recursively enumerable.)

5.5.3 Full Recursive Hierarchy

In this section, we show that any full hierarchy of recursive functions over modest sets
forms a Henkin model. The interpretation of a variant of PCF, with primitive recursion in
place of fix, is given in Exercise 5.5.12. We cannot interpret fixed-point operators using
the modest set constructions given so far, since we only have total function spaces and not
partial ones. As with domain models, the interpretation of fixed-point operators requires
either a partial form of function space, or some convention (such as least elements of
pointed CPOs) for encoding partial functions as total ones. We investigate a special class
of modest sets allowing recursion in Sections 5.6.3 through 5.6.5.

5.5 Recursion-theoretic Models 361

Let & = (B,C) be a A~ signature, with B = {bg, by, ...}, and let (A% ¢;) be
a modest set, for each b; € B. A full recursive hierarchy A for ¥ over modest sets
(AP0 eq), ..., (AP e) is an applicative structure with

A(TXI' =A(T X At,

A°7 T =all recursive f: (A%, e;) > (AT, e;),

enumerated by e« 4 and e 40, 41, With

App”" fx = f),

Proj]"* (x,y) =x,
Projy’" (x,y)=y.

The function Const, choosing Const(c) € A® for each c: 0 € C, may be chosen arbitrarily.

Note that technically speaking, an applicative structure is given by a collection of sets,
rather than a collection of modest sets. In other words, while partial enumerations are
used to define function types, they are not part of the resulting structure. This technical
point emphasizes that the meaning of a pure lambda term does not depend on the way any
modest set is enumerated. However, when we consider a specific recursive hierarchy, we
will assume that a partial enumeration function is given for each type.

Theorem 5.5.10 Every full recursive hierarchy is a Henkin model.

Proof 1t is easy to see that the full recursive hierarchy for A*>™ is an extensional ap-
plicative structure. We will prove that the environment model condition is satisfied, using
a slightly stronger induction hypothesis than the theorem. Specifically, we will show that
the meaning of every term exists and is computable from a finite portion of the environ-
ment. We use the assumption that meanings are computable to show that every function
defined by lambda abstraction is computable.

To state the induction hypothesis precisely, we assume that all variables are numbered in
some standard way. To simplify the notation a bit, we will assume that the variables used
in any type assignment are numbered consecutively. We say that a sequence (ny, ..., ng)
of natural numbers codes environment n on I' = {x: 01, ..., x;. 0k} if n; € |n(x;)| for
1 <i <k. Again assuming I' = {x1: 01, ..., x¢: ok}, we say [T > M: o] is computable if
there is a partial recursive function f: N* — A such whenever(ny, ...,ny) codes n on
I, the application f(ny,...,n) is defined and f(ny,...,ni) € I > M:o]ln|. In other
words, [I" > M: o] is computable if we can compute a code for [I" > M: o]|n from codes

for n(xy), ..., n{xp).

362 Models of Typed Lambda Calculus

Like the definition of the meaning function for Henkin models, the proof proceeds by
induction on typing derivations. The main steps of the inductive argument are given below.

[x:o>x:0]n = n(x) is computed by the identity function

[Te>MN:tln =App(IT'>M:0 — tlln) (IT > N: o lln) is computed by ¢, (1),
wherem € |[T>M:0 — t]ln|and n € |[T"'> N:alnl,

[Teix:ioM:0— tln= f with f(a) =[T, x: 0 > M: t]In[x — a] is computable since
m € |[T, x:0 > M: t]n[x — a]| is computable from n € |a|.

More specifically, in the lambda abstraction case, it follows from the s-m-n theorem that if

me |l x:0> M:tlnlx — al|

is computable from a coding of 7[x > a] on T, x: o, then the function mapping

nelal »melll,x:o> M:t]nlx — all

is computable from a coding of 1 on I". The (add var) case is straightforward and the
pairing and projection cases are left as Exercise 5.5.11. This completes the proof. (]

In Chapter 8, using logical relations, we will prove that if all the base types are infinite,
then B, n-conversion is complete for proving the equations between lambda terms without
term constants that hold in a full recursive hierarchy.

Exercise 5.5.11 State and prove the inductive steps of Theorem 5.5.10 for terms with
pairing and projection functions.

Exercise 5.5.12 'This exercise is concerned with a variant of PCF with primitive re-
cursion, described in Exercise 2.5.7. Let A be the full recursive hierarchy with prod-
ucts and functions types over nat, interpreted as (A, An.n), and bool, interpreted as
{{true, false}, epoor), Where epooi(n) is true if n is odd and false if n is even.

(a) Show that successor and zero test may be interpreted in A in a way that satisfies the
equational axioms.

(b) Show that for any type o, the primitive recursion constant prim, may be interpreted in
A in a way that satisfies the equational axioms.

(c) Show that we cannot interpret every fixed-point constant fix, in .4 in a way that
satisfies the equational axiom.

5.5 Recursion-theoretic Models 363

An approach to interpreting fix in recursion-theoretic models is described in Sections 5.6.3
through 5.6.5.

Exercise 5.5.13 Let H be a set of assumptions of the form x: o, giving types to variables,
such that every type has infinitely many variables and no variable is given more than one
type. Let A be the applicative structure with

A% ={[M] | T > M: 0o some finite ' C H}

where the equivalence class of term M is defined by
[M]={N |FT>M = N:o some finite ' C H},
or equivalently,

[M]={N | M, N have the same 8, n-normal form}.

Application is given by App [M][N] = [MN]. This exercise asks you to show that A is
isomorphic to a model in which every type is a modest set and all functions represented
in the model are recursive. For simplicity, we consider A~ only, although the argument
extends easily to product types.

(a) Show that for an enumeration of each A° as described in Example 5.5.4, each App”*
is a recursive function

App” T i (A77T, eao—t) > ({(A7, ean) — (AT, eqr)).

(b) Show by induction on types that A is isomorphic to a type frame B with each B°~*
a set of recursive functions from (B?, ego) to (BT, epr) and such that each isomorphism
(A%, eps) = (B7, epo) is recursive.

It is shown in Section 8.3.1 that A is a model, and in Exercise 5.5.14 that it does not
contain all recursive functions. In other words, although B is a hierarchy of modest sets
of recursive functions, it is not a full hierarchy of all recursive functions.

Exercise 5.5.14 [N. Bjorner] This exercise asks you to prove that not all recursive func-
tions appear in the model of 8, n-equivalence classes of terms. More specifically, although
we can see from Exercise 5.5.13 that the term model may be viewed as a model of mod-
est sets and recursive functions, a function type A°~7 in this model does not contain all
total recursive functions from A? to A'. Before proceeding, we must be more specific
than Example 5.5.3 about the numbering of terms. We assume that all variables are num-
bered, as vy, v, vs, ..., and type constants as by, by, b3, We code a type constant b;
by [b;] = pr(0, i) and function type 0 — t by [0 — 1] =pr(1, pr([o], {t1)). Using the

364 Models of Typed Lambda Calculus

recursive projection functions, we can compute any necessary syntactic operations on type
expressions. We assume that the infinite type assignment A used to construct the term
model has the form H = {v: o1, v2: 02, ...} where the function mapping i — [o;] is re-
cursive. We code terms by

(v;] =pr(2,i)
[MN] =pr(3,pr([M1,[N1))
[Aviia. M =pr(4, pr(pr@i, [c1), [MY))

Some aspects of this coding are clearly arbitrary; any variant that allows reasonable syn-
tactic operations on terms to be computed would do as well.

(a) Show that there exist recursive functions computing the free and bound variables of
a term from its code. Given the code for a term, these functions should compute a finite
sequence (coded as in Example 2.5.13) of codes for variables. You only need to give one
function in detail.

(b) Give convincing high-level arguments that the normal form of a term is computable
from its code and that, given codes for M and N, the normal form of M N is computable.

(c) Use the fact that every term has a finite number of free variables to prove that if
(A%, eq0) and (AT, e4r) are types of a term model, regarded as modest sets as in Exam-
ple 5.5.4, there is a recursive function from modest set (A%, e4o) to (AT, e4r) that is not
the function defined by any term of type 0 — 7.

5.6 Partial Equivalence Relations and Recursion

5.6.1 Partial Equivalence Relation Interpretation of Types

Modest sets embody an intuitive way of extending computability on natural numbers to
arbitrary “numbered sets.” However, from a technical point of view, all that turns out to be
important about a modest set (A, e4) is a relation on natural numbers obtained from e4. As
a consequence, modest sets may be “simplified” to relations on the natural numbers. This
leads to an alternative formulation of recursive models using partial equivalence relations
(per’s) instead of partial enumeration functions.

There are two equivalent definitions of partial equivalence relation. The more intuitive
one is that a partial equivalence relation on a set A is an equivalence relation on some
subset of A, i.e., a pair (A’, R) with A’ C A and R C A’ x A’ an equivalence relation.
However, because R determines A’ by A’ ={a | a R a}, the subset A’ is technically re-
dundant. Moreover, R is an equivalence relation on the subset A’ ={a | a R a} iff R is

5.6 Partial Equivalence Relations and Recursion 365

symmetric and transitive on A. Therefore, we use a second and technically simpler def-
inition: a partial equivalence relation, or per, is a symmetric and transitive relation. A
straightforward, useful fact about partial equivalence relations is that if a R b, for any per
R,thena Ra.

Example 5.6.1 Partial equivalence relations over the natural numbers have an intuitive
computer-related explanation, which we illustrate here using the examples of booleans and
characters. If we want to explain the types of a language using the result of compilation,
then we might choose to explain the values of each type using the sequences of bits that
are stored in memory. Since any sequence of bits may be interpreted as a natural number
(written out base two), we may therefore explain the result of compilation using natural
numbers. In this context, it is very natural to think of a type as a membership predicate,
or subset of N, together with an equivalence relation on this subset. The membership
predicate tells which bit sequences are valid representations of elements of the type, and
the equivalence relation tells when two bit sequences represent the same abstract value. For
example, we might choose to represent boolean values as single bytes. If we regard every
byte with least significant bit 1 as a representing true, and every byte with least significant
bit 0 as a representing false, then all bytes with the same final bit will be considered
equivalent. If a byte consists of eight bits, then a byte is interpreted as a natural number
less than 28 = 256, with all odd numbers equivalent and all even numbers equivalent. This
gives us the per

boolone byte = {{n, m) |n, m < 256 and n, m both odd or both even }.

If we also represent characters by a single byte, then the type of characters will have the
same membership predicate, but a different equivalence relation. Put as a symmetric and
transitive relation on the natural numbers, we have

charone byte = {{n,m)|n,m <256 and n = m},

assuming that each byte represents a different character. An alternate per interpretation of
bool is described in Exercise 5.6.3.]

It is generally useful to think of a partial equivalence relation as representing a modest
set. With a few definitions, we can make the connection between pers and modest sets
precise. If (A, e4) is a modest set, then we define the relation ~ 4 on natural numbers by

m~an iff ex(m) =es(n).

This is the same as saying that m ~4 n whenever m, n € |a| for some a € A. It is easy to

366 Models of Typed Lambda Calculus

verify that for any modest set (A, e4), the relation ~4 is a per on N. An intuitive view of
~ 4 is that it tells us what the sets |a| are, without mentioning any elements of A.

The converse mapping, from partial equivalence relations to modest sets, involves a
form of quotient construction. If ~ is a per on A, then we form the subquotient A/~ by
taking the collection

A/~={la] | a~a}
of nonempty equivalence classes
[al={d’ | a’ ~a).

If ~ is a per on V, then the corresponding modest set is A = (N /~, An.[n]~) whose
underlying set is a subquotient of A/ and partial enumeration function, An.[n]~, maps each
natural number to its ~-equivalence class.

It is relatively easy to see that our maps between partial equivalence relations and
modest sets are inverses of each other, provided we do not distinguish between isomorphic
modest sets. To begin with, any a modest set (A, e4) is isomorphic to the modest set
N/A = (N/~4, in.[n]~,). Since the identity on A tracks the isomorphism a > |al,
the correspondence between an arbitrary modest set and the corresponding modest set
given by a per on N is a recursive isomorphism. We leave it to the reader to verify that
if ~ is any per on NV, and A = (N/~, An.[n].) is the corresponding modest set, then
~=ny.

One reason for establishing the correspondence between pers and modest sets is to mo-
tivate the definition of isomorphism of pers. Since we consider pers as concise represen-
tations of modest sets, we say two pers, R and S, are isomorphic if the associated modest
sets /R = (N/R, An.[n]g) and N'/S = (N'/S, An.[n]s) are isomorphic. As with modest
sets, when we say two pers are isomorphic, we will always mean that they are recursively
isomorphic, unless specifically noted otherwise. An example isomorphism between pers
appears in Exercise 5.6.3.

Since pers are technically simpler than modest sets, it is convenient to characterize
cartesian product and function space constructions on modest sets as operations on pers.
If R, S CN x N are partial equivalence relations on the natural numbers, then we define
the partial equivalence relations R x S and R — S by

nRxSm iff (n); R (m); and (n), R (m),,
mi R— Smy iff Vny,npeN.ni RnaD @p,(n1) S dm,(n2).

These are explained below. In writing ¢y, (n1) S @m,(n2), we assume ¢y, (n1) | and

¢m2(n2) .

5.6 Partial Equivalence Relations and Recursion 367

The relations R x S and R — S may be explained directly, reading m R n as, “m and
n represent the same element of R.” Specifically, the definition of R x S is that n and m
represent the same pair in R x S if (n)) and (m)) represent the same element of R and (1),
and (m), represent the same element of S. For a function per R — S, m) and m; represent
the same function from R to S if, whenever n; and n; represent the same element of R,
both ¢, (n1) and ¢, (n2) are defined and represent the same element of S. A simplified
way of understanding each definition is to separate membership from equality by focusing
on when an element is related to itself. For a product per R x S, we have n R x S n iff
(n)1 R (n), and (n)2 S (n)2. In words, n codes an element of R x S iff (n); codes an
element of R and (n)7 codes an element of S. For a function per R — §, we may similarly
see that m represents a function from R to S if, for each equivalence class of R, the result
of application is a unique equivalence class of S.

If RC N x N isaper, it is useful to write n: R as an abbreviation

nR ¥ nRn

For the pers given in Example 5.6.1, we have n: boolye pyre and n: charone pyre €xactly if
n < 256.

Lemma 5.6.2 Let A= (A,es) and B = (B, ep) be modest sets and let R =~4 and
S =~ p be the corresponding partial equivalence relations over . Then we have recursive
isomorphisms

Ax B Z(N/(R xS), An.[n]rxs)
A— B>~ (N/(R—S), An.[nlgrs)

The proof is left as Exercise 5.6.4. It follows that if we begin with partial equivalence
relations ~g,, . .., ~p,, for the type constants by, . .. by of some 1™~ signature, and in-
ductively associate a per ~, with each type expression ¢ using the definitions of product
and function space relations given above, then for each type o, the type (A%, e,) of the
full recursive hierarchy over (N /~, An.[n]Nbo), ey N/ ~p,)‘"-["]Nb,() is isomorphic
to the modest set (N/~4, An.[n]~,).

Exercise 5.6.3 We may regard any subset A C N as a per by diag(A) = {{a,a)|a €
A}. Show that if we take bool,ps = diag({0, 1}), then there is a recursive isomorphism
between booly,ps and boolype by of Example 5.6.1.

Exercise 5.6.4 Prove the product and function space parts of Lemma 5.6.2 as parts (a)
and (b) of this exercise.

368 Models of Typed Lambda Calculus

5.6.2 Generalization to Partial Combinatory Algebras

The definition of modest set may be generalized to use partial enumeration functions from
any set D, in place of the natural numbers, as long as we can code functions and pairs as
elements of D. A general setting is to use structures called partial combinatory algebras,
which are an untyped version of the combinatory algebras discussed in Section 4.5.7, with
the added generalization that application may be partial. Some additional discussion of
partial combinatory algebras may be found in [Bee85].

A partial combinatory algebra, or pca, is a structure D = (D, -, K, S) where D is a set,
- is a partial binary operation (i.e., a partial function of two arguments that we write as an
infix operation), and K, S € D are elements with the following properties:

(K-x)-y=x allx,ye D,

$-x)-yl allx,ye D,
e -2 (-,

(5-x)-y) Z_{ undefined otherwise

where M | means the expression M is defined (has a value), and M = N means both ex-
pressions are defined and equal. Another useful notation is to write M 1 if M is undefined
(has no value). It is common to omit - and associate unparenthesized expressions to the
left. In working with expressions that may or may not be defined, depending on the values
given to their free variables, it is useful to write M >~ N to mean that if either M or N is
defined, then both are defined and have the same value.

Example 5.6.5 The natural numbers, with partial recursive function application, form a
partial combinatory algebra. More specifically, the partial combinatory algebra used in the
definition of modest sets is

Npcaz(N’ ',K,S)

with m - n = ¢ (n) and elements K and S determined as follows. For K, we need some
natural number such that ¢ is a total function and, if n = ¢ (x), then for all y, ¢,(y) = n.
Therefore, we may let K be any index of the partial recursive function which, given
argument x, returns an index of the constant function returning x.

The natural number S is slightly more complicated. There is a partial recursive function
f of three arguments such that for all natural numbers x, y, z, we have

fxy,)= (x-2) (¥ 2) =P 0)(Py(2)).

This function is easiest to explain using Turing machines, or some other model of com-

5.6 Partial Equivalence Relations and Recursion 369

putation: given descriptions x and y of Turing machines, and string z, the function f is
computed by the Turing machine that runs x on z and y on z, interpreting the first as the
description of a Turing machine that is run on the result of computing y on z. By the s-m-
n theorem of recursion theory (or a simple argument about Turing machine encodings), it
follows that there is some natural number § with the required property. n

Example 5.6.6 Total combinatory algebras, in which - is a total operation instead of
a partial one, have an ordinary equational axiomatization. This is illustrated in Exam-
ple 3.7.31, which includes / in addition to S and K. However, I is definable from S and K
as § - K - K. Since every total combinatory algebra satisfies the axioms for partial combi-
natory algebras, an example partial combinatory algebra is the algebra of terms over S, K
and -, possibly containing variables, modulo provable equality from the algebraic axioms.
Provable equality may be characterized by a confluent reduction system, as shown in Ex-
ample 3.7.31. u

Example 5.6.7 Untyped lambda terms, modulo provable equality, also form a total com-
binatory algebra. This is true for provability using (&) and (8), or («), (8) and (). We
can construct a combinatory algebra of untyped lambda terms using any set of variables
(allowed to occur free in terms), or using only closed terms. .

