
Compositional Explanation of Types
and Algorithmic Debugging of Type Errors

Olaf Chitil
University of York, UK

olaf@cs.york.ac.uk

ABSTRACT
The type systems of most typed functional programming
languages are based on the Hindley-Milner type system. A
practical problem with these type systems is that it is of-
ten hard to understand why a program is not type correct
or a function does not have the intended type. We suggest
that at the core of this problem is the difficulty of explain-
ing why a given expression has a certain type. The type
system is not defined compositionally. We propose to ex-
plain types using a variant of the Hindley-Milner type sys-
tem that defines a compositional type explanation graph of
principal typings. We describe how the programmer un-
derstands types by interactive navigation through the ex-
planation graph. Furthermore, the explanation graph can
be the foundation for algorithmic debugging of type errors,
that is, semi-automatic localisation of the source of a type
error without even having to understand the type inference
steps. We implemented a prototype of a tool to explore the
usefulness of the proposed methods.

1. INTRODUCTION
The type systems of most typed functional programming

languages are based on the Hindley-Milner type system [11].
It combines the unobtrusiveness of not requiring any type
annotations in the program with the flexibility of polymor-
phism. The basic ideas of the type system are intuitive: A
function can have many types. The type of a polymorphic
function represents all types that can be gained by instan-
tiation of its type variables. Every function has a principal,
that is, most general, type which represents all of its types.
Practical experience shows that the type checker catches
many errors, from trivial oversights to sometimes even deep
logical errors. But experience also shows that from a type
error message it is often hard to deduce the actual cause of
the error and understand it [1, 2, 3, 4, 9, 10, 17, 19, 20, 21,
22, 23, 24, 25, 26].

Consider the following tiny Haskell program [16]:

f xs ys = ((map toUpper) . (++)) xs ys

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copyotherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

The function map toUpper maps a list of characters to a
list of (uppercase) characters, (++) concatenates two lists,
and the infix operator . composes the two functions. The
programmer thinks that the composition is a function map-
ping two lists of characters to a list of characters. However,
the Haskell system Hugs1 gives the following error message:

ERROR (line 1): Type error in application

*** Expression : (map toUpper . (++)) xs ys

*** Term : map toUpper

*** Type : [Char] -> [Char]

*** Does not match : ([a] -> [a]) -> b -> c

So the program is not typable and hence the program-
mer’s reasoning must be faulty. But what is wrong with the
subexpression map toUpper? Why should its type match
the type ([a] -> [a]) -> b -> c? The Glasgow Haskell
compiler2 generally gives more detailed type error messages
than Hugs, but here it is not better:

Couldn’t match ‘[Char]’ against ‘[a] -> [a]’

Expected type: [a] -> [Char]

Inferred type: [a] -> [a] -> [a]

In the second argument of ‘.’, namely ‘++’

In the right-hand side of an equation for ‘f’:

((map toUpper) . ++) xs ys

This message reports a type conflict for a different subex-
pression. The function (++) certainly has type [a] -> [a]

-> [a], but why should it also have type [a] -> [Char]?
We analyse why type error messages of current interpreters

and compilers are unsatisfactory. The meaning of current
type error messages, the meaning of the reported types and
their relation to the program, is not well-defined. Further-
more, the program position given in an error message is
often far from the source of the error. We argue that this
lack of precise error location is unavoidable for a Hindley-
Milner based type system. Because of this lack of precision,
the programmer must be able to explore how an unexpected
type was inferred to locate the source of the error. So the
main component of a type error explanation system has to
be an explanation system for types. We argue that neither a
Hindley-Milner type inference tree nor Milner’s type check-
ing algorithm W [11] are suitable for explaining types.

We claim that a type explanation must be compositional

to be comprehensible. That is, the whole explanation must
have a tree structure where the types at each node are deter-
mined uniquely by the types of the node’s children. A tree of
principal types is not compositional, but a tree of principal

1http://haskell.org/hugs
2http://haskell.org/ghc

typings is. Unfortunately the Hindley-Milner type system
only has principal types, but not principal typings. How-
ever, in [12] John Mitchell defines a type checking algorithm
that implicitly defines a type system which is closely related
to the Hindley-Milner type system and which has what we
call a principal monomorphic typing property. The type
system of principal monomorphic typings is our basis. The
type checking algorithm can produce a compositional type
explanation tree. In fact, to avoid duplication of subtrees,
we actually construct an acyclic type explanation graph.

We show how the programmer can understand types by in-
teractive navigation through the type explanation tree. Nav-
igation at different levels enables the programmer to avoid
useless information without losing important details. Just as
type inconsistencies are reported far from the actual error,
run-time errors are usually observed far from their source.
For declarative languages algorithmic debugging has been
used successfully to locate run-time errors. The type ex-
planation graph is a good basis for algorithmic debugging
of type errors. To algorithmically locate type errors, the
programmer does not even have to follow type explanations
but only needs to know which types he/she intends variables
and expressions to have. We implemented a prototype type
explanation and debugging tool to explore our ideas. The
prototype produced the examples shown in this paper.

Although we use Haskell in examples, our analysis is valid
and the proposed method is applicable to all Hindley-Milner
based programming languages such as ML and Clean.

In Section 2 we analyse the problems with the type er-
ror messages of current systems and argue that neither a
Hindley-Milner type derivation tree nor Milner’s type check-
ing algorithm W are a suitable basis for explaining types and
type errors. In Section 3 we informally describe our idea of
compositional type explanations. In Section 4 we formalise
the type system of principal monomorphic typings and in
Section 5 we define the construction of the type explana-
tion graph. In Section 6 we discuss navigation through the
explanation graph and in Section 7 we demonstrate how al-
gorithmic debugging of type errors works. In Section 8 we
briefly discuss the implementation of an explanation and
debugging tool. In Section 9 we discuss related work. We
conclude in Section 10.