A partial combinatory algebra D = (D, -P, KP, SP) is an algebra for the signature with
carrier ¢, function symbol - : ¢ — ¢ — ¢, and constants K, S : ¢, except that - is interpreted
as a partial instead of total function. However, we can still interpret any algebraic term
over this signature in any partial combinatory algebra using the standard definition from
algebra. More specifically, given an environment n for D, the meaning D[M]n of a term
may be either defined or undefined, according to the following clauses:

Dlx1n =n(x)
DIKIln =kKP
DISTn =sP

DIMTn ‘P D[Ny if defined

DIM - Nin = { undefined otherwise

In other words, for any partial combinatory algebra D and environment 7, the meaning
function D[Jin is a partial function from combinatory terms to D.

For any partial combinatory algebra D, a D-modest set is a pair (A, e4) with A any
set, and e4: D — A a partial surjective function from D onto A. To regard the cartesian
product of two D-modest sets as a D-modest set, we must find pairing and projection

370 Models of Typed Lambda Calculus

functions that are represented in D. More specifically, we must find elements pr, p1, ps €
D such thatforall x, y € D,

pr-(pr-x-y)=x
pr-(pr-x-y)y=y

and use these in place of the natural number functions pr, (_); and (_),. The easiest way
to understand pr, py, p» € D is via lambda abstraction and the translation of lambda terms
into combinators described in Section 4.5.7, ignoring types since there is only one set
D involved. More specifically, we may represent a pair (x, y) of elements of D by the
function Af. fxy which applies its argument to both x and y. The reason why this works
is that if st is the functions that returns the first of two arguments, and snd similarly returns
the second, then we may define p; and p; by

p1=2q.qfst,
p2=XAq.qsnd.

This gives us pi(x,y) = pi1(Af. fxy) = (Af. fxy)fst = x, and similarly py(x, y) = y.
This can be carried out entirely within D by letting pr, pi, p2 € D be the result of trans-
lating the following untyped lambda terms into combinators

pr=2Ax.Ay.Af. fxy
P1=Aq.q (Ax.Ay.x)
P2=Aq.q (Ax.2y.y)

using the algorithm given in Section 4.5.7, ignoring types. The reader may verify this in
Exercise 5.6.10.

For any D-modest sets A and B, the cartesian product D-modest set A x B and function
D-modest set A — B are defined as for A'-modest sets in Section 5.5.2. Lemmas 5.5.5 and
5.5.5 are proved in the same way as for A/-modest sets. In addition, the correspondence
given in Lemma 5.6.2 between modest sets and pers holds for any partial combinatory
algebra.

It is possible to show that the hierarchy of D-recursive functions over any D-modest
sets forms a Henkin model, by essentially the argument used to prove Theorem 5.5.10.
Instead of carrying this out, we will show how to construct a typed combinatory algebra
(of total functions) from any partial combinatory algebra. This will allow us to view any
hierarchy of modest sets as the result of taking the quotient of a combinatory algebra
by a logical partial equivalence relation. This is discussed in Section 8.2.5 (referring to
Exercise 8.2.23), in connection with general properties of quotients using logical partial
equivalence relations.

5.6 Partial Equivalence Relations and Recursion 371

The main idea for constructing a typed applicative structure from a partial combinatory
algebra is to define function types using the set of total functions represented in the pca,
and similarly for cartesian products. The function types will depend on the pca, but the
product types are essentially standard, since every pair is definable by the pairing function
associated with the partial combinatory algebra.

Let ¥ be a A 7 -signature, with type constants by, ..., b, and let D = (D, -, K, §)
be a partial combinatory algebra. If A%, ... A% are any subsets of D, then we define the
typed A~ -applicative structure .Ap by letting

A" ={deD|Vxe A%, d-xec A"},

A" ={deD|p;-de€ A’ and py - d € AT},

with

App”' fx=f-x,
Proji"x =p;-x,
Proj5"x =p;-x.

Note that for every type o, we have A° C D.

If > M:o is a typed A term, then we may translate M into combinators, as de-
scribed in Section 4.5.7. The following lemma shows that since Ap is a typed combinatory
algebra, this gives us a way to interpret M as an element of Ap and, therefore, as an el-
ement of D. We will see in Section 8.2.5 that the meaning of ' > M: ¢ in the per model
built from Ap is the equivalence class of the interpretation of M in D.

Lemma 5.6.8 For any partial combinatory algebra, and choice A%, ..., A% of subsets
of D for type constants, the typed applicative structure Ap is a typed combinatory algebra.

Proof 1t is easy to see that Ap is a typed applicative structure since, by construction, if
feA°>Tanda € A%, then f-a | and App fa = f-a € A". It remains to show that Ap
has combinators of each type.

We will show that for all p, o, T, there exist elements

Ksr € A9 (T=0)

Sp.o.z GA(p'"’“'"’f)'"’(P**O)ﬁp»r,
Pair®® ¢ A° T (Tx0)

Proj‘l’" e AOXD)>T

Proj5T € AVXD70,

372 Models of Typed Lambda Calculus

satisfying the equational conditions
Kgrxy =x,

Sp.o,tXYZ = (x2)(y2),
Proj{"" (Pair®"xy) = x,
Projy " (Pair®Txy) =y,

for all x, y, z of the appropriate types. Not surprisingly, each K, ; and S, , ; will be the K
or S (respectively) of the partial combinatory algebra D, and Pair”", Proj"" and Proj3’*
are pr, p; and pa.

Since A°7 contains all elements of D that represent total functions from A% to AT,
all that is required to complete the proof is to show that S, K, pr, p; and p; define total
functions of the appropriate types.

For K = K, r, we must show that if x € A7, then K - x € A", To do this, we let
y € A". By the definition of partial combinatory algebra, we have (K - x) - y = x € AT,
and so by definition of .Ap we have K - x € A777. Therefore K € A~777.

For S = Sp.5.c, we must show that if x € AP~ then S -x € APTD2P2T Ag
in the preceding case, we let y € A?”? and z € A?. From the definition of partial
combinatory algebra, we have S-x -y-z=(x-2)-(y-z) whenever (x -2)- (y-2) .
But since x € A?7°7" and z € AP, we have x -z | with x .z € A°77. Similarly,
(y-z) and (x - z) - (¥ - 7) are both defined, with (x - z) - (y - z) € A". This shows that
S e AlP=0>T)>(p—=0)=>p>T

The proofs for pr, p; and p, are similar, given the results of Exercise 5.6.10, and
omitted. L]

Exercise 5.6.9 Suppose we replace the three axioms of partial combinatory algebras by
the following two:

(K -x)-y ~ X,
(§-x)-y)-z=(x-2)-(y-2).
Is this equivalent to the definition given in the text? Explain.

Exercise 5.6.10 Write pr and pj, as given by untyped lambda terms above, out as ap-
plicative combinations of K and §, and verify that the equation p; - (pr - x - y) = x holds
in every partial combinatory algebra. (The equation ps - (pr - x - y) = y holds by similar
reasoning.) You may want to write a short computer program to do some of the work.

5.6 Partial Equivalence Relations and Recursion 373

5.6.3 Lifting, Partial Functions and Recursion

There are several ways to construct modest set, or per, models with fixed point operators at
various types. Although modest sets are sometimes more intuitive, we will work with pers
since the technical details are simpler.

One approach uses domain theory, constructing a per model over a partial combinatory
algebra that is a CPO containing a total fixed-point function. An advantage of this setting
is that the underlying CPO has a partial order that may be used to define a partial order
on each per. With appropriate restrictions on pers, we can regard each per as a CPO and
interpret fixed point operators in the usual way. The main challenge in developing this
kind of model lies in identifying a natural class of pers that each determine a CPQO. Some
discussion of this form of model appears in [Ama91, Car89, AP90, BM92], for example.

Another approach may be illustrated using the partial combinatory algebra A)y¢, of nat-
ural numbers with recursive function application, n - m = ¢,(m). We will develop these
models using intuition from computability theory as much as possible. However, the fail-
ure of the recursion (fixed point) theorem on certain pers leads us to adapt a substantial
number of ideas from domain theory. Using a form of computable test, we may identify
an intrinsic partial order on each per. If we restrict our attention to pers where this order is
complete (in a computable sense), then we obtain a model where types with least elements
are guaranteed to have fixed-point operators. Although this construction appears applica-
ble to other partial combinatory algebras, we will only consider the natural numbers with
recursive function application.

A number of recent research papers present constructions that are similar to or extend
the development of the “effective CPOs” below [AP90, CP92, FRMS92, Pho90b, Pho90a].
Thanks to R. Viswanathan for his assistance with this section.

There are several instances in which we need a one-element per unit. In general, it does
not matter which per we use for unit, as long as there is exactly one equivalence class. The
largest such relation is unit = N' x N/. However, some arguments are simplified if we take
a smaller relation. We will therefore use

unit ¥ {(0,0)}

The slight advantage of this definition is that in reasoning about functions from unit to
another per, we only need to consider the function value at 0.

Partial Functions, Total Functions and Lifting

Since recursion generally involves partial functions, we begin by defining partial function
pers. These may be related to total function pers using a form of lifting. Although we
could define lifting initially, and take partial functions as a derived notion, there are several

374 Models of Typed Lambda Caiculus

constructions that might, a priori, appear to be reasonable definitions of lifting. Therefore,
we begin with the natural and intuitive definition of partial function and use the connection
between partial functions, total functions and lifting to justify our definition of lifted pers.

Given two pers R, S € A x N, the per R — S of computable partial functions from R
to S is defined by

my R— Smy iff Vni,nyeN. ifn; Ansthen
ifm;-n; § ormy-ny) thenmy-ny Smy-na.

This may be explained relatively simply in words, reading m R n as, “m and n represent
the same element of R.” The definition of R — S says that m| and m, represent the same
partial function from R to S if, whenever n; and n, represent the same element of R, if
either m; - n| or my - ny represent an element of S, then both must be defined and represent
the same element of S. A second way of understanding this definition is to consider the
weaker condition

m:R— S implies VneN. ifn: A then
ifm-n) thenm-n:S

involving membership only. In this case, the definition says that for m to represent a partial
function from R to S, the result of applying m to any n: R must either be undefined or an
element m - n of S . Once we have this understanding of a partial function, we can see that
mj and m; define the same partial function if they are either both undefined on all elements
of an equivalence class, or both defined and produce elements of the same S-equivalence
class. The definition is reformulated for modest sets in Exercise 5.6.26.

Example 5.6.11 A simple example of a partial function per is N -~ N, where N C
N x Nistheper N & {(n,n)|n e N}.Itis easy to see that n: N — N, for every natural
number #, since every n is the code of some partial function on the natural numbers. In
addition, we have ny N — N nj exactly when n| - m >~ ny - m for all m € N. In other
words, ny N — N ny precisely when n| and nj are indices for the same partial recursive
function. .

It is easy to check the following lemma, whose proof is left as Exercise 5.6.25.

Lemma 5.6.12 For all partial equivalence relations R, S € N x N, the relation R — S
is a per.

Using a form of lifting, we can also characterize partial function pers using total func-
tion pers. The main property we want is that for all pers R, S € N x N, there should be
an isomorphism

5.6 Partial Equivalence Relations and Recursion 375

R—S = R->S§,

between the partial functions from R to S and the total functions from R into “S lifted,”
written here as S .

Lifting may be defined naturally using the partial functions from a one-element per. To
put this in perspective, remember that if A is a set, and W is a one-element set, then the
elements of A are in bijective correspondence with the total functions from W to A. If
we consider the partial functions from W to A instead, there is one more possibility, the
function that is not defined on the single element of W. This way of adding “one element”
to a set allows us to “lift” pers over the natural numbers. Specifically, if S TN x N is a
per, we define

S, & unit — S,

using the per unit with exactly one equivalence class. By Lemma 5.6.12, the relation S is
a per.

Lemma 5.6.13 For all pers R, S € N x N over the natural numbers, we have R — S =
R — §) . Moreover, the isomorphism is given by a pair of recursive functions.

Some other aspects of lifting are given in Exercises 5.6.27 and 5.6.28.

Proof Given n: R — S, let i: R — S, be any index of the Turing machine which, on
input x returns an index of the Turing machine that, on input y, computes n - x. In other
words i = K - n. It is clear that we can compute n from n.

The reverse isomorphism involves evaluation at 0 since unit = {(0, 0)}. More specif-
ically, given n: R — S, we let n: R — S be any index of the Turing machine that, on
input x, computes n - x - 0. The reader is encouraged to check that these functions are well-
defined on equivalence classes and that they are inverses of each other. [

5.6.4 Recursion and the Intrinsic Order

For the special case of total functions on N — N, Kleene’s recursion theorem shows that
we have fixed points. More specifically, the recursion theorem that may be found in any
book on computability theory states that for every n: (N — N) — (N — N), there is
some k € N with n - k | and ¢y = ¢,.+. Since therefore k N — N n - k, the equivalence
class [k]y_-n = [n - k]y—n is a fixed point of the function given by n. However, this fixed-
point property does not hold for arbitrary functions (R — §) — (R — §), as shown in
Example 5.6.14 below.

Example 5.6.14 The recursion theorem shows that every total recursive function on
partial recursive functions has a fixed point. Therefore, we might conjecture that for any

376 Models of Typed Lambda Calculus

pers R and S, every recursive function (R — §) — (R — S) has a fixed point. We will see
that this is not the case, even when R = unit and therefore R — S= 5.
Let S be the following per whose elements are functions with finite domains:

iSj iff IneNVYx<n(@-x) andj-x] withi-x=j-x)and
Vx>n(@-x4tandj-x1)

Note that if ¢; and ¢; are undefined on every argument, theni S j.

We will define a function F : §; — S) without a fixed point in S, using the the fact
that S is not “complete.” More precisely, if we order S as we would order a set of functions
from one flat CPO to another, with i < j if ¢;(n) | implies ¢;(n) = ¢;(n) for all n, then
S is not a CPO. The reason is that the least upper bound (limit) of a sequence of functions
with increasingly larger finite domains will be a function with infinite domain. While S
contains functions with arbitrarily large finite domains, S has no function with an infinite
domain of definition.

To understand the following definition of F, recall that S| = unit — S and unit =
{(0, 0)}. Let F be an index of the function which, on input f, returns an index of the func-
tion which, on input 0, returns an index of the function given by the following algorithm:

F.-f-0-n=compute g=f-0;
if the computation of g halts
thenif y=0returnQ else return g - (y — 1)
else do not halt.

Note that for any f:unit — S, F - f is the index of a function that, on argument O
returns the index of a function. Therefore, F is a total function S; — S, which, on any
fiunit = S =S returns a total function in unit - S =5, .

There are two cases to consider in analyzing the possible fixed points of F. The first is
that if f:unit — S is undefined on O, then F - f:unit — § is a total function. Therefore,
the undefined function unit — S is not a fixed point of F. Second, if f: unit — S is defined
on 0, with f -0 = g, then by the assumption that g: .S, we know that g is the index of a
function with finite domain {0, .. ., k}. In this case, F - f - 0 is the index of a function with
larger domain {0, ..., k, k 4+ 1}. Therefore no f:unit — § with f -0] gives us a fixed
pointof F in S} . »

Example 5.6.14 shows that we do not have fixed-points of total recursive functionals on
all lifted pers. This suggests that if we want fixed points on lifted types, we should restrict
our attention to some special class of pers. An important idea in Example 5.6.14 is that if
we order the per S in the example as we would in domain theory, then S is not a CPO.

5.6 Partial Equivalence Relations and Recursion 377

Therefore, it seems natural to circumvent the problem illustrated by the per S by selecting
a class of CPO-like pers. The first step is to associate an order with each per.

One intuition associated with domain theory is that the order on a CPO represents the
“observable behavior” of elements. In a CPO of functions, for example, we can observe
the behavior of a function by applying it to some number of arguments. The functions
are ordered so that if one function gives more results than the other, it is “greater” in the
ordering. This can be generalized using the idea of a “test” on values of some domain. A
natural form of “test” in domain theory might be a function into the two element CPO
{T, L} with L< T. We can say that an element a of CPO A “passes the test” given
by a continuous function f: A — {T, L} if f(a) =T and fails if f(a) =L. Using the
continuity of certain step functions (see Exercise 5.4.16), it is not hard to show that if D
is an algebraic CPO, then a <p b iff, for all continuous f: D — {T, L}, if f(a) = T then
f(b) = T. Note that {T, L} is the result of lifting a one-element CPO.

We may adopt the intuitive idea of ordering by tests by saying that a computable test on
aper ACN x N is any recursive partial functions A — unit. By Lemma 5.6.13, this is
equivalent to taking total computable functions A — unit . We say an element n: A passes
the test f: A — unit if f-n |. Our analogy with CPOs suggests the following “intrinsic
order” on pers.

If AC N x N is any per and f: A — unit, then the intrinsic preorder on A is defined
by

n<am iff VfiA—unit. f-n]l> f-m]

It is an easy consequence of standard properties of computable functions that this relation
is a preorder, as verified in Exercise 5.6.29. However, the intrinsic order is not always
antisymmetric, as shown in Exercise 5.6.31. The intrinsic orderson N - N and N - N
are described in two examples below.

Once we have a preorder on each per, we can easily identify a class of CPO-like pers.
Specifically, we take the pers where the intrinsic preorder is a complete partial order, with
one qualification. The qualification is that we must take a restricted, computable form of
completeness. The reason is that a per on the natural numbers can have only countably
many elements. However, it is possible for a countable partial order to have uncountably
many directed sets. For example, the per N — N contains all functions with finite domain,
since every partial function with finite domain is computable. However, every total func-
tion on the natural numbers is the least upper bound of some directed set (or increasing
sequence) of partial functions with finite domain. Since there are uncountably many to-
tal functions, no per can be the full CPO of all partial functions on the natural numbers.

378 Models of Typed Lambda Calculus

Fortunately, we do not need least upper bounds of all directed sets. For the purpose of in-
terpreting expressions of any reasonable (computable) language, we only need least upper
bounds of computable increasing sequences. This leads us to the following definition of
“effective” (in the sense of “computable”) CPO.

If A is any per, then a computable increasing sequence in A is a computable function
s:N—> Awiths-n<us-(n+1)forall n € N. A least upper bound of a computable
increasing sequence s is an element a whose equivalence class is the least upper bound of
the equivalence classes of s - 0, s - 1, 5 -2, In other words, a >4 s - i for all i, and if
b>4s-iforalli,thenb >4 a. Wesay aper A CN x N is an effective CPO if

* The intrinsic preorder <4 on A is antisymmetric, i.e., if x <4 yand y <g x thenx A y,

* There is a computable supremum function with index sup, such that if s:N — A a
computable increasing sequence in A, then sup 4 - s is a least upper bound of s in A.

Thus A € N x N is an effective CPO if the intrinsic preorder is a partial order and there
is a computable function finding the least upper bound of every computable increasing
sequence.

It is straightforward to see that any per A with <4 antisymmetric and discrete is an
effective CPO. The reason is that the least upper bound of any computable increasing
sequence s is just s - 0. In particular, unit is an effective CPO.

Example 5.6.15 We can show that the per N — N is a discrete effective CPO by show-
ing thatif f - x | implies f -y | forall f: (N — N) — unit, then x (N — N) y.
For any pair of natural numbers » and m, we can define a test

taomy ¥ Az€ N.if z-n=m then | else %

which terminates on argument x: N — N iff x - n = m. It is easy to see that for any n and
m, tinm): (N — N) — unit. Moreover, if y passes every test t(, ») that x does, then we
have x - n = y - n for every n. This shows that if x <y_,n y thenx (N — N) y.

Since the intrinsic order is the discrete order, the only computable increasing sequences
are constant sequences, modulo N — N. (In other words, s - n(N — N)s - (n + 1) for all
n). Therefore the least upper bound of any computable increasing sequence s in N — N
is easily computed from s. n

Example 5.6.16 The per N — N is an effective CPO with the expected pointwise order.
We first investigate the intrinsic order and then show how to compute the least upper bound
of any computable increasing sequence.

It is easy to see that <j_.n is antisymmetric by showing that if natural numbers x
and y pass the same computable tests then x (N — N) y. Returning to the tests #(,) of

5.6 Partial Equivalence Relations and Recursion 379

Example 5.6.15, we can see that 1, ,,, terminates on argument x iff x - n | withx - n =m.
Since t(p my: (N = N) — unit for all n,m, it follows that x <y_.yy and y <y_.y x
together imply x (N — N) y.

We can get a better understanding of the intrinsic order by showing that x <y_.y y iff
Vn.x-nl D x-n=y - n.Inother words, the intrinsic order is determined by a particular
form of computable test involving application to a single number. This property of N —~ N
is a special case of Lemma 5.6.24 below. If Vin. x -n | D x -n =y - nis false then there
is some n with x - n | and either y - n 1 or y - n # x - n. This provides a computable test
Hn,xny: (N = N) — unit passed by x but not by y.

For the converse implication, we assume Van. x -n | O x -n =y - n but there is some
f:(N = N)— unit with f - x | and f - y 1. We show that this leads to a contradiction.
Let K = {n | ¢,(n) 1}, which is not recursively enumerable. We derive a contradiction by
showing that under our assumptions, K is r.e.

For any natural number z, let g - z be an index of the function determined by the
following algorithm with input n:

g-z-n=compute z -z, x -n and y - n in parallel (by interleaving);
if x - n | then return the value of x - n;
ifz-z | and y - n | then return the value of y - n;
else do not halt.

Note that if z - z, x - n and y - n all terminate, the result could be either x - n or y - n.
But in this case, we have x - n =y - n. It is easy to verify that g - z (N =~ N) x if z € K
and g -z (N — N) yif z ¢ K. We can therefore determine whether z € K by determining
whether f - (g-2z) |. Since f - (g-z) | is an re. property of z, this means that K is re.
But since this is a contradiction, we have shown that if Vn. x -n | D x-n =y -n then
x <y—n ¥. This completes the proof that <x_. y is the expected pointwise order on partial
functions.

Finally, we come to computing least upper bounds of computable increasing sequences.
If s is a computable increasing sequence, thens - 0,s - 1, s - 2, ... is a sequence of indices
of partial recursive functions, increasing in the point-wise order. This means that if i > j,
then s - i is the index of a function that is defined everywhere that s - j is, and possibly on
additional arguments. Where both are defined, the functions must be equal. Given s, we
need to be able to compute the index of a function f with f(n) = m if there is some i with
s - i - n = m. Therefore, we may let sup s be the index of the function f computed by the
following algorithm:

f-n=computes-0-n, s-1-n, s-2-n, ...in parallel (by interleaving);
ifs-i-n | for some i then halt with results -i - n

380 Models of Typed Lambda Calculus

Since this produces the least upper bound of any computable increasing sequence,
N — N is an effective CPO. L]

A useful lemma is that every computable function on effective CPOs is monotonic with
respect to the intrinsic order. It follows that if s: N — A is an increasing sequence in A
and f: A — B is computable, then their composition f o s is an increasing sequence in B.

Lemma 5.6.17 Let A, B C N x A be any pers. Every computable f: A — B is mono-
tonic, i.e., for all x, y: A, if x <4 y then f -x | implies f -y | with f-x <p f-y.In
particular, if f: A — B is a total function and x <4 y then f -x <p f - y.

Proof Suppose x <4y and f: A — B. Let g: B — unit. We must show that if g - (f -
x) theng-(f-y) |.Butx <4 y means that forevery h: A — unit,if h-x | thenh-y |.
In particular, since g o f: A — unit, if (g o f) - x | then (g o f) - y |, which is what we
needed to prove. u

Since every effective CPO is a per over the natural numbers, there are two natural
classes of functions from one effective CPO to another: the computable functions on pers
and the continuous functions on CPOs. An important property of effective CPOs is that
all computable functions on the underlying pers are continuous. Therefore, we can ap-
ply order-theoretic arguments to functions on effective CPOs without changing our no-
tion of function from one effective CPO to another. After establishing the connection
between computability and continuity, we use this to show that every computable func-
tion on a pointed effective CPO has a least fixed point. The first lemma below estab-
lishes a property of computable tests that is useful in relating computability to continu-

ity.

Lemma 5.6.18 Let A be a per with sup, computing the least upper bound of every
computable increasing sequence and let f: A — unit be a computable test on A. If s is a
computable increasing sequence then f - (sup, - s) | iff there is some n with f - (s - n) |.

Proof For the implication to the left, suppose f - (s - n) | for some n. We will show
that f - (sup, -s) |. Since sup, finds the least upper bound, s - i <4 sup, - s for all i.
Therefore, by Lemma 5.6.17, we have f - (supy - s) .

For the implication to the right, suppose that f - (sup4 - s) | and, for the purpose of
deriving a contradiction, f - (s - n) 1 for all n. We will derive a contradiction by defining
an increasing sequence from s that lets us show that K = {n | n - n 1} is re. The idea is
that for any x € N, the sequence 7, will be equivalent to s if x € K and equivalent to an
initial segment of s, repeating the nth element indefinitely for some n > 0, if x ¢ K. For
any x € N, let t, be any index of the function computed by the following algorithm:

5.6 Partial Equivalence Relations and Recursion 381

ty - y = compute x - x for y steps;
if x - x halts in i <y steps, then return s - i else return s - y.

Ifx € K,thent, -n=s-nforalln € N and so by assumption f - (sup4 - tx) . On the
other hand, if x ¢ K then (sup, - ty) A (s - n) for some n representing the number of steps
required for the computation of x - x to halt. In this case, f - (sup, - t,) 1 since we assume
that f - (¢ - n) 1 for all n. Therefore, we have x € K iff f - (supy - t) |. Since it is r.e. to
determine if f - (sup,4 - t,) |, this shows that K is re., which is our desired contradiction.
This completes the proof. =

Lemma 5.6.19 Let pers A, B C N x N be effective CPOs. Every computable f: A —
B is continuous, i.e., if s: N — A is an increasing sequence, then f - (sup, - 5) B suppg -

(f o).

Proof Let f:A — B be computable and s: N — A an increasing sequence in A. By
Lemma 5.6.17, f o s is a computable increasing sequence in B.

We first show that supp - (f os) <p f - (sup4 - s). By monotonicity of f, from Lemma
5.6.17,and s - n <4 sup, - 5, we have

f-(-n)<pf (supy-s)

for all n. Therefore supg - (f os) <p f - (sup4 s).

For the reverse inequality, we consider any computable test g: B — unit. Suppose g -
(f - (supy4 - $)) |, or, equivalently, (g o f) - (sup4 - s) |. By Lemma 5.6.18, there is some
n with (g o f) - (s - n) |, which can also be written g - ((f os) -n) |. Using Lemma 5.6.18
in the opposite direction, it follows that g - (supg - (f o s)) |. Since this holds for any
computable test on B, we have f - (sup, - s) <p supg - (f os) by definition of the intrinsic
order on B. By antisymmetry of the intrinsic order, we have therefore shown that f -
(supy -s) B supp - (f os). "

By analogy with ordinary CPOs, we say an effective CPO A is pointed if there is some
n: A with n <4 m for all m: A. In other words, an effective CPQ is pointed if there is some
least equivalence class with respect to the intrinsic order. It follows from Lemma 5.6.24
below that every lifted effective CPO is a pointed effective CPO.

Lemma 5.6.20 Let per A C N x N be a pointed effective CPO. Every computable
f:A — A has a least fixed point fix4 f. Moreover, the function fix4: (A — A) — A is
computable.

Proof The proof is essentially similar to the proof of Lemma 5.2.20, which asserts the
existence of least fixed points for “non-effective” CPOs. Given f: A — A, we define the

382 Models of Typed Lambda Calculus

computable increasing sequence s by letting s - 0 be a number in the least equivalence class
of A and letting s - (n + 1) = f(s - n). Then we let fix, f = sup, - s. It is easy to see that
Jix 4 is computable, since sup, is given for any effective CPO A. The proof that fix, f
is in fact the least fixed point of f proceeds as in the proof of Lemma 5.2.20, using the
preceding lemmas of this section for monotonicity and continuity of f. n

5.6.5 Lifting, Products and Function Spaces of Effective CPOs

We have now established the main properties that distinguish effective CPOs from arbi-
trary pers, namely, every computable function is continuous and the least fixed point of
any computable f on a pointed effective CPO is computable from f. In the remainder of
this section, we show that the cartesian product of two effective CPOs is again an effec-
tive CPO, and similarly for total and partial function spaces. Since lifting is defined using
partial functions, it follows that lifting an effective CPO always yields an effective CPO.

Lemma 5.6.21 If pers A and B are effective CPOs, then the cartesian product per A x B
is an effective CPO with intrinsic order satisfying x <. p y iff (x); <4 (¥)1 and (x); <p
(¥)2.

Proof We first show that the intrinsic order satisfies x <axp y iff (x); <4 (y); and
(x)2 <B (¥)2. From this, it is easy to see that <4 p is antisymmetric and has computable
least upper bounds. We have already seen that the projection functions (_);:A X B — A
and (_)2: A x B — B are computable functions on pers. Since both are therefore mono-
tonic by Lemma 5.6.17, we can see that x <4, p y implies (x); <4 (¥); and (x); <p (¥)>.
It remains to prove the reverse implication.

Suppose (x); <4 (¥)1 and (x)2 <g (¥)2 and consider any computable test f: A x B —
unit. If f - x |, then f - (pr- (x); - (x)2) |. If welet f; = Az € N. f(pr- (x); - z) then by
the assumption that (x); <4 (¥)1, we have f) - (x); | implies f) - (v); |, and similarly for
an analogous computable test f2: B — unit. Thus

f-x| implies(fy - (x)1) and f2 - (x)2])
implies(f; - (y)1 4 and f2- (y)2))
impliesf - y |

This shows that x <sxp y iff (x); <4 (¥)1 and (x); <p (y)2. It is an easy exercise for
the reader to complete the proof that <4xp is antisymmetric and that sup 4 , g is definable
from sup 4 and suppg.]

Lemma 5.6.22 For any effective CPO A, there is a computable convergence test, cavg 4,
such that for all x: unit — unit and a, b: A witha <4 b,

5.6 Partial Equivalence Relations and Recursion 383

x-01 implies cnvgy-x-a-b A a
x-0] implies cnvgy-x-a-b A b

Proof Given x:unit — unit and a, b: A, let sy 4 be the computable increasing sequence
given by the following algorithm:

Sx.a,b + n =compute x - O for n steps
if x - 0 | in < n steps then return b else return a

On input x,a,b, the function cnvg 4 returns sup 4 - Sx q,p- The reason we need a <4 b is
that s, 4 » may not be an increasing sequence otherwise. n

Lemma 5.6.23 If pers A and B are effective CPOs, then A — B is an effective CPO
with intrinsic order satisfying f <s_,p giff Vx: A. f - x <p g - x.

Proof We first show that f <4, p g iff Vx: A. f - x <p g - x and then use this to verify
that A — B is an effective CPO. If f <4, p g, then since application Ah: A — B.h - x to
any x: A is computable and therefore monotonic by Lemma 5.6.17, we have f - x <p g - x
for any x: A.

For the reverse implication, suppose that Vx: A. f - x <p g - x and, for the sake of de-
riving a contradiction, f £4_, g g. By definition of the intrinsic order, there is some com-
putable test h: (A — B) — unit with i - f | and h - g 1. As in the proof of Lemma 5.6.21,
we will derive a contradiction by showing that K is r.e. Using the convergence test cnvg g
of Lemma 5.6.22, we define a function k,: A — B, for any x € N, by

ke-y = cnvgg-(AzeN.x-x)-(f-y)-(g-y)

Then for any x € N we have x € K iff ky (A— B) fiff h- f |. Since this implies that K
isr.e., we have shown that f <4_,pgiff Vx:A. f - x <p g x.

Using this characterization of the intrinsic order, we can easily see that antimonotonic-
ity of <p implies antimonotonicity of <4_, g. For any computable increasing sequences
s in A — B, we can compute sup 4_, g - § “‘pointwise” by returning an index of the func-
tion mapping x: A to the least upper bound in B of the computable increasing sequence
ammeN.s-n-x. "

Lemma 5.6.24 If pers A and B are effective CPOs, then A — B is an effective CPO with
intrinsic order satisfying f <4_.p giffVx:A. f-x | D f-x<pg-x.

Proof The proof is similar to the proof of Lemma 5.6.23. The two differences lie in the
pointwise characterization of the intrinsic order and computing the least upper bound of an
increasing sequence.

384 Models of Typed Lambda Calculus

In showing Vx: A. f-x | D f -x <p g - x implies f <4_.p g by contradiction, we
define k, by the algorithm

ky -y =compute x - x, f - y and g - y in parallel (by interleaving)
if f.y| thenreturn cnvgg - (Az€N.x-x) - (f-¥) (g ¥);
if x - x | thenreturn g - y;
else do not halt.

For any computable increasing sequence s in A — B, we might attempt to follow the
proof of Lemma 5.6.23 and compute sup,_.g - s “pointwise” by returning an index of
the function mapping x: A to the least upper bound in B of the computable increasing
sequence An € . s - n - x. The problem with this is that when s is an increasing sequence
of partial functions, we might have s - i - x 1 for some { and s - j - x | for some j >i.In
this case, An € M. s - n - x is not a total function, and therefore not a computable increasing
sequence in B. We circumvent this problem with partiality by letting sup,_.p - s be an
index of the function computed by the following algorithm:

supy_.p+s-x=computes-0-x, s-1-x, s-2-x, ...in parallel (by interleaving);
ifs-j-x | for some j
then return supg - (An € N.s - (n + j) - x)
else do not halt

The reader may wish to compare this computation with supy_. 5 in Example 5.6.16,
which is simpler since the intrinsic order on N is discrete, whereas the intrinsic order on
B here may not be. n

Exercise 5.6.25 Prove Lemma 5.6.12.

Exercise 5.6.26 Suppose (A, e4) and (B, eg) are modest sets. Define the modest set
(A — B, esp) of partial recursive functions from A to B, enumerated by the partial
enumeration function e4_. g. Check your definition by showing that if R =~4 and S =~p
are the pers given by (A, e4) and (B, eg), then (A — B, es_p) is isomorphic to R — §
as defined above.

Exercise 5.6.27 The main property of lifting is R —~ S = R — [ift(S). Suppose lift is
any function on pers such that this isomorphism holds for all pers R and S. Show that
lift(S) = unit — S for all S.

Exercise 5.6.28 With CPOs, we lift a CPO by adding one new element. By analogy,
we might expect to lift pers by taking the disjoint union with a one-element per. Specif-
ically, suppose that we define lift(S) = S + unit, where the sum of pers is defined in

5.6 Partial Equivalence Relations and Recursion 385

Exercise 5.5.7. Show that although we have a non-recursive isomorphism R —~ S = R —
lift(S), there exist pers R and S such that this isomorphism cannot be recursive.

Exercise 5.6.29 Show that the intrinsic preorder <4 on any per A is reflexive and transi-
tive.

Exercise 5.6.30 Show that under each of the following assumptions about a per A, the
intrinsic preorder <4 is the discrete order with x <4 yiffx A y.

(a) The relation A € N x N is decidable, i.e., there is an algorithm which decides
whether i A j for any given pair (i, j) e N x N.

(b) The relation A is recursively enumerable.

(c) The complement of A is recursively enumerable.

Exercise 5.6.31 Let A be the per A ={(i, j) | i, j € Toty U {(i, j} | i, j & Tot} where

Tot = {n | Vi.¢,(i) |}. Show that the intrinsic preorder on A is not antisymmetric, i.e.,
we have x <4 y if either x € Tot and y & Tot or x & Tot and y € Tot.

Exercise 5.6.32 This problem asks you to show some connections between isomorphism
of pers and their intrinsic preorder.

(a) Show that if A = B is a recursive isomorphism of pers, then the isomorphism pre-
serves the intrinsic preorders, i.e., if f: A — B is a recursive function with recursive in-
verse, then x <4 yiff f-x <p f - y.