2. THE PROBLEMS
To provide better support for a programmer with an un-

typable program, we first have to analyse why current type
error messages are unsatisfactory and what makes giving
more helpful information so hard.

The Meaning of Type Error Messages.The type check-
ers of most systems for Hindley-Milner based programming
languages report a type error in the form of an expression
and two contradictory types for it. Hugs reports a type and
another type which ‘does not match’ the first. GHC reports
an ‘expected’ type and an ‘inferred’ type. It is unclear what
these descriptions mean and how the types relate to the ex-
pression and each other.

The types in the error messages contain type variables.
They do not mean that the given expressions are or should
be polymorphic but that their types are or should be in-
stances of the given types. The occurrence of the same type
variable in several types means that this type variable has to
be replaced by the same type in all these types. These type

variables introduced by the type checker are so called non-
generic type variables that scope over the whole program
in contrast to the generic type variables occurring in type
annotations in a program. These two sorts of type variables
are rather confusing.

The Error Location.The following program highlights part
of the problem:

reverse [] = []

reverse (x:xs) = reverse xs ++ x

last xs = head (reverse xs)

init = reverse . tail . reverse

rotateR xs = last xs : init xs

Hugs gives the following error message:

ERROR (line 7): Type error in application

*** Expression : last xs : init xs

*** Term : last xs

*** Type : [a]

*** Does not match : a

*** Because : unification would give

infinite type

The Glasgow Haskell compiler says:

Occurs check: cannot construct the infinite type:

a = [a]

Expected type: [[[a]]]

Inferred type: [[a]]

In the first argument of ‘init’, namely ‘xs’

In the second argument of ‘:’, namely ‘init xs’

The two Haskell systems give different expressions at which
type checking fails. Unfortunately both expressions are far
away from the source of the error: The right hand side of the
second equation of reverse must be reverse xs ++ [x] to
define the desired function that reverses the order of the el-
ements of a list. The example highlights a problem of poly-
morphism: Because of the flexibility of polymorphism an
erroneous expression is often still well-typed. Fortunately,
the type of the erroneous expression is usually different from
the type intended for this part by the programmer. Thus
the usage of the expression usually leads to a type error in
its context.3

The reverse example is contrived. If we had written the
intended type of reverse in the program, then we would
have obtained a more precise error message. However, too
many type annotations are practically undesirable and the
Hindley-Milner type system was designed to make them un-
necessary. The right-hand side of a function definition usu-
ally does not contain type annotations and is often large
enough to suffer from the polymorphism problem. So, be-
cause of the sparseness of type annotations, the type checker
seldom knows the intended type for an expression which it
could compare with the inferred type.

We conclude that in general a type checker cannot pin-
point exactly the source of a type error but only report an
inconsistency of types at some program location.

3The two occurrences of the word ‘usually’ in the two last
sentences indicate that an erroneous program may be well-
typed. This limitation of type systems is not the subject of
this paper.

Explanation of Types.Of the types reported in an error
message at least one does not agree with the type intended
by the programmer. Hugs reports that in the definition of
rotateR the expression last xs has type [a] which does
not match the type a. The programmer intends xs to be a
list, so the reported type [a] seems reasonable. But why
should its type also be an instance of the type a? Similarly,
the Glasgow Haskell compiler reports for the last occurrence
of xs in the definition of rotateR the types [[[a]]] and
[[a]]. The programmer actually intends xs to be a list
of arbitrary elements. So how did the type checker obtain
the types [[[a]]] and [[a]]? At the heart of a tool for
explaining type errors must be a tool for explaining the types
of program fragments. However, already for a well-typed
expression it is rather difficult to explain its type.

The Type Inference Tree.A type system is formally de-
fined through type rules. These define the valid type judge-
ments. A type judgement ∆ ⊢ M :: τ consists of an expres-
sion M , an environment ∆ that associates each free variable
of M with a type, and the type τ the expression M has in
∆. A type judgement is valid iff there exists a type infer-
ence tree for it. Figure 1 shows such a tree. (We assume the
literal 3 not to be overloaded but to be just of type Int.)

The fact that we have to split the tree into subtrees to
fit it onto the page underlines that it is impossible to un-
derstand the tree as a whole. We can only look at a small
part at a time. We can verify the correctness of the tree by
verifying that each inference step is an instance of a type
rule. However, an inference step does not provide an expla-
nation. For simplicity we assume that the types of null and
(:) are globally known, but consider the tree leaves with
the judgements for xs and ys. Why are both of type [Int]?
Why not any other type and why the same?

Furthermore, the programmer may intend the expression
λxs. λys. . . . to have a more general type, for example the
type [a]->[Int]->([Int],[a]). He wants to apply the ex-
pression to a list of Chars and a list of Ints. Only for the
more general type this would be well-typed. However, a
Hindley-Milner proof tree cannot prove that there exists no
more general type.

Algorithm W. Most type explanation systems that have
been proposed are based on Milner’s type checking algo-
rithm W. The algorithm recursively traverses an expression
to determine its principal type. It implicitly constructs an
inference tree. Figure 2 visualises some intermediate states
of W’s construction of an inference tree for our example. We
do not discuss the details here but note that for each as yet
unknown type the algorithm introduces a new type variable.
For example, before state A it introduces the variables b and
c. When subtrees are combined, type variables may have to
be substituted. For example, to reach state F the type [Int]
has to be substituted for d to make the type of the function
and the type of the argument equal. So type variables scope
over the whole tree that has yet been constructed and the
algorithm may modify the tree that has already been con-
structed at any later time. Furthermore, at state C the al-
gorithm uses the type that was already inferred for xs when
traversing another subtree. These global modifications and
flow of information between subtrees make it very hard to
follow algorithm W. W can be efficiently implemented but
is not suitable for explaining types.

3. COMPOSITIONAL EXPLANATIONS
In the previous section we argued that a type explana-

tion cannot be based on an inference tree with global de-
pendencies or a type checking algorithm that modifies type
variables with global scope. To be comprehensible, an ex-
planation must consist of small manageable units, each of
which is meaningful on its own. Hence we claim that a type
explanation must be compositional. That is, the whole ex-
planation must have a tree structure where the types at each
node are determined uniquely by the types of the node’s chil-
dren. Such an inference step is a small explanation unit and
only refers to the explanations of the child nodes.

Principal Typings.Let us consider the expression f x y.
Without knowing anything else about the variables f , x and
y we can infer that f must be a function which takes two
arguments, the types of these arguments must equal the
types of x and y, and the type of the whole expression is the
result type of the function f . We can express this concisely
as follows:

Expression: f x y

Type : a

with f :: b -> c -> a

x :: b

y :: c

Let us do the same for the expression null xs appearing in
the example of the last section. We know that the predefined
function null has type [a] → Bool. Hence we can infer

Expression: null xs

Type : Bool

with xs :: [a]

Similarly for the subexpression (xs, ys):

Expression: (xs,ys)

Type : (a,b)

with xs :: a

ys :: b

Type variables express dependencies between types. The
type of an expression and the types of its variables belong
together, separately they are meaningless.

Definition 1. A type environment ∆ plus a type τ is a
typing, written ∆ ⊢ τ . A type judgement ∆ ⊢ M :: τ states
that M has type τ in ∆, that is, ∆ ⊢ τ is a typing for the
expression M .

We just inferred typings of expressions:

f x y has typing {f :: b → c → a, x :: b, y :: c} ⊢ a

null xs has typing {xs :: [a]} ⊢ Bool

(xs, ys) has typing {xs :: a, ys :: b} ⊢ (a, b)

Note, however, that the type inference tree of Figure 1
uses a different typing for the expression (xs, ys). But that
typing is an instance of the typing which we inferred. We in-
ferred the principal, that is, most general, typing for (xs, ys).

Definition 2. A typing ∆′ ⊢ τ ′ is an instance of a typing
∆ ⊢ τ iff there is a type substitution σ with ∆′ = ∆σ and
τ ′ = τσ. A typing ∆ ⊢ τ is principal for an expression M
iff it is a typing for M and all typings for M are instances
of ∆ ⊢ τ . For comparison, a type τ is principal for an

expression M and a type environment ∆ iff M has type τ in
∆ and all types τ ′ with ∆ ⊢ M :: τ ′ are instances of τ .

(i)
{} ⊢ null :: ∀a. [a] → Bool

{} ⊢ null :: [Int] → Bool {xs :: [Int]} ⊢ xs :: [Int]

{xs :: [Int] ⊢ null xs :: Bool

(ii) {xs :: [Int]} ⊢ xs :: [Int] {ys :: [Int]} ⊢ ys :: [Int]

{xs :: [Int], ys :: [Int]} ⊢ (xs, ys) :: ([Int], [Int])

(iii)
{} ⊢ 3 :: Int

{} ⊢ (:) :: ∀a. a → [a] → [a]

{} ⊢ (:) :: Int → [Int] → [Int]

{} ⊢ (3 :) :: [Int] → [Int] {ys :: [Int]} ⊢ ys :: [Int]

{ys :: [Int]} ⊢ 3 : ys :: [Int] {xs :: [Int]} ⊢ xs :: [Int]

{xs :: [Int], ys :: [Int]} ⊢ (3 : ys, xs) :: ([Int], [Int])

(i)
...

{xs :: [Int]} ⊢ null xs :: Bool

(ii)
...

{xs :: [Int], ys :: [Int]} ⊢ (xs, ys) :: ([Int], [Int])

(iii)
...

{xs :: [Int], ys :: [Int]} ⊢ (3 : ys, xs) :: ([Int], [Int])

{xs :: [Int], ys :: [Int]} ⊢ if null xs then (xs, ys) else (3 : ys, xs) :: ([Int], [Int])

{xs :: [Int]} ⊢ λys. if null xs then (xs, ys) else (3 : ys, xs) :: [Int] → ([Int], [Int])

{} ⊢ λxs. λys. if null xs then (xs, ys) else (3 : ys, xs) :: [Int] → [Int] → ([Int], [Int])

For space reasons the subtrees (i), (ii) and (iii) are displayed separately above the tree.

Figure 1: A Hindley-Milner Type Inference Tree

{} ⊢ null :: ∀a. [a] → Bool

{} ⊢ null :: [b] → Bool {xs :: c} ⊢ xs :: c

State A: Introduction of b and c

{} ⊢ null :: ∀a. [a] → Bool

{} ⊢ null :: [b] → Bool {xs :: [b]} ⊢ xs :: [b]

{xs :: [b]} ⊢ null xs :: Bool

State B: Substitution [[b]/c]

{xs :: [b]} ⊢ xs :: [b] {ys :: d} ⊢ ys :: d

{xs :: [b], ys :: d} ⊢ (xs, ys) :: ([b], d)

State C: Introduction of d

{} ⊢ 3 :: Int

{} ⊢ (:) :: ∀a. a → [a] → [a]

{} ⊢ (:) :: e → [e] → [e]

State D: Introduction of e

{} ⊢ 3 :: Int

{} ⊢ (:) :: ∀a. a → [a] → [a]

{} ⊢ (:) :: Int → [Int] → [Int]

{} ⊢ (3 :) :: [Int] → [Int] {ys :: d} ⊢ ys :: d

State E: Substitution [[Int]/e]

{xs :: [b]} ⊢ xs :: [b] {ys :: [Int]} ⊢ ys :: [Int]

{xs :: [b], ys :: [Int]} ⊢ (xs, ys) :: ([b], [Int])

{} ⊢ 3 :: Int

{} ⊢ (:) :: ∀a. a → [a] → [a]

{} ⊢ (:) :: Int → [Int] → [Int]

{} ⊢ (3 :) :: [Int] → [Int] {ys :: [Int]} ⊢ ys :: [Int]

{ys :: [Int]} ⊢ 3 : ys :: [Int]

State F: Substitution [[Int]/d]

...
...