(b) There exist pers A and B with B C A and with the same number of equivalence classes
but such that the structure (A, <4) is not isomorphic to (B, <pg). In particular, we may take
A={{i,j) | i,jeKori, j€K)

B={(i,j) | i,j€ K botheven} U {(i, j} | {, j & K both odd }

where K = {n | ¢,(n) |}. Show that <4 is antisymmetric with one equivalence class of A
strictly <4 the other.

(c) Show that <p is the discrete order on the equivalence classes of B.

It follows from (a)—(c) that the isomorphism between A and B cannot be recursive.

6 Imperative Programs

6.1 Introduction

In the preceding chapters, we considered functional programs that do not contain assign-
ment or other operations that change the values of identifiers. In computing practice, of
course, it is more common to use imperative programs. A typical example of an impera-
tive construct is the assignment statement x := y, which sets the value of x to the value y.
Most of this chapter is concerned with the simple imperative language of so-called while
programs, with semantics of additional program constructs considered in the last section
of the chapter.
In outline, the main topics are:

* Operational semantics of imperative programs based on a form of rewrite rules, com-
monly called structured operational semantics after [Plo81].

* Denotational semantics of imperative programs using a typed lambda calculus and do-
mains (CPOs). This typed lambda calculus will include explicit operations on stores,
which may be viewed as an abstraction of machine states.

* Floyd-Hoare logic, which makes assertions relating initial and final values of variables
that occur in programs.

* Denotational semantics of imperative procedures and local variable declarations.

The language of while programs may be defined over any class of value expressions
and boolean expressions. Without specifying any particular basic expressions, we may
summarize the structure of while programs by the grammar

P ::=x:=M)|P;P|if B then P else P | while B do P od

where we assume that x has the appropriate type to be assigned value M, and that the
test B has type bool. Since this language does not have explicit input or output, or local
variable declarations, the distinction between input, output and “temporary” or “scratch”
variables will not be an explicit part of a program. However, we will usually separate
variables into these three groups informally when describing programs. Using natural
number operations and assignment, we may write the following simple program.

x:=1; y:=0; vhile x <z do x:=x+ux; y:=y+1 od

We may think of this program as having input z and output y. This program uses a

“scratch” variable x to set y to an integer approximation of the logarithm of any z > 0.
The behavior of an imperative program depends on the values of assignable vari-

ables. We will keep track of the values of variables by associating a “location” with each

388 Imperative Programs

assignable variable and maintaining a map from locations to values. Following tradition,
- this map will be called the store. Using stores, we can give a direct and readable form of
operational semantics that resembles the reduction-rule operational semantics of lambda

exec

terms. For while programs, we define a three-place relation 5 between programs, stores
and stores. Intuitively, if P is a while program and s, s” are stores, then (P, 5) 25 s’ means
that if we execute P from store s, the program will halt with final store s’. Since while
programs are deterministic, X5 is a partial function, not an arbitrary relation. However, this
is an artifact of the programming language we have chosen, and not inherent to the basic
approach. We could easily extend the language to include some form of nondeterminism
and define a nondeterministic execution relation by the same method.

In computer science, the phrase denotational semantics often refers to a specific style
of mathematical semantics for imperative programs, although the phrase also has the more
general usage of Chapter 2. Denotational semantics, in the specific sense, developed in
the late 1960’s and early 1970’s, following the pioneering work of Christopher Strachey
and Dana Scott at Oxford University [Str66, Str67, SS71, Sto77]. The term “denotational
semantics” suggests that a meaning or denotation is associated with each program. The
denotation of a program is a mathematical object, typically a function, as opposed to a
process, algorithm or sequence of actions to perform. One of the main tenets of denota-
tional semantics is that programs should be understood compositionally, which means that
if we want to say what a compound program such as if B then P else (Q means,
then we should do so using only the denotations of B, P and Q. In particular, we should
not refer to programs constructed from B, P and Q by syntactic operations such as substi-
tution. The importance of compositionality, which may seem rather subtle at first, is that if
two program pieces have the same denotation, then either may safely be substituted for the
other in any program. More specifically, if B, P and Q have the same denotations as B’,
P’ and Q' (respectively), then if B’ then P’ else Q' must have the same denotation
asif B then P else Q. Thuscompositionality guarantees that denotational program
equivalence is a congruence relation. This makes denotational semantics useful for un-
derstanding and reasoning about such pragmatic issues as program transformation and
optimization. Some books devoted to denotational semantics are [All186, Gor79, Sch8&6,
Sto77].

There are several ways of viewing the standard techniques of denotational semantics.
Typically, a denotational semantics is given by associating a function over domains (in the
technical sense of Chapter 5) with each program. One reason why domains are used is that
most programming languages allow functions to be defined using recursion, and domains
provide a convenient space of mathematical functions with fixed points. In fact, the devel-
opment of domains was largely motivated by denotational semantics. As many researchers

6.2 While Programs 389

in denotational semantics have observed, a mapping from programs to functions must be
written in some language. This language is commonly called the meta-language, to distin-
guish it from the programming language. Since typed lambda calculus with fixed points
provides a useful notation for functions over domains, it is common to use a typed lambda
calculus as a meta-language. Thus most denotational semantics have two parts, a transla-
tion of programs into a lambda calculus with fixed points, and a semantic interpretation of
the lambda calculus into domains, although older presentations do not emphasize the use
of typed lambda calculus as much as we do here. We will give semantics to a language of
while programs using a typed lambda calculus with locations and stores, and prove the
equivalence of operational and denotational semantics.

Floyd-Hoare logic [Flo67, Hoa69] is a logic for making before-after assertions about
imperative programs. The formulas of this logic are triples

F{P}G

where F and G are first order formulas. Intuitively, F describes the values of variables
before executing P, and G the values afterwards. Thus we may read this triple as, “if
F holds initially, then after executing P we will be in a store satisfying G.” Since P
might not halt, we must be more precise about what happens if we do not reach a final
store by executing P. There are two natural choices, one leading to partial correctness
assertions and the other to termination assertions. In Floyd-Hoare logic, we prove partial
correctness assertions F { P} G which mean that if F is true initially, then if P halts, the
program halts in a store with G true. The corresponding termination assertion, sometimes
written F (P) G, means that if F is true initially, program P will halt in a store where G
is true. We will explain the proof rules of Floyd—Hoare logic, and prove a certain form of
completeness theorem, using denotational semantics.

6.2 While Programs

6.2.1 L-values and R-values

One basic property of Algol- and Pascal-like languages is that assignable variables have
two kinds of “values.” These have traditionally been called L-values and R—values, since
they correspond to occurrences on the left and right hand side of an assignment statement.
In elementary terms, the L-value of a variable is its location in memory and the R—
value is the contents of this location. To see how this distinction arises, consider the
assignment statement x := y + 3. A compiler for a register-based machine might compile
this statement into the following instructions:

390 Imperative Programs

1. Put the contents of location y in register a.

2. Add 3 to register a.

3. Store the contents of register a in location x.

It is easy to see from this “compiled code” that the occurrence of y on the right hand of the
assignment refers to the contents of a location, while the occurrence of x on the left refers
to the location itself. Another way of saying this is that the assignment x := y’ + 3 will
have the same effect as x := y + 3 if the contents of y’ is the same as y’, but x’ ;= y + 3
will have the same effect only if x’ names the same location as x. In general, the type of the
L—value of a variable is different from the type of its R~value. The L-value is a location,
while the R-value may be an integer or other storable value.

In giving denotational semantics to programs, it is necessary to distinguish between
L—values and R—values. This is not overly difficult, but it leads to slight technical com-
plication since the distinction relies on context. As a simplifying assumption, we will use
a version of while programs in which the distinction between L-values and R—values is
explicit. Specifically, we will use variables of type loc for assignable variables, and apply
a “contents” function cont to a location to extract its contents. This is similar to the way
pointer variables are used in Pascal, for example, where we write x 1 for the contents of
x; the C equivalent is xx. This is also the way all assignable variables are treated in the
programming language ML, which does not seem to suffer from this approach. In fact,
explicit location expressions in ML provide some useful flexibility.

6.2.2 Syntax of While Programs

For simplicity, we assume we are only interested in values of two basic types, val and
bool, and that only elements of type val may be stored. In writing examples, it is helpful to
regard val as nat, and assume common numeric and boolean operations. However, when
we analyze the logic for reasoning about while programs, it will be useful to consider
different semantic interpretations of val, and arbitrary algebraic functions over val and
bool.

Let X be an algebraic signature over basic types val and bool, and let us assume the
function symbol

cont : loc — val

is distinct from the function symbols of %. To simplify syntactic considerations, let us
choose some infinite sets I'j,c, [y and Ty, of variables of types loc, val and bool,
respectively, and use these throughout our discussion of while programs and Floyd—Hoare
logic. Using algebraic terms of types val and bool over T and function symbol cont, we

6.2 While Programs 391

define the language of while programs by
P ::= x:=M)| P;P|if B then P else P |while B do P od

where we assume that variable x has type loc, expression M has type val and B has
type bool. Since ¥ is an arbitrary signature with sorts val and bool, we essentially allow
arbitrary operations on these types. However, since ¥ does not mention loc, we have
restricted the operations on locations to those definable from cont.

Using cont to map L—values to R-values, we may write the logarithm program of
Section 6.1 as follows.

x:=1; y:=0; while contx <z do x:=contx +contx; y:=conty+1 od

Exercise 6.2.1 Rewrite the following “informal” while program using cont to map lo-
cations to values.

q:=0;

ri=m;

whiler > ndo
g:=q+1
r:=r—n;
od

Note that there are two choices for the types of m and n, but only one choice for ¢ and r.
This program computes values of ¢ and r from m and n. What standard arithmetic function
does it compute?

Exercise 6.2.2 Rewrite the following “informal” while program to compute the greatest
common divisor using cont to map locations to values.

whilen #0do

ri=m;

whiler >ndo
r:=r—n;
od

m:=n;

n:=r;

od

Think of this program as taking m and n as input, and producing a new value of m as
output. (This is probably the most famous algorithm of all time.)

392 Imperative Programs

Exercise 6.2.3 Write a while-program with two location variables, x, y: loc, that halts
iff x and y share the same location. It is not necessary to preserve the initial contents of x
ory.

6.3 Operational Semantics

6.3.1 Basic Symbols in Expressions

Expressions in while programs may contain variables from T, 'y and Tppp, the
special function symbol cont, and function symbols from any two-sorted algebraic sig-
nature X. Since we let ¥ be arbitrary, our semantics will be developed with respect
to an arbitrary interpretation of the symbols in X. To allow easy comparison between
operational and denotational semantics, we will assume we are given a two-sorted al-
gebra Ag = (A, Abool §A) for signature ¥. Although our operational seman-
tics will make sense for any interpretation of val and bool, many intuitive proper-
ties of programs depend on bool having its standard interpretation. Since this will be
important in establishing the soundness and completeness of Floyd-Hoare logic, we
will assume from the outset that A% is the familiar two—element set {true, false} of
booleans.

Since while programs contain variables, we need an environment 7 mapping variables
from [joe U Tyar U Tyoor to elements of A of the appropriate type. If location variables
x and y are given the same location by the environment, then an assignment to x will
also change the contents of y. Since this effect, commonly called aliasing, is important in
reasoning about programs, the logic we consider in Section 6.5 will allow hypotheses like
x # y to prevent distinct location variables from denoting the same location.

6.3.2 Locations and Stores

Both the operational and denotational semantics of while programs will involve data
structures called stores. Intuitively, stores represent the “memory contents” of some simple
machine. Since we have restricted while programs so that only elements of type val may
be stored, a store is just a function from loc to val. However, the way that the store
is affected by while programs is somewhat special. Although while programs do not
mention the store explicitly, the current store may be referenced using the function cont,
and updated via assignment.

We begin with an algebraic specification of the operations on stores, which will be
useful for reasoning about programs. We extend our signature to a fourth sort store and
function symbols init, update and lookup with the following types.

6.3 Operational Semantics 393

init : store
update : store X loc x val — store
lookup : store x loc — val

Intuitively, init is some distinguished store which might, for example, contain 0 in ev-
ery location, update is a function that changes the value associated with some location,
and lookup reads the value stored in some location. The behavior of these functions is
characterized by the following algebraic axioms, written using equality test on locations,
conditional, and variables £: loc, £’ loc, s: store, v: val.

lookup (update s £/ v) £ = if Eq?¢{ then v else (lookupsf) (lookup)

update s £ (lookup s £) = s (update),

update mvarupdate Lu) £’ v = if Eq?£{ then updates v
(update),
else update (update s £’ v) L u

To interpret these operations, we extend A to a four-sorted algebra A with locations
and stores by letting A’>° be any countably infinite set, and letting A%’ be the set of all
functions from A'¢ to AY¥. We let init” be any constant function, lookupA(s,) =s),
and update”(s, €, v) is the function s’ that is identical to s except that s'(£) = v. Since
A and Ay give the same interpretation to each symbol of ¥, we may write f* without
ambiguity. For notational convenience, we sometimes write lookup instead of lookup™,
and similarly for update and init, when there is no danger of confusion.

A common question is why we have separated environments and stores, instead of using
a single function mapping identifiers to values. For programs that do not contain declara-
tions, it is technically possible to give both operational and denotational semantics using
only a single mapping. In some cases, this is the best approach, since there is less ma-
chinery involved. However, there are both intuitive and technical reasons for separating
environments from stores, as we do here. An intuitive reason is that environments and
stores are conceptually different, and correspond to different mechanisms in actual lan-
guage implementations. The environment corresponds, roughly, to the symbol table that
is used during compilation to keep an association between program identifiers and mem-
ory locations. The store models the contents of memory locations during execution of the
compiled program. For while programs, the entire program is understood with respect to
a single environment while the store changes during program execution. From a techni-
cal standpoint, we give denotational semantics by translating while programs into lambda
terms that manipulate the store explicitly. This translation is simplified by using the same
form of environment for while programs as lambda terms with store operations. This

394 Imperative Programs

would not be possible if we did not separate environments from stores in the semantics
of while programs.

6.3.3 Evaluation of Expressions

The operational semantics for while programs has two parts. The first is a four—place
relation 2% between algebraic expressions, environments, stores and semantic values
of algebraic terms. We will write this as an infix relation (M, s), 2§ v to suggest that
we “‘evaluate” expression M in store s with respect to environment 7 and obtain value
v. The approach we use is suited to programming languages with nondeterministic or
non—terminating expressions. However, the expressions we use in while programs are
single-valued and terminating. Consequently, our evaluation relation is a total function.
This function is type-respecting, in the sense that if M has type b, and (M, s), 23 v,
then v € A?. To simplify the notation, we will omit the subscript for the environment
and assume that we have chosen one fixed environment.

To illustrate a general method for defining evaluation relations, we will present €3 using
a form of proof system. This is similar to the presentation of reduction strategies by proof
systems in Chapter 2, except that we are now defining an evaluation function instead
of a one-step evaluation relation. The method is developed for a variety of languages in
[Plo81], where many examples and general properties are given; a good reference is the
later book [Hen90b].

There are two axioms for &%, one for variables and one for constants. In words, the
value of a variable is given by the environment, and the value of a constant is given by the
algebraic structure .A. Note that since we use cont to access the store, cont x may depend
on the store, but the value of a variable x does not.

(x,s) 8 n(x)

fc. 5) 28 A

There are two inference rules for compound terms, one for application of an algebraic
function (interpreted by .A), and one for the special function cont which accesses the store.
The rule for algebraic functions is essentially a formalization of the way we define the
meaning of an algebraic term.

(My,s) 22 vy, ..., (Mg, s) &9 v,
(fMy... My, s)28v

fA(vl,...,vk)=v

The value of cont x is determined by looking up location x in the store,

6.3 Operational Semantics 395

(x,5) 23 €

A —
Tcontx,) 2 y Lookup™(s, &) =

as explained below. The side-conditions about the semantic interpretations of f and lookup
are written off to the side of these rules since they are not assertions about the 24 relation,
but facts about the algebra .A.

While the axioms for £ are straightforward, it may help to give some hints on reading
the inference rules. In general, it seems best to read the rules in “clockwise” order, starting
from the lower left. Taking the rule for cont as an example, the main point of the rule is to
describe the evaluation of an expression of the form cont x in a store s. This is indicated by
the fact that (cont x, s) appears in the lower line, to the left of 23. The result of evaluation
appears on the lower right, but the expression there (in this case v) cannot be understood
without reading the rest of the rule. The top line “says” we should evaluate x in s to get
a value £. In this rule, the type of cont guarantees that x is a location variable. Now we
may proceed clockwise to the lower right, and see that the result of evaluating cont x is
obtained by looking up the value v of location £ in the store.

For a pure algebraic term not containing cont, it is easy to check that evaluation is
independent of the store, and results in the ordinary meaning of the term in algebra 4.

It is worth mentioning that this style of operational semantics is also applicable to purely
symbolic evaluation. Instead of using some algebra A to interpret the basic symbols of
programs, we could evaluate expressions and execute programs symbolically using rewrite
rules on terms involving lookup, update, and so on. However, there is no loss of generality
in the approach we use here, since the algebra .4 may be an algebra of terms, modulo some
theory given by rewrite rules.

6.3.4 Execution of Commands

exec

Execution of commands is characterized using another relation, £%, axiomatized in a
manner similar to 9. The first rule describes the execution of an assignment statement. In
words, we execute x := M in store s by evaluating M and then updating s so that location
X now contains this value.

(M,s)22v

(x:=M, 5) s’ update(s, n(x), v) = 5’

The remaining rules explain the execution of compound programs using the results
of executing their parts. It is worth mentioning that the execution relation defined here
exec /

represents complete execution. If (P, s) 5 s/, then this is to be understood as meaning that
if we start executing P with store s, we will eventually halt with store s’. An alternative

396 Imperative Programs

to this “all at once” notion of execution is to axiomatize a single execution step. This is
developed in the exercises.

Sequencing and conditional are not very complicated. To execute Py; P;, we “first”
execute Py, and then execute P, in the resulting store. For if B then P; else P, we
evaluate B and then execute P; or P, accordingly. It takes two inference rules to express
this, one for the case when B evaluates to true and the other for false.