{ys :: [Int]} ⊢ 3 : ys :: [Int] {xs :: [b]} ⊢ xs :: [b]

{xs :: [b], ys :: [Int]} ⊢ (3 : ys, xs) :: ([Int], [b])

State G

Figure 2: Some Intermediate Steps of Type Inference Tree Construction by Algorithm W

A principal type is meaningless without a fixed type en-
vironment. In contrast, an expression determines its princi-
pal typing uniquely up to type variable renaming. Hence a
principal typing is a meaningful unit of information about
an expression.

An Inference Step.We have principal typings for null xs
and (xs, ys) The following typing is also principal:

Expression: (3:ys,xs)

Type : ([Int],a)

with xs :: a

ys :: [Int]

How do we determine from these principal typings the
principal typing for if null xs then (xs, ys) else (3 : ys, xs)?
First, we arrange the three typings in three columns side by
side:

Expressions: null xs (xs,ys) (3:ys,xs)

Types : Bool (b,c) ([Int],d)

with xs [a] b d

ys c [Int]

We renamed the type variables of the second and third
typing (the last two columns). The type variables express
dependencies within a typing, but they are unrelated to type
variables in other typings. For the if-then-else construct the
type of the first argument must be Bool and the types of the
second and third argument must be equal. We substitute
[Int] for b, and c for d:

Expressions: null xs (xs,ys) (3:ys,xs)

Types : Bool ([Int],c) ([Int],c)

with xs [a] [Int] c

ys c [Int]

Also the types of the variables xs and ys have to agree.
Hence we substitute [Int] for c and Int for a:

Expressions: null xs (xs,ys) (3:ys,xs)

Types : Bool ([Int],[Int]) ([Int],[Int])

with xs [Int] [Int] [Int]

ys [Int] [Int]

In short, we applied the most general substitution that
gives the required type equalities. We obtain the principal
typing:

Expression: if null xs then (xs,ys) else (3:ys,xs)

Type : ([Int],[Int])

with xs :: [Int]

ys :: [Int]

Figure 3 shows the whole type inference tree of principal
typings for our example. Type variables are local to a single
principal typing. The typings at the leaves of the derivation
tree are trivial and independent of the remaining tree. The
conclusion of an inference step is uniquely determined by its
premises. In a nutshell: the tree is compositionally defined.

A Type Error. For an untypable expression a type inference
step will fail. In that case an error message can report the
conflicting typings:

Type error in: (map toUpper) . (++)

because

Expressions: (.) (map toUpper) (++)

Types: (a->[Char])->a->[Char] [b]->[b]->[b]

This error message is surprisingly similar to the one given
by the Glasgow Haskell compiler. However, all the infor-
mation in our error message has a well-defined meaning.
The function (.) (map toUpper) has the principal typing
{} ⊢ (a → [Char]) → a → [Char] and its argument (++)
has the principal typing {} ⊢ [b] → [b] → [b] (here we assume
the types of map, toUpper etc. as given). The underlining
of types emphasises that the type of function and argument
do not fit together. The remaining parts of the example,
especially the arguments xs and ys, do not contribute to the
error. If the programmer does not understand the principal
typing for an expression, he/she can ask for more explana-
tions as we will discuss in subsequent sections.

Polymorphic and Monomorphic Variables.Type infer-
ence for the Hindley-Milner system is in general not as easy
as we have so far suggested. Consider the expression x x.
According to the previous exposition it gives a type error:

Type error in: x x

because

Expressions: x x

Types : a b

with x a b

The type of the first x needs to be a function, that is
c → d. The type of the second x must be equal to the
argument type of the function. On the other hand both
occurrences of x must have the same type.

However, there exists infinitely many typings for x x, for
example:

{x :: ∀a.a} ⊢x x :: ∀a.a

{x :: ∀a.a → a} ⊢x x :: ∀a.a → a

The point is that x can be a polymorphic variable. Then
it can be used at different occurrences with different types.
In the previous section we actually used the polymorphic
variable null but we did not consider the possibility that
any of the variables we listed in the type environments of
the typings is polymorphic.

The expression x x is given in [6] as an example for an ex-
pression for which no principal typing exists in the Hindley-
Milner type system. The Hindley-Milner type system only
has principal types, which are not sufficient for a compo-
sitional type explanation. So how can we get around this
problem? The Hindley-Milner type system clearly distin-
guishes between polymorphic variables and monomorphic
variables. Variables defined on the top-level of a program or
within a let are polymorphic. The type of a polymorphic
variable may contain ∀-quantifiers and then the variable may
be used with different types. All other variables, basically
those representing function arguments, are monomorphic.
The type of a monomorphic variable may contain type vari-
ables, but the monomorphic variable may only be used with
the same type at each occurrence.

Principal Monomorphic Typings.The type environments
in all our previous examples contain only monomorphic vari-
ables. We assumed that the types of the polymorphic vari-
ables and data constructors such as null and (:) were im-
plicitly globally known. Because new polymorphic variables
can be defined in a program, possibly even within a let

with only a limited scope, we need to make the types of
polymorphic variables explicit in a formal type system. We

(i) {} ⊢ null :: [a] → Bool {xs :: b} ⊢ xs :: b

{xs :: [a] ⊢ null xs :: Bool
[[a]/b]

(ii) {xs :: a} ⊢ xs :: a {ys :: b} ⊢ ys :: b

{xs :: a, ys :: b} ⊢ (xs, ys) :: (a, b)

(iii)

{} ⊢ 3 :: Int {} ⊢ (:) :: a → [a] → [a]

{} ⊢ (3 :) :: [Int] → [Int]
[[Int]/a]

{ys :: a} ⊢ ys :: a

{ys :: [Int]} ⊢ 3 : ys :: [Int]
[[Int]/a]

{xs :: a} ⊢ xs :: a

{xs :: a, ys :: [Int]} ⊢ (3 : ys, xs) :: ([Int], a)

(i)
...

{xs :: [a]} ⊢ null xs :: Bool

(ii)
...

{xs :: b, ys :: c} ⊢ (xs, ys) :: (b, c)

(iii)
...

{xs :: d, ys :: [Int]} ⊢ (3 : ys, xs) :: ([Int], d)

{xs :: [Int], ys :: [Int]} ⊢ if null xs then (xs, ys) else (3 : ys, xs) :: ([Int], [Int])

{xs :: [Int]} ⊢ λys. if null xs then (xs, ys) else (3 : ys, xs) :: [Int] → ([Int], [Int])

{} ⊢ λxs. λys. if null xs then (xs, ys) else (3 : ys, xs) :: [Int] → [Int] → ([Int], [Int])

[Int/a, [Int]/b
, [Int]/c, [Int]/d]

Figure 3: A Type Inference Tree of Principal Local Typings

introduce a second, separate environment for the types of
polymorphic variables. The idea is that the type checker
takes as input an expression together with an environment
for the polymorphic variables. If the types are not inconsis-
tent, then the type checker produces as output a type for
the expression and a type environment for the monomorphic
variables which occur freely in the expression. This type and
type environment will be the most general of all types and
type environments that give a valid type judgement, that is,
it is a principal monomorphic typing.

4. THE TYPE SYSTEM
Following the preceding informal introduction we now de-

fine our type system of principal monomorphic typings.

The Language.Because we aim for a tool for real programs
we do not use the classical λ-calculus plus let. Instead, our
language uses the main features of functional languages. All
subsequent examples are written in the language.

The syntax is given in Figure 4. For type checking pur-
poses we can define patterns to be equal to expressions, but
they shall not contain the let construct and in practice they
will have to meet more restrictions. An equation consists of
a left-hand side expression and a right-hand side expression,
where the defined variable appears first on the left-hand side.
A definition consists of one or more equations for the same
variable. A program is a sequence of definitions. A defi-
nition may be recursive, but for simplicity we do not allow
mutual recursion. Hence a polymorphic variable can only
be used in its own and subsequent definitions.

∀ is Super¤uous.The Hindley-Milner type system uses
the ∀-quantifier in types of polymorphic variables. For ex-
ample, the variable null has type ∀a.[a] → Bool. In our
type system we always regard typings instead of types. We
can express polymorphism in a typing, without using the ∀-
quantifier. The polymorphic variable null has the principal
typing {} ⊢ [a] → Bool. The fact that null does not occur in

the domain of the type environment {} indicates that null
is polymorphic. In contrast, a principal typing {ys :: a} ⊢ a
for a variable ys indicates that ys is monomorphic. We will
see that ys cannot have several different types in an expres-
sion, because at each inference step the types of all variables
in the type environments are unified.

So in our type system we do not use the ∀-quantifier at
all. This keeps the type system simple. In particular, a type
variable always scopes over the typing in which it appears. It
is furthermore useful in practice, because no functional lan-
guages based on the Hindley-Milner type system uses the
∀-quantifier for types of polymorphic variables. A type sig-
nature

null :: [a] -> Bool

in a functional language can simply be interpreted as speci-
fying for null the typing

{} ⊢ [a] → Bool

For every polymorphic variables with a type signature the
type environment of the typing is empty. However, not for
every polymorphic variables is this type environment empty,
as we will demonstrate later in a discussion of restricted
polymorphism.

Type Judgements.The environments for monomorphic and
polymorphic variables are separate. Whereas the former as-
sociate monomorphic variables with types, the latter asso-
ciate polymorphic variables with typings(!). A monomor-
phic (type) environment ∆ is a mapping from variables to
types. A (monomorphic) typing ∆ ⊢ τ is a pair of a mono-
morphic type environment and a type. A polymorphic (typ-
ing) environment Γ is a mapping from variables to typings.
We often write an environment as a set of pairs. dom(Γ)
denotes the domain of the environment Γ. The + operator
combines two environments such that the right supersedes
the left. The ∪ operator combines two environments under
the assumption that they agree on the common domain. Let
V be a set of variables. Γ \ V denotes the environment that

variable x, y, f
Int literal n := . . . | −2 | −1 | 0 | 1 | 2 | . . .
data constructor c := (:) | [] | True | False | . . .
expression M, N := n | c | x | M N | let bind in M
pattern P := M
equation for variable f eq(f) := f P1 . . . Pi = M ;
definition of variable f def (f) := eq1(f) . . . eqi(f);
program prog := def

1
(f1) . . . def i(fi);

type variable α
type constructor T := Int | Bool | [] | . . .
type τ := α | τ1 → τ2 | T τ1 . . . τi

Figure 4: Syntax of the Language

monomorphic (type) environment ∆ := {x1 :: τ1, . . . , xi :: τi}
(monomorphic) typing ∆ ⊢ τ
polymorphic (type) environment Γ := {x1 7→ (∆1 ⊢ τ1), . . . , xi 7→ (∆i ⊢ τi)}
type judgements Γ; ∆ ⊢ M :: τ, Γ; ∆ ⊢ eq(f), Γ1; Γ2; ∆ ⊢ def (f), Γ; ∆ ⊢ prog