<P], S) exec / (P27) exec s//
(P1; Py, 5) 25 s”

(B, s) 24 true, {Py, s) 25 s’
(if B then P; else P;, s)2%5s’

(B, s) &4 false, (Pa, s) 25 s’
(if B then P; else P, §s)%5s’

There are two rules for while B do P od. The first takes care of the case when B
evaluates to false. The second rule “says” that when B is true, we execute whileBdo
Pod by first executing P, and then executing while B do P od in the resulting store.

(B, s) & false
(while B do P od, s)Z5s

(B, s) 2 true, (P, s) 25 s, (while B do P od, s')2%s”
(while B do P od, s)&5s”

The second rule may be slightly unsettling, since it might appear that we are defining the
execution of a while loop in terms of itself. However, this set of rules is not intended to be
a definition of 25 by induction on the structure of formulas. (That would be a denotational
semantics.) Instead, this is an inference rule telling us some fact about execution. This fact
has a computational interpretation, since we may read the rule as a list of instructions for
executing while B do P od. From a mathematical point of view, we should think of the
entire collection of rules as determining the /east execution relation satisfying these con-
ditions, in just the way that axioms and proof rules in logic determine the least provability
relation |- (see Example 5.2.22). More specifically, the rules define the relation £5 with the
property that { P, s) 25 s’ iff there is a finite proof of {P, s} 25 s’ in the inference system.
To get some feel for how the rules work, it is best to work a few examples. In Ex-
ample 6.3.1 below, an important general idea is illustrated. Namely, if we want to figure
out what final store is produced by executing program P from initial store s, we look at
the syntactic form of P and see which inference rule could be the last rule in a proof of
(P, 5) 25 s'. There will be only one possible rule, except in the case of a conditional state-

6.3 Operational Semantics 397

ment or while loop. In these cases, we must evaluate a boolean expression to determine
which rule would apply. Having done so, we repeat this process to see how we might de-
duce the hypotheses of the last inference rule in the proof. Therefore, the natural way to
read these proof rules is bottom up. As illustrated in Example 6.3.1 below, this bottom-
up reading of operational semantics inference rules leads us to “execute” a program in a
way that closely resembles the way a simple-minded interpreter might actually execute the
program. This is an important fact about structured operational semantics: although the
formalism resembles logic, the general intuitive reading of the rules leads to a procedure
for actually executing programs in a simple but illustrative manner.

Example 6.3.1 We will work out the execution of a simple predecessor program that sets
p ton — 1, using a “scratch” variable m. Since p and m are updated, we let m, p:loc;
since n is not, we let n:val. We assume that val is the type of natural numbers, that
we have basic functions for addition and testing inequality, and that variables p and m
denote different locations. Under these assumptions, we may write the following program
to compute predecessor.

=0
m:=0;
while (cont m) # n do
p ‘=contm;
m = (cont m) + 1;
od

For concreteness, let us assume that the value of n is 3, and write £, and £, for locations
n(p) and n(m), respectively. Since we will use this fact repeatedly, we begin by noting
that in any store s, we have (m, s} 22 £,,, and similarly for p.

If we use the symbol P for the entire program above, our goal is to construct a proof of
an assertion (P, s) 25 s’ using the axioms and inference rules of the operational semantics.
Since P initializes all of its assignable variables, it does not matter what the initial store s
is. In attempting to find a proof, we will discover the unique store s’ for which (P, s) 5
s' is provable. As mentioned above, we proceed by selecting an inference rule whose
conclusion matches the form of P, and continue by reading inference rules from the
bottom up.

Since program P has the form p := 0; Q, we look at the sequence rule. If we execute
{p:=0, s), the result is s; = update s £, 0. We must now execute the remaining program
with store s1. Since the next statement is also an assignment, similar reasoning applies, and
so it remains to execute the while loop from store s, with lookup s2 £,, = lookup s £, = 0.
We determine which while inference rule applies by evaluating the boolean test. Since

398 Imperative Programs

((cont m) # n, s2) 24 true,

we must use the second inference rule for while. This rule requires us to determine both
the store obtained by executing the loop body, and the result of executing the entire while
statement in this store. It is not hard to see that

exec

((p:=contm; m:= (contm) + 1), s2) & 53
where lookup s3 £, = 0 and lookup s3 £,, = 1. We then test the boolean expression and find
((cont m) # n, s3) 24 true,

which leads us to calculate

exec

((p:=contm; m:= (contm)+ 1), 53) 5 54
where lookup s4 £, = 1 and lookup 54 £,, = 2. Repeating the loop body again, we get

((cont m) # n, s4) <4 true,

exec

((p:=contm; m:= (contm) + 1), s4) 25 s5
where lookup s5 £, = 2 and lookup s5£,, = 3. It is easy to see that

((cont m) # n, ss) &4 false,

so finally we have reached a store where the loop test fails. At this point, we can construct a

proof that execution of the entire program P from store s terminates in store s5. The way to

write this proof down is simply to combine the assertions about evaluation and execution

above using the inference rules for while loops. The reader may find it useful to write this

proof out and see the correspondence between the bottom-up procedure we followed in
exec

identifying stores sy, ..., s5 and the direct proof of (P, s) 25 s5 written out using axioms
and inference rules in the usual manner. »

Exercise 6.3.2 We may generalize assignment to allow more complex location ex-
pressions. For example, suppose we add a location conditional if(boolean)(location)
else(location) to the syntax of expressions and allow assignment statements of the form
N := M, where N:loc and M:val. Write evaluation rules for location conditional and an
execution rule for an assignment N := M.

Exercise 6.3.3 The operational semantics given in this section only specifies the final
result of executing a program. If we want to keep track of how many steps a program takes
before it halts, for example, we might prefer to take a single evaluation step as the basic
relation. Another advantage of single-step evaluation, illustrated in Exercise 6.3.4 below,

6.3 Operational Semantics 399

is that it allows us to incorporate parallel execution, as interleaving. This does not seem
possible with “final result” operational semantics. In this exercise, we will axiomatize a

exec

relation % which characterizes “step-by-step” evaluation of while programs.
In describing complete execution, we used a relation X5 C program x store X store,
since the result of executing a while program is a final store. We will describe one-step

execution using a relation
PSC (program x store) x ((program X store) + store),

where + denotes disjoint union. Intuitively, (P, s) £ (P’, s’} means that if we execute a
single step of program P, starting with store s, the result is store s’, with P’ representing
the remaining work to be done. We write (P,s) s’ if P from s halts in one step,
with final store s’. In the case (P, s) &5 (P’, s’} of unfinished computation, we may think
of the difference between P and P’ as representing a change in the “program counter,”
in a slightly abstract sense. For example, suppose we execute one step of a sequence
x :=1; y := 2. The result will be some updated store, with the second assignment y := 2
still remaining. However, to handle loops, we will also have rules in which the length of
the program increases as a result of executing one program step. This could be regarded
as an artifact of the approach, but it is really not too far from the fixed-point semantics of
while loops explained in Section 6.4. The rest of this exercise consists of six questions.

(a) Write a rule for assignment of the form

(x=M,s) K5’
You may use the relation £ given in Section 6.3.3 in your hypothesis. An implicit assump-
tion is that evaluating M can be done as part of a single execution step.
(b) One rule for sequencing is
(P, 5) 5 (P,)
(P1; P2, s) £S5 (Py; Pa, s")

which allows us to execute one step of Pj; P> by executing a single step of P;. Write a
second rule of the form

(Pr,s) 55
(P1; P2, s) 55 (Q, 8)

(for some Q) to handle the last step of P properly.

(c) Write one rule for conditional of the form

400 Imperative Programs

(B, 5) 24 true
(if B then P; else P, s)E5(0Q,s)

for some program Q. Describe a second rule for the case that B evaluates to false.

(d) There are two rules for while B do P od, one for each boolean value of B. In the
case that (B, s) 24 false, this loop halts in one step. Write a rule to express this. For the
second case, write a rule of the form

(B, s) 2% true
(while B do P od,s) S (Q;while B do P od,s)

for some program Q.
(e) Write out the step-by-step execution of x :=3; y := (cont x) + 3.

(f) Assuming x is large, write out the first four or five execution steps of
y:=0; while conty#x do y:=(conty)+1 od.
How many steps does it take for this program to halt, if the initial value of x is k?

Exercise 6.3.4 In Exercise 6.3.3 above, you axiomatized a “one-step” execution relation
¢ for while programs. This problem asks you to extend that operational semantics to
while programs with nondeterminism and concurrency.

We begin by extending the syntax of while programs as follows:

P ::=x:=M| P;P|if B then P else P |while B do P od |
PUP|P|P

Intuitively, the program P; U P, proceeds by arbitrarily choosing to execute P; or P,
(but not both), and the program P; || P; executes P; and P, in parallel. For example, the
program (x := 1) U (x := 2) nondeterministically chooses either to set x to 1 or to 2. If
we describe parallelism by interleaving (this will make the problem manageable), then the
program

(x:=1; x:=(contx)+ 1) || (x :=2; x := (cont x) + 2)

may execute the four assignments in any order as long as x is set to 1 before being
incremented by 1, and set to 2 before being incremented by 2. The possible final values
of x are 2,4 and 5.

The two parts of this question ask you to write rules for the execution of nondeterminis-
tic and parallel while programs. Since there may be more than one possible final store, it
is necessary to think of

6.4 Denotational Semantics 401

BSC (program x store) x ((program x store) + store)

as a relation rather than a partial function from (program x store) to ((program x store) +
store). Intuitively, (P, s) 25° (P’,s’) means that if we execute a single step of program
P, starting with store s, then one possible result is the store s’, with P’ representing the

remaining work to be done in this case.

(i) Write execution rules for executing a nondeterministic choice P; U P,. You should
have either two or four rules, depending on the way you approach the problem, with one
set corresponding to executing Pj, and the other for executing P;.

(i1) Write four execution rules for the interleaving semantics of P; || P, one pair for
the case where we begin by executing the first statement of P; and the second pair for
beginning execution with P.

6.4 Denotational Semantics

6.4.1 Typed Lambda Calculus with Stores

We will give a denotational semantics for while programs using a typed lambda calcu-
lus with locations and stores, which we interpret over CPOs. The lambda calculus we use,
which resembles PCF with locations and stores added, will be referred to as Asrefix.—~,
This calculus has type constants val, bool, loc, store, and store , with the first four inter-
preted as in the algebra A. The difference between store and store; is that the latter will
have an added least element, L g,,.. The operations on store; will be a special case of the
general operations on lifted types discussed in Section 2.6.4. (This chapter does not de-
pend on Section 2.6.4, however.) In addition to function symbols from the signature Z,
giving functions on val and bool, the calculus A%*°"¢:f%~ has an equality test

Eq?: loc — loc — bool

on locations, store operations init, update and lookup, a conditional if...then...
else... of each type, as in PCF, lifting operations (described below), lambda abstraction,
application, and a fixed-point operator fix,,,, of type

SXgtore ((Store — store)) — (store — store)) — (store — store).

This will be used to define functions from store to store, recursively.

The CPO model, A;, for A%7/%~ will be an extension of the four-sorted algebra, A,
that was constructed by extending .4y with locations and stores. Since any set may be
regarded as a discrete CPO, we may continue to interpret val, bool, loc and store as in

402 Imperative Programs

A. We interpret store | as the lifted set AL = (A5°") , and extend to function types by
letting A7 be all continuous functions from A° to A*, ordered point-wise, as described
in Section 5.2. Since A*'°"¢L is pointed, A% %101 ig a]so pointed, by Lemma 5.2.10. By
Theorem 5.2.26, this continuous hierarchy has a least fixed-point operator of the required
type. We discuss the interpretation of lifting operations in A, after giving their syntactic
forms and typing rules.

The operations associated with store) are a map from store to store |, which we write
| -], as in Section 2.6.4. If M: store, then | M |: store| denotes the same store as M, but
regarded as an element of the lifted set of stores, A*/°". The other operation is a strict form
of function application , which we write as an infix operator, -. To be precise, we give a
typing rule for this operation.

I' > M: store — store,, I' > N:store
I'>M - N:store |

(store; Elim)

The semantic interpretation of - is that if N is L, then M - N is L, and otherwise M - N
is the result of applying M to the denotation of N, which must belong to A", Two
equational axioms associated with these operations are

I'sM- 1 =_1:store;
's>M.|N]=MN:store,

which are easily seen to be sound for the interpretation in .A;. It is also easy to check
that strict application, -, is continuous in both arguments. The relationship between strict
application and the syntax used in Section 2.6.4 is considered in Exercise 6.4.2. It is useful
to define a strict form of function composition as syntactic sugar, by

MoN & As:store. M - (N s).

To give some idea of how A%/~ will be used, recall that according to the opera-
tional semantics, executing an assignment statement x := 3 updates the store so that the
contents of x becomes 3. If we ignore the difference between location variables and the
locations they denote, then the operational semantics might be written

£Xec

(x =3, 5) X% updateA(s, x, 3).

Put another way, executing x := 3 maps any store s to the store updateA(s, x,3). In the
lambda calculus of locations and stores, we may write this function on stores as

As: store. update s x 3.

Note that this lambda expression is well-typed, since the typing constraints on assignment

6.4 Denotational Semantics 403

requires x:loc. A technical detail is that this is a function from store to store, and A"’
has no least element. Since a while program may not terminate, the type of lambda
term giving the meaning of a program must be store — store, instead of store — store.
Therefore, we write the meaning of the assignment as the lambda expression

As:store. lupdate s x 3].

For any while program S, we will be able to write a A%/~ expression for the mapping
from store to store; given by the execution rules for §. We will use stores and associated
operations for assignment and variable access, as illustrated here, strict composition for
sequences of statements, and fixed points for iteration (while loops).

The use of strict composition may appear accidental, but it is actually essential. This
may be understood by considering a sequence such as P;x := 3. The meaning of this
program will be given by the strict composition, g ¢ f, of the function f from store to
store; determined by P and the function g from store to store determined by x := 3. If
we use functions f and g from store, to store, and ordinary composition instead, then
we have the following problem. Suppose that when we begin in store s, program P does
not terminate. Since the least element L of a CPO is used to give a mathematical value to
a nonterminating computation, the meaning of P would be a function f with f s =1 .
Since P; x := 3 cannot terminate (operationally) if P does not, the meaning of P; x :=3
should map s to L. But if we treated stores as functions from locations to values and
used a nonstrict update function

update,,, _sirice S X v % Ay:loc.if Eq?yx then v else lookups'y

then (g o f)(s) could be some store different from L which in fact contained a value for
x. This would cause both the equivalence between operational and denotational semantics
and the soundness of the proof rules for the denotational semantics to fail. We therefore use
strict composition to guarantee that the meaning of a sequence P; Q yields L whenever
the meaning of P yields L.

While strictness, in our approach, arises naturally from the type of function used for the
meaning of a program, other approaches to denotational semantics must enforce strictness
of basic programs explicitly. This may be seen in the “direct semantics” of [Gor79, Sch86,
Sto77], for example. The usual method uses only store, not store. In this case, it is
common to use a function strict which, when applied to any function f : store; — store,
returns a function strict f : store; — store| with

fs s # Lstores
Lsrore oOtherwise.

strict fs = {

Another relatively recent presentation departing from the older tradition is [Ten91].

404 Imperative Programs

As the careful reader may have noticed, our assumption that there is only one type of
storable values is helpful when it comes to writing functions to manipulate stores. If we
had two types of storable values, say val| and val,, then these would lead us to two types
of stores, store; and storey. This would lead us to define two lookup functions and two
update functions. Since the two lookup functions, for example, behave in essentially the
same way, this seems unnecessarily complicated. However, this seems the best we could
do within the type system of A7,

Exercise 6.4.1 We might try to simplify the language A%/~ by using only one type
of stores, instead of two. Since we need a fixed point operator to give the semantics
of while loops, we need a pointed type store] . If we therefore try to eliminate sfore,
we must alter functions lookup and update to have types lookup: store | x loc — val and
update: store| X loc x val — store] .

(a) Show that for the interpretation of lookup to be continuous, we must impose some
nontrivial ordering on the elements of A%,

(b) Show that if update is strict, the axiom (lookup) must fail.

Exercise 6.4.2 Here and in Section 2.6.4, if M: o, we write | M| for the corresponding
element of the lifted type o ;. However, the term form let |[x] =N in M is used in
Section 2.6.4 instead of the strict application form M - N used here. (The reason for the
change of notation is that M - N is more convenient for the special case of functions
store — store .) In general, the two forms have typing rules

Nx:oe-M:1 T'>N:iog ''sM:.oc >t I'>N:oyp
Ns>let |x]=N in M:t I's MN:t

where in both cases it is necessary for t to be pointed. This exercise asks you to show that
these are interdefinable.

(a) Given M:o — 7 and N:o, show how to use let to write an expression correspond-
ing to M - N. Show that M - |[N] = M N follows from the equational axiom let |[x]| =
IN] in M =[N/x]IM.

(b) Given M:t with free x: o and N: o, show how to use - to write an expression corre-
sponding to let |x] =N in M. Show that let |x| = |N] in M =[N/x]M follows
from the equational axiom M - |[N| = MN.

(c) Show that for your translations between let and -, the axiom (M- L) = is equivalent
to (let |x]=1 in M)=L1.

6.4 Denotational Semantics 405

6.4.2 Semantic Functions

There are two main parts of the denotational semantics of while programs. The first is
a syntactic translation of expressions and commands into lambda terms of Astore fix,—
and the second is the standard interpretation of this lambda calculus in the model A;.
While many texts define the interpretation of while program syntax into a lambda model
such as A, directly, one advantage of an intermediate translation is that it lets us make
effective use of the machinery we have already developed. Specifically, we may use or-
dinary reasoning about lambda terms to prove equations between while programs, and
we may use facts about the semantic interpretation of typed lambda calculus from Chap-
ters 4 and 5. Moreover, we may consider some extensions of while programs without
changing the lambda calculus, and others with only minor additions to A7~ The
reasons for using a translation into lambda calculus may seem familiar to computer sci-
entists, since these are also the reasons for using an intermediate language in compiler
construction.