Figure 5: Type Judgements and their Components

Int
Γ; {} ⊢ n :: Int

Constructor
Γ(c) = {} ⊢ τ

Γ; {} ⊢ c :: τ
PolyVar

Γ(x) = ∆ ⊢ τ

Γ;∆ ⊢ x :: τ
MonoVar

x /∈ dom(Γ) α new

Γ; {x :: α} ⊢ x :: α

Application
Γ; ∆1 ⊢ M :: τ1 Γ; ∆2 ⊢ N :: τ2

Γ;∆ ⊢ M N :: τ4

(∆, τ3 → τ4) = U({∆1, ∆2}, {τ1, τ2 → α}) α new

Let
Γ; Γ′; ∆1 ⊢ def (f) Γ + Γ′; ∆2 ⊢ M :: τ ′

Γ; ∆ ⊢ let def (f) in M :: τ
(∆, τ) = U({∆1, ∆2}, {τ

′})

Equation
Γ \ vars({P1, . . . , Pi}); ∆1 ⊢ f P1 . . . Pi :: τ1 Γ \ vars({P1, . . . , Pi}); ∆2 ⊢ M :: τ2

Γ; ∆ \ vars({P1, . . . , Pi}) ⊢ f P1 . . . Pi = M
(∆, τ) = U({∆1, ∆2}, {τ1, τ2})

Definition
Γ \ {f}; ∆1 ⊢ eq1(f) . . . Γ \ {f}; ∆i ⊢ eqi(f)

Γ; {f 7→ reduce(∆′ ⊢ ∆(f))}; ∆′ ⊢ eq1(f) . . . eqi(f);

∆ = U({∆1, . . . , ∆i})
∆′ = ∆ \ {f}

Program
Γ; Γ1; ∆1 ⊢ def

1
(f1) Γ ∪ Γ1; Γ2; ∆2 ⊢ def

2
(f2) . . . Γ ∪ Γ1 ∪ . . . ∪ Γi−1; Γi; ∆i ⊢ def i(fi)

Γ ∪ Γ1 ∪ . . . ∪ Γi; ∆ ⊢ def
1
(f1) . . . def i(fi);

∆ = U({∆1, . . . , ∆i})

Figure 6: The Type System of Principal Monomorphic Typings

U({∆1, . . . , ∆i}) = let αx new with x ∈ dom(∆1) ∪ . . . ∪ dom(∆i)
σ = mgu({αx = ∆(x) | ∆ ∈ {∆1, . . . , ∆i}, x ∈ dom(∆)})

in ∆1σ ∪ . . . ∪ ∆iσ

U({∆1, . . . , ∆i}, {τ1, . . . , τj}) = let α new and αx new with x ∈ dom(∆1) ∪ . . . ∪ dom(∆i)
σ = mgu({αx = ∆(x) | ∆ ∈ {∆1, . . . , ∆i}, x ∈ dom(∆)} ∪ {α = τ | τ ∈ {τ1, . . . , τj}})

in (∆1σ ∪ . . . ∪ ∆iσ, τ1σ)

Figure 7: Unification of Type Environments and Types

reduce(∆ ⊢ τ) = (∆ \ {x ∈ dom(∆) | tyVars(∆(x)) ∩ tyVars(τ) = ∅} ⊢ τ

Figure 8: Reduction of a Typing

agrees with Γ except that it is not defined for the variables
in V .

Figure 5 shows the syntax of typings, type environments
and the four sorts of type judgements for the various pro-
gram fragments. The type judgements for equations, defini-
tions and programs do not have a type, only environments
and a program fragment. The type judgement for definitions
has two polymorphic environments. The first is for the poly-
morphic variables that can be used within the group and the
second is for the polymorphic variable defined by the group.

Type Rules.The type rules of our type system of princi-
pal monomorphic typings are given in Figure 6. Variables
in the domain of the polymorphic environment are poly-
morphic, all other variables are monomorphic. Note that
within its own definition a variable is monomorphic. In rule
Equation the variables occurring in the patterns have to be
removed from environments to achieve correct variable scop-
ing, similarly the defined variable has to be removed in rule
Definition. In rules Let and Program the combination
of environments with + assures correct variable scoping. In
rule Program Γ assigns typings to data constructors.

Uni£cation of Environments and Types.The unification
of monomorphic environments and types is defined in Fig-
ure 7. The function U uses a function mgu which determines
the most general unifier of a set of type equations. Such a
unification function is defined in Section 11.2.2 of [12]. Envi-
ronments are unified by unifying the types for each variable.
The unified environment has types for all variables that oc-
cur in any of the input environments.

Type Variables.Type variables always scope over a typing,
no matter if the typing is within a polymorphic environment
or part of a type judgement. For unification typings are
split apart into monomorphic environments and types. Be-
cause type variables from different typings are unrelated, the
type variables of typings that are unified have to be disjoint.
To ensure disjointness we demand by the common informal
statement ‘α new’ in the type rules that every such type vari-
able α is distinct from all other type variables introduced in
the type inference tree. This requirement of globally unique
type variables is easy to implement efficiently.

Alternatively, we could require disjointness in the premises
of rules and add a rule for renaming type variables in typ-
ings. This approach makes the scope of type variables ex-
plicit in the type system, but it also leads to a larger type
system that is further away from an efficient implementa-
tion.

Restricted Polymorphism.Consider the program:

f xs = let g y = y : xs

in g 1 ++ g True

For the local definition we obtain the type judgement:

{(++) 7→ . . . }; {g 7→ ({xs :: [a]} ⊢ a → [a])}

⊢ g y = y : xs

Although g is a polymorphic variable after the in, it can-
not be instantiated to different types there. We can infer

{(++) 7→ . . . , g 7→ ({xs :: [a]} ⊢ a → [a])}; {xs :: [Int]}

⊢ g 1 :: [Int]

and

{(++) 7→ . . . , g 7→ ({xs :: [a]} ⊢ a → [a])}; {xs :: [Bool]}

⊢ g True :: [Bool]

but the type inference step for g 1 ++ g True requires
unification of the types of xs and hence fails. The program
is rightly not typable.

The monomorphic variable xs in the monomorphic envi-
ronment of g expresses that the type of the variable g is not
polymorphic in a. For programs such as this example a poly-
morphic environment must associate polymorphic variables
with typings, not just types. There is however no point for
such a typing to contain a monomorphic variable whose type
does not contain any type variable of the type of the typ-
ing. Such superfluous monomorphic variables are removed
by the function reduce defined in Figure 8 and used in rule
Definition.

Type Inference and the Hindley-Milner system.We ob-
tained our type system of principal monomorphic typings by
rewriting John Mitchell’s type checking algorithm PTL ([12],
Section 11.3.3) as a type inference system and extending it
to our language. Mitchell uses PTL to expose the strong
relationship between type checking for the simply typed λ-
calculus and for the Hindley-Milner type system.

Our type rules can be read as a type checking algorithm.
The (first) polymorphic environment and the program frag-
ment are the input. The remaining components of a type
judgement, which may be a second polymorphic environ-
ment, the monomorphic environment and a type, are the
output.

For example, for a polymorphic environment Γ and an
application M N the algorithm recursively calls itself twice.
One call with Γ and M as input determines the principal
monomorphic typing ∆1 ⊢ τ1, and the other call with Γ and
N as input determines the principal monomorphic typing
∆2 ⊢ τ2. The two calls are independent. Finally, the uni-
fication function U combines the two typings to obtain the
principal monomorphic typing ∆ ⊢ τ4 for M N and Γ.

Definition 3. A (monomorphic) typing ∆ ⊢ τ is principal

for an expression M and a polymorphic environment Γ iff
Γ; ∆ ⊢ M :: τ and all (monomorphic) typings ∆′ ⊢ τ ′ with
(Γ′)∀ ∪ ∆′ ⊢HM M :: τ ′ are instances of ∆ ⊢ τ . The second
type judgement is a judgement of the Hindley-Milner type
system and (·)∀ translates a polymorphic environment into
an environment with ∀-quantified types.

We claim that if (Γ)∀ ∪ ∆′ ⊢HM M :: τ ′, then a type
judgement Γ; ∆ ⊢ M :: τ is provable in our type system
and ∆ ⊢ τ is principal for M and Γ. Theorems 11.3.5,
11.3.9, 11.3.10 and 11.3.13 of [12] prove similar properties
for algorithm PTL. An adaption of Mitchell’s proofs should
be routine but is outside the scope of this paper.

5. THE EXPLANATION GRAPH
Our type system has principal monomorphic typings, but

the polymorphic environment still creates global dependen-
cies in a type inference tree. The typing for the use of a
polymorphic variable is a leaf in the inference tree. To un-
derstand why the polymorphic variable has the given typing
we have to search the inference tree for the place where the

typing is added to the polymorphic typing environment. So
the inference tree is not compositional.

The solution is simple: We copy the whole inference tree
of the definition of a polymorphic variable to every use oc-
currence of this variable in the tree, so that the typing for
a used polymorphic variable is no longer a leaf in the tree.
Consider the expression id 3 where

id x = x

From the non-compositional derivation tree

Γ; {} ⊢ id :: a → a Γ; {} ⊢ 3 :: Int

Γ; {} ⊢ id 3 :: Int

we construct the tree

{id :: b} ⊢ id :: b {x :: a} ⊢ x :: a

{id :: a → a, x :: a} ⊢ id x :: a {x :: a} ⊢ x :: a

{id :: a → a} ⊢ id x = x

{} ⊢ id :: a → a {} ⊢ 3 :: Int

{} ⊢ id 3 :: Int

This explanation tree is not completely syntax directed as
the type inference tree, but it is compositional. The poly-
morphic environment is no longer needed. We also collapse
trivial inference steps for definitions with a single equation.
The typing for a data constructor is still a leaf of the tree,
but it may be useful to put the definition of the data type
above the typing in the tree, because it implicitly declares
the type of the data constructor.

Copying the tree for every definition of a polymorphic
variable to every use of it is a waste of space. So we share
such subtrees and construct an acyclic explanation graph
instead of an explanation tree. Sharing is also useful to tell
a programmer who is navigating through the explanation
graph that he/she already visited a certain subgraph, even
if he/she did so by coming from a different use point of a
polymorphic variable.

6. NAVIGATION THROUGH THE GRAPH
We defined the graph to be compositional so that each

inference step is meaningful on its own. In practice the pro-
grammer will only be interested in a fraction of the inference
steps of the explanation graph. The programmer under-
stands typings best by interactively navigating through the
graph.

At the Level of Program Fragments.Type checking our
example program from Section 2 gives the following error
message:

Type error in: (last xs) : (init xs)

because

Expressions: (:) (last xs) init xs

Types : [a]->[a] [b]

with xs [[a]] [[[b]]]

The typings of both subexpressions are surprising. Why
is xs a list of lists in the left subexpression and even a three
times nested list in the right one? It should just be a list
with arbitrary elements.

The central point in locating errors is that the type of
xs in the typings of the subexpressions (:) (last xs) and
init xs may well be more general than the type we intend

xs to have. However, our intended types should be an in-
stance of the types given in the typings. The fact that this
is not the case is a clear indication of an error.

Hence we ask for an explanation of the first typing:

Expression: (:) (last xs)

Type : [a]->[a]

with xs [[a]]

because

Expressions: (:) last xs

Types: a->[a]->[a] b

with xs [[b]]

Here the typing for (:) is as intended, but not that of xs
in the typing for last xs. So we demand an explanation:

Expression: last xs

Type : b

with xs [[b]]

because

Expressions: last xs

Types : [[b]]->b a

with xs a

We intend the function last to have type [b]->b, which
is not an instance of [[b]]->b. We enquire further:

Function : last

Type : [[a]]->a

because of its definition

Lhs/Rhs : last xs head (reverse xs)

Types : c a

with last b->c

xs b [[a]]

The left-hand side of the equation of last is correct, but
the type of xs in the typing for the right-hand side contra-
dicts our intentions.