Since while programs have two syntactic classes, the syntactic translation comes in two
parts. The function V[-] translates boolean and value expressions of while programs
into lambda terms of type store — bool and store — val, respectively. If M:val is an
expression that might occur on the right side of an assignment, the translation V[M] will
be a lambda term of type store — val with the same free variables. The function C[-] is
a similar translation from commands to lambda terms of type store — store; . Combining
these translations with the ordinary meaning function from A*°"¢/*:~ to the model A;, we
obtain two functions

V : expressions — environments — store — values

C : commands — environments — store —> store |

where “values” is used here to indicate that expressions may have type val or bool. In the
jargon of denotational semantics, and C are called semantic functions. As suggested in
the previous section, an important property is that these functions make dependence on the
store explicit: an algebraic expression of sort val becomes a function from stores to values,
and commands become mappings from stores to stores.

We now define the syntactic translation and semantic function for expressions. Essen-
tially, VI[M] is defined by replacing cont with lookup and treating the store explicitly.

Vix]l = As:store. x
Vicont x]| = As: store. lookup s x

VIf My ... Mi]l = As:store. fV[Mills ... VIMlls

406 Imperative Programs

The meaning of expression M in environment 7 is the meaning of V[M] in environment
n. More precisely, in symbols, we have

VIMI n = Al VIM] 1.

Since the meaning of a value expression M:val in 7 is a function from stores to values,
we may find the value V[M] ns of M in environment 7 and store s € A*°™ by function
application

VIMI s = VIMIn)(s).

Note that since our language does not allow calls to recursive functions in expressions, we
do not need lifted types of values in defining V.

The syntactic translation of a command produces a lambda term mapping store to
store] . The effect of an assignment is to update the store. A sequence of commands de-
notes the strict composition of the corresponding maps on stores, and the semantics of
conditional is essentially straightforward. The semantics of while is the fixed-point of a
functional described in more detail below.

Clix := M] = As: store. lupdate s x (V[M]s)]
ClLPi; P2l =CI[P2l o CILPi]
Cl[if B then P; else Py]]=As:store.if V[B]ls then C[[Pills else C[P:]s
Cl[while B do P od] = fix(Lf: store — store] .
As:store.if V[B]s then (f ¢C[P])s else [s])

The meaning of program P in environment 1 is defined by
CLPIn= Al CLPT Iy
and the meaning in environment 7 and store s € A%’ by
CIPIns = CIPIn).

Intuitively, there are two cases to consider in understanding the meaning of whileB
doPod. If B is false, then the command terminates in the same store as it started. If
B is true, then P is executed, and the entire process is repeated. Consequently, the
command while B do P od denotes the function f from stores to stores satisfy-

ing
f s=1if V[B]s then (f ¢ C[P])s else |s].

6.4 Denotational Semantics 407

This equation may be understood by noting that if B is false in the initial store s, the
function returns the same store (regarded as an element of storey). If B is true, f is
applied to the store obtained as a result of “executing” P. Another way of understand-
ing the fixed-point interpretation of while is by fix reduction, which we consider be-
low.

Example 6.4.3 One simple program is
skip & x 1= cont x

where x is some location variable. This program does nothing in our semantics, a fact that
is proved in three steps.

Cllskip]] = As: store. lupdate s x (V[[x]s)]
= As: store. |update s x (lookup s x)]
= As: store. |5

In the second step, we use the algebraic axiom (update); for lookup and update. The result
of executing skip in environment 7 and store s is given by C as follows.

Cliskipll n s = (AL Cllskip] 1Im)(s)
= (AL As: store. |s] In)(s)
= |s] .

We should note that the assignment x := cont x does not denote the identity map in
every programming language. For example, in a language with variable declarations and
storage allocation, x := cont x might produce an error if x is undeclared. A surprising
interpretation of x ;= x also exists in Pascal, as pointed out by Yuri Gurevich. In Pascal,
a function procedure may be called by writing its name in an expression, and the return
value of a function procedure is specified by assigning to the name of a procedure. Thus if
x := x occurs in the body of a function procedure named x, this apparent assignment may
actually be a recursive call.

Using skip, from Example 6.4.3, we can show that a while loop is equivalent to a test
containing a while. This equivalence is commonly referred to as “loop unwinding.” The
equivalence

while B do P od=1if B then (P;while B do P od) else skip

is proved using fix reduction as follows:

408 Imperative Programs

Cllwhile B do P od]

= fix(Af: store — store . As: store.if V[Bls then (f ¢C[PI)s else [s])
= As: store.if V[B]s then (C[while B do P od] o C[PI)s else [s]
=(C[if B then (P;while B do P od) else skip].

One commonly cited advantage of denotational semantics is the ease with which we may
prove simple program equivalences. Using Astorefi. = “we can carry out most proofs using
lambda calculus.

Exercise 6.4.4 Write the denotational semantics (as A"/~ terms) for the two while
programs

x := (contx) + 3
x:=(contx) + 1; x := (contx) + 2

and use standard reasoning about lambda terms, lookup and update to argue that these
programs define the same function from store to store .

Exercise 6.4.5 Write the denotational semantics (as a A%/~ term) for the while
program

y = (cont x);

z:=1;

while (cont y) # 0do
Z:=(cont z) * (cont y);
y:=(conty) —1;
od

You may use arithmetic operations * and — and comparison # in your lambda term and
assume these are interpreted in the usual way. Use standard reasoning about lambda terms,
fix, lookup and update to show that if we apply this function to a store s with contents of x
equal to natural number n, then we obtain a final store s’ with contents of z equal to natural
number n!.

Exercise 6.4.6 In this section, we first defined the syntactic translations V[- Jand C[[-]
by induction on the structure of algebraic terms and programs, and then defined V[-] and
Cl - 1 from V[-] and C[- 1. It is a useful exercise to work out independent inductive
definitions of V[-]| and C[[-], since these are often useful in proving facts about the
semantics of programs.

6.4 Denotational Semantics 409

(a) Write out an inductive definition of V[-] that refers only to 17|I -] on simpler terms
and does not mention the syntactic translation V[-]l. Show that this is equivalent to the
“two-stage” definition of V[-] given in this section.

(b) Repeat part (a) for CI- 1.
Exercise 6.4.7 An alternate form of iterative loop is repeat P until B. Informally,

this statement is executed by repeatedly executing P, until test B is true after some execu-
tion.

(i) Give a denotational semantics for repeat P until B. In other words, give a clause
of the form

Cllxepeat P until B] = fix(Af:store — storey .As:store... V[B]...C[P]...)

of the form used for while programs.

(i1) Your semantics should make it easy to prove the identity
repeat P until B = P; if B then skip else repeat P until B.
If this is the case, outline the straightforward proof. If not, go back and change your

semantics to make this possible.

(iii) An identity that does not seem provable by equational lambda calculus reasoning is
repeat P until B = P; while —B do P od

However, this is not too hard to prove using a form of induction. If you write out the typed
lambda terms corresponding to both program forms, you will see that you need to prove
an equation of the form

fixM = (fixN)o L

By the continuity of composition, and the interpretation of fixed-point operators over
CPOs, it is possible to prove that an equation of this form holds over CPOs by proving
that for every natural number k, we have

M"()\s: store. Lgrore) = (Nk(ls: store. Lsiore)) © L (%)

where as usual M*N indicates the result of applying M to N a total of k times. You
may take it as given that it suffices to prove (%), for M, N and L determined from the
denotational semantics of while and repeat. Prove the identity between repeat and
while by using induction on k to prove that (%) holds for every natural number k.

410 Imperative Programs

(iv) Do part (c) using fixed-point induction. More specifically, write out the equation be-
tween typed lambda terms of the form fix M = (fix N) ¢ P that says that the two imperative
programs have the same meaning and prove this using fixed point induction.

6.4.3 Equivalence of Operational and Denotational Semantics

In this section, we show that the operational and denotational semantics of while pro-
grams are equivalent. Before proving the main result, we state and prove two lemmas. The
first gives an equivalence between operational and denotational semantics for expressions
and the second an “unwinding” property of the fixed points of functions used in the se-
mantics of while loops.

Lemma 6.4.8 Let n be an environment and s € A" any “non-bottom” store. For any
expression M of type loc, val or bool, and a in Aloe pval op pgbool , we have

(M, s), 28 a iﬁ‘l_)[[M]]ns =a.

Proof We prove the lemma by induction on the structure of M. For a variable x, we have
(M, 5)y 28 n(x) = VM 5.

For an application of the contents function cont, we have

(cont x, s), 2 lookup s x = Vlcont x] ns.

The final case is an application of an algebraic function,

(FMy.. My, s)y 28 fAar, ... an) = VIF My ... Ml s,

where by the inductive hypothesis we may assume (M;,s), 24 a; = 17|IM,~]]r;s for
1<i<k. n

In stating the following lemma, we will write P°ks, where P: store — store , for the re-
sult of appling the k-fold strict composition of P to s, i.e., P%ks & P . (P ... (Ps)...).

Lemma 6.4.9 Let F be a function
F % \f:store — store, .)\s:store.if Bs then f . (Ps) else |s]

of the form obtained when translating a while loop into A"~ with B: store — bool
and P:store — store;. Let s € A" be a store different from L. For any natural
number #, if (F" L s) = [s’] then there is some m < n such that 5’| = P°™s, Bs’ = false
and for all k < m we have P%s = |s;| with Bsy = true.

6.4 Denotational Semantics 411

Proof This is difficult to prove directly by induction on n. The reason is that if we
expand F"t! | s in the obvious way, as

F'tl' | s = if Bs then (F" 1) -(Ps) else |s],

then we need to reason about the function F” L on the store Ps different from s. The
solution is to prove a more general assertion about stores of the form (Pfs).

We prove by induction on n that for all &, if (F" 1) - (P®*s) = | '] then there is some
natural number j < n satisfying the condition C(k, j) defined as follows

Is'] = Po*+)g Bs' =false and for alli < j,
. Ck, j)
Po*tDg = | 5] with Bs; = true

The lemma follows as the special case k = 0.

The base case of the proof is vacuously true, since F 0 (POkS) =1 gore.

For the induction step, we assume the implication for n and all k and suppose that
(F"™1 1) . (P%s) = |s’]. An easy calculation shows that there is some store s” with
P s = |s”] such that either Bs” = false and s’ =s" or Bs” = true and s’ = (F" 1) -
(P°*+Dg) Tt is not hard to check that if Bs” = false then C(k, 0) holds. On the other
hand, if Bs” = true then we may apply the induction hypothesis to obtain C(k + 1, j)
for some j < n. But it is easy to check that C(k, j + 1) iff Bs” = true and C(k + 1, j).
Therefore, we conclude 3j <n + 1. C(k, j), which proves the lemma. n

exec

Recall that since % determines a partial function from stores to stores, while Cl-1
defines a total function from A%’ to A*l’”’e, the operational and denotational semantics
handle nontermination in different ways. Taking this into account, we have the following
statement of their equivalence.

Theorem 6.4.10 Let 5 be an environment and s, s” € A**°"¢ any “non-bottom” stores. For
any program P we have

(P,s), 25 s iff CTPTIns =s"].

Proof The proof proceeds by induction on the structure of programs. For an assignment
x =M, we have (M, 5), 24 a =V[M]ns by Lemma 6.4.8 and therefore

(x:=M, s), 25 update s n(x) a and Clix := M1 ns = |update s n(x)a).

The inductive steps for a sequence Pj; P, or conditional statement ifBthenP;
elseP; are straightforward and left as Exercise 6.4.11. The main case is an iterative loop
while B do P od.

412 Imperative Programs

To prove the theorem for while B do P od, let F be the function
F % \f:store — store, . \s: store. i Bs then f- (Ps) else |s]

where B is V[B]ln and P is C[P]ln, so that C[while B do P od]n=fix F.

Suppose (while B do P od, s), X5 s’. By examining the operational semantics,
we can see that there must be a finite sequence sy, ..., s, of stores with s =s¢ and
s’ = sy, such that (B, s;i), ¥4 true for i <n, (B, s,)y e"“‘false and (P, si)y %5 si41 for
i <n. We show by induction on n that Clwhile B do P odl]ln = fixF is a func-
tion mapping sy to |s,]. The base case is n =0, s’ =5 and (B, s}, 3 false. Since
fixF = As:store.if Bs then (fixF) - (Ps) else |s],and Bs = false by Lemma 6.4.8,
we have fixF's = |s]. For the inductive step, we assume a sequence sg, ..., S, of n 4 1
stores with s = sg and s’ = s, such that (B, s;), 24 true for i <n, (B, su), °"“‘false and
(P, si)y 25 siy for i < n. This gives us a sequence sy, ..., s, of n stores with properties
needed to apply the inductive hypothesis to obtain fix F s; = |s,]. Reasoning as in the
base case, we may conclude that fix F'so = [s, .

For the converse, suppose that él[while B do P odllns = [s']. Recall that
Clwhile B do P od]l7ns is the result of applying the fixed point fix F to s. Since
fix produces the least fixed point of F, and there are no infinite directed sets of stores
in the CPO A%, we know that (fix F)s = |s'| iff (F" L)s = [s’| for some n. By
Lemma 6.4.9, there is some m < n such that |s’| = P°"s, Bs' = false and for all k <m
we have P°s = |s¢| with Bsy = true. A straightforward induction on m shows that
(while B do P od, s), %5 s’. This proves the theorem. -

Notice that the proof depends on fix producing the least fixed point; Theorem 6.4.10
fails if fix F is an arbitrary fixed point of F.

Exercise 6.4.11 Complete the inductive steps of the proof of Theorem 6.4.10, for se-
quence Pp; P> and conditional statement if B then P; else P, as parts (a) and (b) of
this exercise.

6.5 Before-after Assertions about While Programs

6.5.1 First-order and Partial Correctness Assertions

Since the denotational semantics of while programs provides a translation into typed
lambda calculus, one way of proving properties of while programs might be to use a
general proof system for typed lambda terms. This is a very reasonable idea, and several
automated theorem—proving environments suitable for this purpose have been developed
(e.g., [GMW79, Pau87]). An alternative is a logic more closely tailored to the syntax of

6.5 Before—after Assertions about While Programs 413

while programs. Although this approach is less general, there are some advantages. To
begin with, a programmer familiar with while programs could reason about programs
without learning the vocabulary of typed lambda calculus and least fixed points. Second, if
we have some intuitive justification for the correctness of a program, much of this justifica-
tion is likely to be related to the structure of the program. Consequently, we might expect it
to be easier to prove the correctness of our program using a logic whose structure follows
the programming language. Finally, there may be some direct influence on programming
style. If we get into the habit of proving properties of programs, our programming style
might be influenced by the way we intend to prove properties of programs. This seems
particularly beneficial if the proof system mirrors the structure of the programming lan-
guage in a natural way. Some discussion of programs and proofs may be found in [Ben86,
Dij76], for example.

As mentioned in Section 6.1, we will consider a logic whose basic formulas are partial
correctness assertions

F{P}G

about while programs. Intuitively, this assertion means that if the first-order formula F
is true of some initial store s, then if P halts from s, the final store satisfies the first-
order formula G. The first-order formulas F and G will be written in a three-sorted
language, with sorts loc, val and bool, using the same function symbols that occur in
while programs. In particular, first-order formulas may refer to the store using cont, but
will not contain lambda abstractions or store variables. A simple example of the kind of
partial correctness assertion we might prove is

(x#£yAcontx =3){y:=1}(conty =1A cont x =3)

where x and y are variables of type loc. Informally, this assertion says that if x and y are
not aliases for the same location, and the value stored in x is 3, then after executing the
assignment y := 1, the value stored in y is 1 and the value stored in x is still 3. It is worth
noticing that this partial correctness assertion is not valid if we drop the hypothesis that
x # y, since then an assignment to y might change the value of x.

Before giving the proof rules for while programs, we define the three-sorted first-order
logic used to express preconditions and postconditions. The terms used in this logic will
have sort loc, val or bool. For technical convenience, we will include equality test Eq? on
locations and a value conditional, although these are not strictly necessary since they are
first-order expressible. Given an algebraic signature £ over sorts val and bool, as used in
the syntax of while programs, we define the first-order terms over X by the grammar

M .= x|fM...M|cont y|Eq?y z|if B then M else M,

414 Imperative Programs

where f is a function symbol of X, in fM;... My, the terms My, ..., My must have
the appropriate sorts for fMj... M to be well-formed, y and z must be location vari-
ables, B must be a boolean term, and the terms M; and M> in the conditional expression
if B then M; else M must have sort val. We define the meaning functions V and V
as in Section 6.4, using functions Eg? and if ... then ... else ...of A%orefixbooly,
interpret the corresponding functions in first-order terms.

The first-order formulas over signature X are defined by

F ::= M=N|FAF|=F|Yex.F|¥Yyux. F|Ypoorx. F

where M and N may be any first-order terms of the same sort. In writing Vj,cx. F, we
assume x is a variable of type loc (i.e., x € I'j,¢), and similarly for val and bool. As is
common, we introduce inequality, additional connectives and quantifiers by abbreviation:

M#N & —(M=N)

FivFE & =(=FiAn—-F)

FiIDFR ¥ -FVvE

Jpx. F & =(¥px.—F) for b € {bool, val, loc}

We define satisfaction of a first-order formula at a store s #.1;,,.. and environment n
inductively as follows:

nsEM=N iff VIM]ns=VINlns,
nsEFAFRnsEFiandn,s = P,
n,skE-F iff not n, s = F,

n.s EVpx. F iff nlx — al = F foralla € A,

A partial correctness assertion F { P} G is satisfied at environment 7 and store s # L o if
the following implication holds:

Ifn,s = FandC[Pllns=|s'] thenn,s' =G.

Note that if C’[[P]] ns =Lgore, then F { P} G is satisfied at 5. It is sometimes convenient to
write { P} G as an abbreviation for true {P} G.

Exercise 6.5.1 For each of the following partial correctness assertions, use the denota-
tional semantics of while programs to explain why the assertion is valid. Your explanation
should refer to stores and the semantics of programs, but need not be more than a short
paragraph in length for each assertion. When programs refer to operations on natural num-
bers, you may assume that these operations are interpreted in the standard way.

6.5 Before-after Assertions about While Programs 415

(@) x £ y{x:=conty; x:=contx+ 1}contx # conty

(b) x # y#z{if contx > conty then skip else swap}contx > conty, where swap
is the sequence of assignments z := cont x; x ‘=conty; y:=contz

(c) true {while contx #1 do x:=(contx) — 1 od}contx =1

(d) F{m:=0; n:=100; while contm < contn do P od} f(contn) =0, where F
is the formula (3x:nat)[0 < x <100 A f(x) =0] A m # n and P is the program

if Eq? f(contm) O
then n :=contm
else if Eq? f(contn) O
then m :=contn
elsem = (contm) + 1; n:=(contn) — 1

6.5.2 Proof Rules

Each of the axioms and inference rules for proving partial correctness assertions applies to
one form of while program. The one exception is the logical rule of consequence
F{P}G,FFODF,GDG'

F'{P} G’

(conseq)

which is based on logical implication. In applying this rule, we will feel free to use any
valid first-order implications; we will not be concerned with formal proofs of the first-
order assertions we use. It is easy to see from the definition of satisfaction that the rule
of consequence is sound, in the sense that if the hypotheses hold with respect to some
environment, for all stores, then the conclusion holds in all stores (with respect to the same
environment). We will give a complete inductive proof that the inference rules are sound
in Section 6.5.3 and prove a form of completeness in Section 6.5.4.

The most complicated parts of the proof system are the assignment axiom and the while
inference rule. Rather than tackle these right away, we will discuss the simpler conditional
and sequencing inference rules first. A rough reading of the following sequencing rule is
that if P produces a store with G true, and executing P, from any store satisfying G is
guaranteed to produce a store with H true, then executing P; P> must produce a store
with H true.

F{PI}G,G{P}H
F{P;)} H

(seq)

In a conditional statement if B then P; else Ps, there are two statements that might
be executed. If we want to end up with G true, it suffices for P to do this when B is true,
and P, to produce a store satisfying G when B is false. This informal thinking leads us to

416 Imperative Programs

the following rule:

(FAB{P1}G,(FA=B){P} G
F{if B then P, else P»}G

(cond)

Before discussing the axiom for assignment statements, we will look at a few examples
to gain some intuition for the problems that arise. As a historical note, it is worth mention-
ing that writing sound assignment axioms was one of the stumbling blocks when this field
developed in the early 1970’s. Although assignment seems trivial because it is so familiar,
it is actually a bit tricky to give a correct logical treatment of assignment in languages with
features such as assignable arrays. A valid assertion about assignment is

y#z{x :=y}contx #z

with x:loc and y, z: val. It is quite easy to see that this is true, since the assignment to x
cannot change the value of either value variable y or z. The variant,

cont w # 7 {x := cont w}contx # z

of this assertion with location (assignable) variable w in place of y is still valid. However,
there are two cases to consider when reasoning informally about it. If x and w name dif-
ferent locations, then this is just like the assertion with y in place of cont w. On the other
hand, if x and w name the same location, then the assertion remains valid since the assign-
ment does not change the value in any location and the preconditions and postconditions
place the same constraints on stores. But the related assertion

y # cont v {x := y} cont x # cont v

with location (assignable) variable v in place of z is not valid since x and v could name the
same location. This is a counterexample to the otherwise plausible looking axiom scheme

F {x =y} {(cont x)/y)F

which is not valid. The reason why this scheme looks valid is that it seems to say that
if some property (described by F) holds for y, then after storing the value y in x, the
same property holds of cont x. However, aliasing is one reason why the simple formulation
above of this plausible intuitive statement fails. It is a worthwhile exercise to see that this
axiom scheme also fails even without aliasing. This is described in Exercise 6.5.5.

An important property of Floyd-Hoare logic is that substitution does not preserve valid-
ity. This is explained in Exercise 6.5.6.

The assignment axiom we will use involves substituting a function in place of cont,
which might seem a bit complicated at first. However, given the subtleties illustrated by the

6.5 Before-after Assertions about While Programs 417

examples in the last paragraph, the reader should not be too surprised to find that the rule
is at least slightly complex. One way to understand the axiom is to think “backwards,” as
follows. Suppose we have an assignment x := M and a first-order formula F that we want
to be true after doing the assignment. In other words, we would like to find a first-order
formula F’ so that F’ {x := M}F is valid. There is always some such F’, since false { P} F
is trivially valid. However, we would like the “best” possible F’. The best formula we
could hope for is a formula F” such that for any environment, store s # L, satisfies F’
iff s satisfies {x := M} F. Such a formula is called the weakest precondition of {x := M}F.
(Weakest preconditions are defined in general in Section 6.5.4.)

To find the weakest precondition of {x := M} F, let us consider the meaning of x :=
M. If we execute this assignment from store s #.1lg4r., we end up with the store
\update s n(x) (V[M1ns)]. Thus we want a formula F’ with

n, s = F'iff n, (update s n(x) (V[MIns)) = F.

How might we construct such a formula? The solution is to observe that the only way for
F or F' to depend on the store is through the function cont. If we replace the function cont
in F by some “updated” function cont’ which gives location x value M, we will obtain a
formula F’ with the desired property. We may almost do this directly, using equality test
and conditional. Specifically, let cont,._ps be the lambda expression

conty—py & Al:loc.if Eq?€x then M else (cont?).

It is not too difficult to check that the function cont in store update s n(x) (V[M Ins)
defines the same function from locations to values as the lambda expression cont,.—p in
store 5. Thus, if we let [cont,.=p/cont]F be the formula obtained by replacing cont with
conty.—p, we will have a formula with

N, s k= [conty.—p/cont|F iff n, (update s n(x) (VIMIns)) = F.

The only problem is that since conty.=pm is a lambda abstraction, the substitution
[conty.—p/cont|F does not produce a first-order formula. However, the syntax of first-
order terms guarantees that every occurrence of cont is applied to some argument. There-
fore, after substituting conty.=p for cont, straightforward B-reduction will give us an
equivalent first-order formula. Thus we will consider [cont.—p/cont]F as shorthand for
the final result of function substitution followed by B-reduction. Using this notation, we
may now state the partial correctness axiom for assignment.

[conty.—pr/cont]F {x := M} F (asg)

To see how this works, it is best to work a few examples.

418 Imperative Programs

Example 6.5.2 We can prove y # z {x := y} (cont x) # z using the assignment axiom
and the rule of consequence. The first step is to find an instance of the axiom of the form
F’ {x := y} (cont x) # z. To match the form of the axiom, let F be the formula (cont x) #
z and M the value variable y. The assignment axiom gives us the partial correctness
assertion F’ {x := y} (cont x) # z, where F’ is the formula

[conty.—y/cont]F = (if Eq?xx then y else contz) #z.

It is easy to see that this is logically equivalent to the formula y # z, which gives us the
desired partial correctness assertion. [

Additional examples are given in Exercise 6.5.4.

The while rule uses what is commonly called a loop invariant. Although we will even-
tually prove that this rule is “complete” for proving all valid partial correctness assertions
about while loops, it is simpler to disregard this for now and only consider soundness on
first reading. The inference rule is this:

(FAB){P}F
F{while B do P od}(F A—B)

(while)

In this rule, F is called the loop invariant since F remains true, no matter how many
times the loop body is executed. To see that the rule is intuitively sound, suppose that the
hypothesis (F A B) {P} F is valid, and that store s satisfies F. If B is false in s, then the
while loop does nothing, and so we end up with a store satisfying /' and —B. On the
other hand, if B holds, then we begin to execute the loop body. If the loop never halts, then
the conclusion of the rule is vacuously satisfied. If the loop eventually terminates, then
we will have executed the body P n times, for some positive integer n. It is easy to see
by induction on n that each time we start the loop, we begin in a store with B true and
each time the loop body terminates, F is true. Since the loop only terminates when B fails,
the loop may only halt in a store satisfying F A —B. This is the conclusion of the while
inference rule.

Although many pragmatic issues in proving properties of programs are beyond the
scope of this short chapter, it seems appropriate to make a few general comments. The
hardest part of proving a partial correctness assertion about a while program, almost
invariably, is choosing appropriate loop invariants. From a theoretical point of view, as
demonstrated by the relative completeness theorem in the Section 6.5.4, there will always
be aloop invariant if the assertion language is sufficiently powerful. However, from a more
practical point of view, it seems safe to say that the most effective way to obtain a program
that provably has a certain behavior is to write the program and the proof simultaneously.
This way, there is some hope of making the loop invariants easy to determine. Otherwise,

6.5 Before—after Assertions about While Programs 419

it may be quite difficult to find a loop invariant that adequately summarizes the relevant
properties of a loop body. Some basic strategy is illustrated in the following example.

Example 6.5.3 Consider the following simple while program for computing the differ-
ence x — y, under the assumption that y < x.

d:=0;

while (contd) + y < x do
d:=(contd) + 1,
od

Let us write Py for the statement d := 0, B for the test (contd) + y # x and P; for
the loop body d := (cont d) 4+ 1. We will show that this program is correct by proving the
assertion

y <x{Py;, while B do Py od}(contd)+y=x.

The hardest part of the proof is to choose a postcondition for Py that will be an adequate
invariant for the while loop. This will decompose the problem into two separate proofs
about simpler programs. Since the program is a sequence of two statements, it is clear that
we must choose some first-order formula G so that both

y <x{Py} G and G {while B do P; od}(contd)+y=x

are provable. Since the tricky part of this proof is the while loop, let us concentrate on
the loop first. We will work backwards from the postcondition for the program and try to
determine a reasonable formula G.

Reading the while proof rule from bottom to top, we can see that
G {while B do P; od}G A —B follows from G A B{P1} G, so we will choose some
formula G that is an invariant of the loop body Py. Since the program we are working with
is so simple, it is not hard to see that executions of Py, under the hypothesis that B is true,
preserve the relationship G & (contd) + y < x. Therefore, we consider the two partial
correctness assertions

(i) y<x{d:=0}(contd) +y=<x
(1) ((contd)+y <x) A B{d:=(contd)+ 1} (contd)+y <x

It will suffice to prove these, since from the second assertion we have
(contd) + y < x{while B do P; od}((contd)+y <x)A—B

by the while rule, and it is easy to see that ((contd) + y < x) A =B implies (cont d) +

420 Imperative Programs

y = x. Thus the partial correctness assertion we are trying to prove follows easily from (i)
and (if) by the while rule, the sequencing rule, and the rule of consequence. Since (i) and
(&) are simple assertions about assignments, we leave these to the reader. »

Additional examples are given in the exercises.

Exercise 6.5.4 This exercise is concerned with the assignment axiom and partial correct-
ness assertions derived from this axiom by the rule of consequence. Recall that in applying
the rule of consequence, you may use any valid first-order implications; you do not need
to worry about proving the first-order assertions you use in any formal proof system.

(a) Find a formula F’ such that F’ {x := 3} (cont u) # (cont v) is an instance of the as-
signment axiom.

(b) Show for any first-order formula F not containing cont and possibly containing value
variable y, the assertion

[M/y1F {x := M}[(cont x)/y]1F

is provable from the assignment axiom and the rule of consequence.

(c) Suppose xy, ..., xk are loc variables and My, ..., M are val terms with x; not occur-
ring in M; for any j > i. Let NE be the conjunction

NE &f /\ Xi # X

i#j
of all inequalities x; # x; for i # j. Intuitively, NE says that all of the location variables
are different. Show that for any first-order formula G not containing cont and possibly

containing value variables yi, ..., y, the formula
NEA[Mi, ..., Mg/y1, ..., yilG {x1 :=My; ... xx = My}
[contxy,...,contxg/yi,...,]G

is provable using the assignment axioms, sequencing rule, and rule of consequence.

Exercise 6.5.5 Find first-order formula F, store s and environment n mapping each
location variable to a distinct location with the property that the assertion F {x :=
v} [(cont x)/y1F is not satisfied by s and 7.

Exercise 6.5.6 In most logics, substitution is a sound inference rule. In algebra, we have
the explicit substitution rule (subst) given in Chapter 3. In lambda calculus, we can achieve
the same effect using lambda abstraction and application, as shown in Lemma 4.4.2. In
first-order logic, if we can prove ¢, then we can prove Vx.¢ by universal generalization
and use this to prove [M/x]¢ for any term M. However, Floyd-Hoare logic does not have

6.5 Before-after Assertions about While Programs 421

a corresponding substitution property. Prove this by finding a valid partial correctness
assertion F {P}G and substitution [M/x] such that [M/x]F {{M/x]P}[M/x]G is not
valid. (Hint: You may use a simple assertion, with P a single assignment, that is used
as an example in this section.)

Exercise 6.5.7 This exercise uses the same partial correctness assertions as Exer-
cise 6.5.1, which asks you to use the denotational semantics of while programs to explain
why each assertion is valid. Now prove each assertion using the proof rules given in this
section. When programs refer to operations on natural numbers, you may assume that
these operations are interpreted in the standard way. You do not have to prove any first-
order formulas, but be sure the ones you use are true in the intended interpretation.

(a) x #y{x:=conty;, x:=contx + 1}contx # conty

(b) x #y#z{if contx > conty then skip else swap}cont x > conty, where swap
is the sequence of assignments z := cont x; x :=conty; y:=contz

(c) true{while contx #1 do x:=(contx) — 1 od}contx =1

(d) F{m:=0; n:=100; while contm < contn do P od} f(contn) =0, where F
is the formula (3x: nat)[0 < x < 100 A f(x) =0] A m % n and P is the program

if Eg? f(contm) 0
thenn :=contm
else if Eq? f(contn) O
then m :=contn
elsem = (contm) + 1; n:=(contn) — 1

6.5.3 Soundness

In the last section, except for the assignment axiom, the proof system was justified only
by intuitive operational arguments. Since this kind of reasoning is imprecise, and some-
times failed to detect unsound rules in the early development of Hoare logics for various
languages, it is worthwhile to prove soundness more carefully. We will do this using the
denotational semantics of programs. If 4 is an algebra for two-sorted signature X, then
we say first-order formula F is Ap-valid if F is true in every environment for every model
A obtained by adding countably infinite carrier A% for sort loc, interpreting equality test
and conditional in the standard way, and interpreting cont as any function from A“¢ to
Aval'

Theorem 6.5.8 (Soundness) Let ¥ be any algebraic signature over the two sorts val and
bool and let Ag be any ¥ algebra. Suppose program P and first-order assertions F' and
G are written using symbols from ¥ and F {P} G is provable from Ap-valid first-order

422 Imperative Programs

assertions. Then F { P} G holds in the model .4, obtained by extending .4y with loc and
store.

The rest of this subsection is devoted to the proof.

The hardest cases are the assignment axiom and the while rule. However, since the dis-
cussion of assignment in the last section gave all the essential steps for proving soundness,
we will skip the assignment case here. We will prove soundness for sequencing, leave con-
ditional as an exercise, and then concentrate on the while rule. We will not discuss the rule
of consequence, since this is straightforward.

We will use properties of strict composition to show that the sequencing rule is sound.
Suppose F { P} G and G { P,} H are valid partial correctness assertions, and that n, s = F.
We must show that if C[P; P.llns = |s”], thenn, s” = H. Since

CILPi; PIn=CIP:dn o CIPin,

we must have |s”] = C[P2ll ns’, where |s’] = C[Pi17ns. In other words, it follows from
the definition of strict composition that if s” #_L oy, then the store obtained by executing
P from s must be different from L;o,.. Therefore, n,s’ = G by validity of F {P;} G,
Since G {P»} H is also valid, it follows that n, s” = H. This proves the soundness of the
sequencing proof rule.

It remains for us to prove that the while rule is sound. In essence, we will show sound-
ness by using properties of fix to carry out the informal argument given in the preceding
section. We assume that (F A B) { P} F is valid and that n, s = F. We must show that if
s’=C[lwhile B do P od] ns is different from Ly, thenn, s’ = F A —B.

Lemma 6.4.9, used in proving the equivalence of operational and denotational seman-
tics, now provides the essential facts about the meaning of while B do P od. Let
B & V[B]nand P & C[P]n so that the meaning of while B do P od in environ-
ment 7 is the least fixed point of the function

Q ® Af:store — store) . \s:store. if Bs then f- (Ps) else |s].

If |s’] =fix Q s, then since the domain of stores is flat, s’ = Q" s for some natural number
n. By Lemma 6.4.9, there is some m < n such that |s’] = P°"s, Bs’ = false and for all
k < m we have P°*s = | 53] with Bsy = true. In particular, n, s’ = = B. An easy induction,
using the validity of (F A B) {P} F, shows that n, s; = F for all kK <m and therefore
n, s’ = F. This completes the proof.

Exercise 6.5.9 Show that the conditional rule is sound by showing that if n, s = (F A
B){Pi}Gandn,s =(F A—=B){P,}Gthenn,s = F {if B then P; else P}G.

6.5 Before—after Assertions about While Programs 423

6.5.4 Relative Completeness

There are several forms of completeness that we might consider for Floyd-Hoare logic.
To put these in perspective, we must look at the general form of the logic. The syntax of
programs, syntax of first-order assertions, and therefore the syntax of partial correctness
assertions are determined by choosing an algebraic signature . The semantics are deter-
mined by choosing a X-algebra Ag and extending it with locations and stores. In carrying
out proofs, we use the assignment axiom and four proof rules. Since the rule of conse-
quence requires implications between first-order formulas, we should think of the proof
system as a system for deriving partial correctness assertions from first-order assertions
about the structure determined from 4. Since the proof system requires first-order formu-
las as “input,” it makes sense to evaluate the proof system by asking if it does as well as
possible, relative to the formulas we supply it. This leads us to consider a form of com-
pleteness called relative completeness.

Relative Completeness Property: Let ¥ be any algebraic signature over the two sorts val
and bool and let Ap be any X algebra. Suppose program P and first-order assertions F
and G are written using symbols from ¥ and F {P} G holds in the semantics obtained
by extending .4¢ to a CPO model A,. Then F {P} G is provable from .Ap-valid first-order
assertions.

Although the proof system for partial correctness assertions is not relatively complete for
all signatures and algebras, we will see that relative completeness does hold for a signifi-
cant class of signatures and algebras. We also discuss an “absolute” form of completeness,
which fails, at the end of this section.

We can see why some condition on ¥ and .4y may be neeeded for relative complete-
ness by considering how we might prove a partial correctness assertion that is true in some
structure. If some assertion F {x := M} G holds for some .4y, then we might expect to
prove this from the assignment axiom and the rule of consequence. Similarly, we should
be able to prove any true F {if B then P; else P} G if every true assertion about P
and P is provable. However, we get stuck when we come to a sequence of statements.
How could we hope to prove F {P;; P,} G? Even if we replace F and G by some F’
and G’, using the rule of consequence, we still must eventually prove some assertion of
the form F {P;; P»} G using the rule for sequencing. Therefore, we need some first-order
assertion H over signature X such that both F {P|} H and H {P,} G are provable. Intu-
itively, this formula H must describe properties common to all possible halting stores of
Py, accurately enough to guarantee H {P,} G. If the ways that P; may halt are compli-
cated enough, or the first-order signature is “poor” enough, then we might not be able to
express the properties of stores resulting from the execution of P; accurately. Therefore,

424 Imperative Programs

in general, there may not be a formula H that allows us to prove a valid partial correctness
assertion F {Py; P»}G.

The way we will work around this problem is by defining it away. This solution was first
proposed in [Co078], and the approach has not been substantially improved upon since.
We will see how to define the problem away by considering the requirements on the “inter-
mediate assertion” H needed to prove F {P;; P>} G by the sequencing proof rule. The first
requirement on H is that it must imply that G will hold after executing P>. Among all such
formulas, we might try to let H be the “weakest” one, in the sense that if H' {P,} G holds,
then H' implies H. The reason is that if H is the weakest possible, then F { P} H should
be true, since F implies that any store reached by P has the property that G will hold after
executing P». In short, if there is a “weakest” first-order formula H with H {P,} G, then if
any assertion will work, we should be able to use H to prove F {P;; P,} G. This leads us
to the notion of weakest liberal precondition, originally formulated by Dijkstra [Dij75].

Formula F is the weakest liberal precondition of P and G if, for every environment n
and store s,

n.skE=FifnskE{P}G.

In other words, the weakest liberal precondition of P and G is a formula which implies that
if P halts, G will be true. It is the weakest such formula, since any other formula implying
that if P halts then G will be true must imply the weakest liberal precondition. The word
“liberal” refers to the fact that we are working with partial correctness assertions; the
weakest precondition of P and G is the weakest formula implying that P does halt in a
store satisfying G.

We say a signature ¥ and X-algebra Ag are expressive if there is a weakest liberal
precondition for every program and first-order assertion over X. In this case, we write
wip(P, G) for the first-order formula that is the weakest liberal precondition of P and G.

Theorem 6.5.10 (Relative Completeness) Let ¥ be an algebraic signature over sorts
val and bool, and let Ap be a X-algebra. If ¥ and Ag are expressive, then every partial
correctness assertion F {P}G over ¥ that holds in .4, is provable from Ap-valid first-
order assertions.

Proof We use induction on the structure of programs. If F {x := M} G holds, then by the
reasoning given in developing the assignment axiom, F must imply [conty.—p /cont]G.
Therefore, we may prove F {x := M} G from the assignment axiom [conty.—p /cont]G
{x := M} G and the rule of consequence.

Suppose F {P;; P.} G holds in .4;. As mentioned in the discussion motivating the def-
inition of weakest liberal precondition, we need a first-order formula H such that both

6.5 Before—after Assertions about While Programs 425

F{P1} H and H {P,} G hold. We let H be wip(P,, G). Recall that

U,S'=HU7PU,SP={P2}G-

Therefore H { P2} G holds and, by the inductive hypothesis, must be provable. It remains
to show that F {P1} H holds. We use the fact that F {P;; P>} G holds in 4,. Let be an
environment and s € A" a store with n, s = F. If |s’] = C[[P\]s, then n,s" = {P2}G.
Therefore 5, s’ = H. This shows that F { P;} H holds in A,.

The conditional case is straightforward. However, we will go through this case since
the argument is needed for the while case. Suppose F {if B then P; else P;}G
holds and let n and s be an environment and store satisfying F. If , s = B, then any
s’ =C[P;]ls with s’ #L ., must satisfy G, and similarly for s’ = C[P,]s if 5, s = —B.
Thus both (F A B) {P1} G and (F A —~B) {P,} G hold. By the inductive hypothesis, both
are provable. This allows us to prove F {if B then P| else P}G.

The final case, an assertion of the form F {while B do P od}G, requires a little
more work. We need to find some formula H such that H A B {P} H and both implications
F D H and (H A —B) D> G hold in A,. If we can show this, then we may conclude
H {while B do P od}(H A —B) by the while rule and the desired partial correctness
assertion by the rule of consequence.

We let H be the weakest liberal precondition of while B do P od and G. This gives
us the implication F D H immediately. It remains to show that the partial correctness
assertion (H A B) {P} H and the first-order formula (H A —B) D G both hold.

Recall from Section 6.4.2 that

while B do P od=if B then (P;while B do P od) else skip.
Therefore, since H {while B do P od} G is valid, the corresponding assertion
H {if B then (P;while B do P od) else skip}G.

about an equivalent program must hold. Reasoning as in the conditional case, it follows
that both (H A B) {P;while B do P 0d}G and (H A —B) {skip} G hold. Since skip
does nothing, the implication (H A —=B) D G must be Ap-valid. Since H is the weakest
precondition of while B do P od for G, it follows that (H A B) {P} H holds. This
completes the proof. .

Since relative completeness is proved using the rather technical assumption of expres-
siveness, we will try to understand this condition. It is important, first of all, to realize
that expressiveness is a property of both the underlying algebraic structure and the signa-
ture. More specifically, if we do not have expressiveness for one choice of Z and Ay, it

426 Imperative Programs

may be possible to add function symbols to ¥, interpret them naturally in .49, and ob-
tain expressiveness. This is in fact the case for the signature providing only a constant for
0: nat, the successor function S: nat — nat, and an equality test Eq?: nat — nat — bool.
If we interpret these symbols over the natural numbers and booleans in the standard way,
then expressiveness fails (see Exercise 6.5.11). However, if we add function symbols for
addition and multiplication, interpreted in the usual way, then expressiveness holds (see
Exercise 6.5.13). Intuitively, this may be explained by saying that for some P and G con-
taining only 0,5 and Eq?, we cannot define the stores under which {P} G holds without
using addition and multiplication. The weakest liberal precondition, wip(P, G), can be
written out as a first-order formula using function symbols for addition and multiplication,
but not using the less expressive signature with only zero, successor and test for equal-
ity.

Another way to understand expressiveness is to consider the recursion-theoretic impli-
cations of the relative completeness theorem (Theorem 6.5.10). Specifically, if expressive-
ness holds between a signature and algebra, then the partial correctness theory is recur-
sively enumerable from the first-order theory, using the complete proof system. However,
a partial correctness assertion of the form F {P} false expresses the non-termination of
program P.

For most familiar structures, such as the natural numbers or characters and strings, the
set of programs that terminate on some input is recursively enumerable, but not recur-
sive (decidable). It follows that the set of programs that do not terminate on any input are
neither recursively enumerable nor recursive. Therefore, on intuitive grounds, we would
expect the partial correctness assertions of the form F { P} false not to be recursively enu-
merable. This suggests that if expressiveness holds, then either the the termination behav-
ior of programs must be unexpectedly simple, or the first-order theory of the interpretation
is more complicated than recursively enumerable. As described in [Apt81, Lip77], it may
be proved that either each program is degenerate, or the first-order theory is as complex as
the first-order theory of the standard natural numbers. More specifically, if expressiveness
holds for ¥ and Ag, then either

(i) a standard model of Peano arithmetic can be defined in A using first-order formulas
over X, or

(ii) for every program P, there is some number n such that for any initial store, the
computation of P involves at most n stores.

It follows that if computations are not bounded (i.e., we are not in case (ii)), then the
first-order theory must be as complicated as the first-order theory of the standard natural
numbers, with addition and multiplication.

6.5 Before—after Assertions about While Programs 427

The reader familiar with recursion theory will know that the first-order theory of the nat-
ural numbers is not recursively enumerable, and in fact sits well above the familiar classes
of recursive and recursively enumerable sets in the arithmetic hierarchy (see [Rog67], for
example). As a consequence, this first-order theory does not have any complete axiomati-
zation. We may therefore summarize the situation by saying that if we have expressiveness,
and program behavior is not bounded, then we can prove all true partial correctness asser-
tions, but the first-order theory we use must be highly intractable. This may seem rather
discouraging, if we hope to prove programs correct in practice. (The situation for finite
interpretations is considered in more detail in Exercise 6.5.12.)

The counter-argument that is made by proponents of program verification is that if we
believe a program is correct, and formalize this with an assertion F {P} G, then part of our
understanding that the program is correct is understanding why the first-order implications
needed in the proof of F {P} G are true about the values used in computation. Therefore,
we should not expect arbitrarily complicated statements about natural numbers, for exam-
ple, to be needed, but only statements that reflect our understanding of the program. These
are likely to be provable from the axioms of Peano arithmetic. This argument notwith-
standing, it seems fair to say that proving correctness using Floyd-Hoare, or any other,
logic is a substantial task for practical programs.

A final question about completeness is whether a pure, “non-relative” form of complete-
ness might hold. Specifically, if we choose some signature, X, then all valid first-order
formulas over this signature are provable from a standard axiom system. (This is the stan-
dard completeness theorem of first-order logic [End72, Men64].) Can we therefore prove
all partial correctness assertions that hold in all X -algebras, using a complete proof system
of first-order logic to derive implications for use in the rule of consequence? Unfortu-
nately, the answer is no. The simplest explanation is again based on recursion theory. The
set of all partial correctness assertions derived from a proof system for first-order logic,
together with the proof system described here for while programs, is recursively enumer-
able. However, the set of valid partial correctness assertions is not recursively enumerable.
Intuitively, this is again because partial correctness assertions express nontermination, and
the non-terminating programs are not recursively enumerable (see [Apt81], for example).
Therefore, the provable partial correctness assertions cannot include all the valid ones.

Further information on the use of Hoare logic may be found in [AO91], for example.
Mathematical properties of Hoare logic and related logics of programs are surveyed in
[Apt81, Har84, KT90].

Exercise 6.5.11 Let ¥ be the first-order signature with O: nat, the successor function
S: nat — nat, and an equality test Eq?: nat — nat — bool. Let Ag be the standard inter-
pretation of these symbols, with A" = A the usual set of natural numbers. The decidabil-

428 Imperative Programs

ity of the first-order theory of .4p, when extended with locations and location equality test,
follows from standard decidability results for fragments of number theory {End72]. Use
this fact from logic to prove that expressiveness fails for £ and 4¢ by the following steps.

(a) Show that there is a program Plus computing the sum of any two integers. More
precisely, write a program Plus using the symbols of ¥ such that if n, m: nat are value
variables, then for any store s, we have Cl[Pluslns = |s’| with lookup s’ n(x) = n(n) +
n(m).

(b) Show that there is a program Mult computing the product of any two integers, in the
same sense as elaborated for Plus in (a).

(c) Sketch an argument showing that for any partial recursive function f: A/ k —~ N on the
natural numbers (see Section 2.5.5), there is a program over X that computes f, when the
symbols of T are interpreted according to Ao.

(d) Show that expressiveness fails for ¥ and .4¢. Use the fact that the set of pairs {f, n),
where f: N — N a partial recursive function that is not defined on n, is not recursively
enumerable.

Exercise 6.5.12 This exercise asks you to show that expressiveness for a finite interpre-
tation implies decidability of the halting problem for programs over this interpretation. As
noted above, if expressiveness holds between a signature X and .Ap, then the partial cor-
rectness theory over X and A, is recursively enumerable from the first-order theory of Ag
with locations added as a third sort. Let ¥ be any two-sorted signature (with val and bool)
for writing while programs and let Ap be a ¥ algebra with Ag"”’ standard and A(V)“l finite.
You may assume that decidability of the first-order theory of .Ap implies decidability of the
first-order theory of Ag with locations added.

(a) Sketch a brief argument showing that the first-order theory of Ag is decidable.

(b) Sketch a brief argument showing that we may recursively enumerate the programs
over X that halt in every store. (Hint: this does not involve partial correctness assertions.)

(c) Show that if ¥ and .A¢ are expressive, then we may recursively enumerate the pro-
grams over X that do not halt in any store. (Hint: this does involve partial correctness
assertions.)

(d) Show that if £ and Ay are expressive, there is a recursive (computable) procedure to

determine whether a program P halts from every store.

It is interesting to note that this argument does not rely on any particular properties of
while programs, other than an effective interpreter. Therefore, it is a general fact about

6.6 Semantics of Additional Program Constructs 429

Hoare logics for various languages that if relative completeness holds, the halting problem
must be decidable on finite interpretations.

Exercise 6.5.13 Let X be the signature with O: nat, successor S:nat — nat, addition,
+, multiplication, *, and an equality test Eq?: nat — nat — bool. Let Ag be the standard
interpretation of these symbols, with A{* = A the usual natural numbers. It is a standard
fact from mathematical logic that for every partial recursive function f: ' — N, there is
a first-order formula, F(x, y), over the signature X, such that for any natural numbers n
and m, we have A = F(n,m) iff f(n) =m. Use this to show that expressiveness holds
for ¥ and .Ag, possibly appealing to Church’s Thesis for properties of programs (see
Sections 2.5.4 and 2.5.5).

6.6 Semantics of Additional Program Constructs

6.6.1 Overview

In the remainder of this chapter, we summarize the denotational semantics for some ex-
tensions of while programs. In Section 6.6.2, we consider declarations of local variables,
and in Section 6.6.3, procedure declarations. The final subsection discusses interaction be-
tween procedures and variable declarations. While soundness and relative completeness
theorems have been proved for appropriate extensions of Floyd-Hoare Logic, we refer
the reader to other sources for these results [Apt81, AO91]. The main emphasis is on the
translation of imperative constructs into typed lambda terms that may be interpreted in
CPO models. Perhaps surprisingly, it is much harder to give a satisfactory account of vari-
able declarations than procedures. In the interest of conveying the main ideas simply, we
consider a relatively direct approach in Section 6.6.2, discussing deficiencies and improve-
ments in Section 6.6.4.

6.6.2 Blocks with Local Variables
We may extend while programs with a simple form of variable declaration,
P ::= ... |begin new x:=M; P end

with the intuitive meaning that program P is executed after x is given a new location,
initialized to the value of M. To give denotational semantics to this program, we must
have some mechanism for keeping track of the locations that have been allocated, so that
x can be given a location that is different from all of these. This leads us to change the
interpretation of type store (and therefore store) in our CPO model.

The store operations we will use in the denotational semantics are

430 Imperative Programs

newloc: store — loc
alloc :store — loc — store

freeloc: store — loc — store

where, intuitively, newloc selects a new location from a store, alloc marks the store so
that a given location is known to be allocated, and freeloc makes an allocated location
available for reuse. An important property of these operations is given by the following
axiom, written using variable s: store.

freeloc (alloc s (newloc s)) (newlocs) =s

In words, if we allocate the “next” free location in a store, then free it, we obtain the store
that we began with.

Additional properties of the storage allocation operations may be stated using a boolean-
valued function

is_ free?: store — loc — bool

which tells whether a location is free to be allocated or not. Some reasonable axioms using
this function are

is_ free?s (newlocs) = true
is_ free? (allocs £) ' =if Eq?£{ then false else is_free?st
is_ free? (freeloc s £) £ = true

which say that a “new” location is free to be allocated, alloc marks a location as no longer
free to be allocated, and freeing a location makes it free to be allocated.

The function is_ free? may be used in the semantics of programs to test that all locations
read or assigned to in a program have been allocated. For example, we may revise the
semantics of an assignment x := cont y to first test whether x and y are allocated in the
store, and if not return the bottom store (or some error) since a program should only use the
locations allocated to it. However, instead of checking each location used in a program, we
will only consider the meaning of a program in a store that has all the accessible locations
already allocated. In keeping with this decision, we adopt the axioms

lookup (allocs x) y = lookup s y
lookup (freelocs x) y =lookup s y
update (allocs x) y v =alloc (updates y v) x

update (freeloc s x) y v = freeloc (updates y v) x

6.6 Semantics of Additional Program Constructs 431

which say, intuitively, that allocation does not effect the contents of any location.

Since we now keep track of the locations that are available for allocation, the semantic
interpretation of stores must change. Writing (A% — A"#) for the set of functions from
locations to values, we now interpret the type store of stores by

Astore — Pfin(Aloc) x (Aloc — Aval)

where P f;,,(A"’C) is the set of finite subsets of A, Intuitively, in the store (L, f), where
L C A and f: Al° — Av@l the finite set L contains all the used, or already allocated,
locations and the function f gives the value stored in each location. The reason we assume
that L is finite, apart from the fact that no program can allocate more than a finite number
of locations, is that otherwise we might have a store with every location allocated, and
therefore be unable to allocate a new location.

With this interpretation of stores, functions lookup and update use only the function
Alec s Aval| a5 before, ignoring the set of allocated locations or, in the case of update,
leaving this set unchanged. The new operations have the following effects on stores and
locations.

newloc (L, f) returns some{ ¢ L
alloc(L, f) ¢ returns store (L U {€}, f)
freeloc (L,)¢ returns store (L — {£}, f)
is_ free? (L, f) Lreturns true iff £ € L

We show below, in Lemma 6.6.3, that the meaning of a program is independent of the way
newloc chooses a new location, as long as this location is not already accessible to the
program.

A first approximation to the semantics of variable declarations is

Cllbegin new x := M; P end]] = As: store. let x: loc = (newloc s) in
CIP] (update (allocs x) x (V[M]s)),

which allocates a new location and initializes it before applying the function given by the
meaning of the block-body P. Note that if x occurs, undeclared, in P then x will occur
free in the lambda term C[[P]|. Any such free occurrence of x is bound by 1et in the clause
above.

An immediate consequence of renaming bound variables in lambda terms is the follow-
ing equation between programs,

begin new x := M; P end =begin new y:=M;[y/x]P end,

432 Imperative Programs

provided y does not occur free in P and substitution of y for free occurrences of x in P
includes renaming of bound variables in P as usual. Our refinement of the semantic inter-
pretation for begin above will similarly bind the local variable x in C[[begin new x :=
M; P end], preserving the soundness of a-conversion fo- while programs.

Our approximate semantics will result in a store with the right final values of assignable
global variables. However, some useful s