At the Level of Polymorphic Variables.Asking for more
explanations will finally lead us to the source of the error.
Unfortunately this search process is long. We can speed
up the search. We only ask for type explanations in terms
of used polymorphic variables, that is, when traversing the
explanation graph we skip the inference steps for all program
fragments but polymorphic variables. Thus we can quickly
locate the erroneous definition. We start again at the type
error:

Type error in: (last xs) : (init xs)

because

last :: [[a]]->a

init :: [[[a]]]->[a]

We intend the types of both polymorphic functions to be
more general. We ask for an explanation of the first one:

last :: [[a]]->a

because

head :: [a]->a

reverse :: [[a]]->[a]

Here the type of head is as intended, but not the type of
reverse. So we ask for an explanation of its type:

reverse :: [[a]]->[a]

because

(++) :: [a] -> [a] -> [a]

The type of the only polymorphic variable that is used
is correct. Hence the error must be in the definition of
reverse.

To determine the exact location of the error we now switch
to explanations at the level of program fragments:

reverse :: [[a]]->[a]

because

Equation: .. [] = [] .. (x:xs) = ..

with reverse [b]->[c] [[a]]->[a]

The expected type of reverse, [a]->[a] is an instance of
the type given in the typing for the first equation, but not
an instance of the type given in the typing for the second
equation. Hence we ask about the second typing:

Equation : .. (x:xs) = ..

with reverse [[a]]->[a]

because

Lhs/Rhs : reverse (x:xs) (reverse xs) ++ x

Types : b [a]

with reverse [c]->b d->[a]

x c [a]

xs [c] d

In the second typing x is a list. Because that is not our
intention, we ask further:

Expression : (reverse xs) ++ x

Type : [a]

with reverse d->[a]

x [a]

xs d

because

Expressions : (++) (reverse xs) x

Types : [b]->[b] c

with reverse a->[b]

x c

xs a

Here both typings are reasonable. Hence we have located
the error: The expression (reverse xs) ++ x is wrong. By
comparing our intentions with the definition of reverse and
the given typings we realise that the correct expression is
(reverse xs) ++ [x].

Navigation at different levels enables us to avoid unneces-
sary detail and to quickly reach the source of a type error.
We usually start at the high level, regarding only polymor-
phic functions, and later move to individual inference steps
at program fragment level. It is also conceivable to have
an even finer level, which shows the unification process of a
type inference step in several stages.

7. ALGORITHMIC DEBUGGING
The problem that a type checker notices type inconsis-

tencies often far from the sources of the errors reminds of
the similar problem for run-time errors, which also usually
are observed far from the source. Algorithmic debugging
was introduced by Shapiro to diagnose wrong and missing
answers in Prolog [18]. Later algorithmic debugging was
successfully applied to locate the sources of run-time errors
in functional and other languages [15, 5]. The principle of
algorithmic debugging is not linked to run-time errors. It
is quite clear from [13] that algorithmic debugging can be
applied to any propositions such as evaluation judgements
or type judgements which are defined by a compositional
tree (or acyclic graph). At every tree node is a proposition

which can be correct or erroneous. A node is the source of
an error, if its proposition is erroneous but the propositions
of all its children are correct. Algorithmic debugging con-
sists of constructing a tree with an erroneous root when we
observe erroneous behaviour and then locating in the tree
a source of this error. To determine if a node proposition
is erroneous, an oracle is used. Usually the oracle is the
programmer, who is asked questions about the validity of
propositions.

Here is an example session with user input (y/n) in italics:

Type error in: (last xs) : (init xs)

last :: [[a]]->a

Is intended type an instance? (y/n) n

head :: [a]->a

Is intended type an instance? (y/n) y

reverse :: [[a]]->[a]

Is intended type an instance? (y/n) n

(++) :: [a] -> [a] -> [a]

Is intended type an instance? (y/n) y

At this point the system knows that the source of the
error is in the definition of reverse and starts asking about
typings of fragments of the definition.

reverse :: [b]->[c]

Is intended type an instance? (y/n) y

reverse :: [[a]]->[a]

Is intended type an instance? (y/n) n

The system could actually know the answer to this ques-
tion from the third question.

reverse (x:xs) :: b

reverse :: [c]->b

x :: c

xs :: [c]

Are intended types an instance? (y/n) y

Note that equal type variables of separate types must be
instantiated equally to obtain the intended types.

(reverse xs) ++ x :: [a]

reverse :: d->[a]

x :: [a]

xs :: d

Are intended types an instance? (y/n) n

(++) (reverse xs) :: [b]->[b]

reverse :: a->[b]

xs :: a

Are intended types an instance? (y/n) y

Error located. Wrong expression:

(reverse xs) ++ x

The system assumes that the typing for a single variable
such as x is correct. It probably should also never ask about
the types of data constructors such as (:), assuming that
type definitions are correct. It is useful and common practice
in algorithmic debugging that the programmer can declare
a set of variables as correct, as trusted ; for example all vari-
ables defined in some standard libraries. This reduces the
number of questions.

To reduce the number of questions further, it is feasible
that the programmer, instead of just answering no, also in-
dicates which part of which type does not meet his/her in-
tentions. As answer to the question

reverse :: [[a]]->[a]

Are intended types an instance?

the programmer may indicate, that the inner list of the
argument type is erroneous. Hence the second equation of
the definition of reverse must be erroneous and the system
can skip the question

reverse :: [b]->[c]

Is intended type an instance? (y/n)

Similarly, the programmer could indicate that two occur-
rences of the same type variable conflict with his/her inten-
tions of instantiating these occurrences differently.

The questions of algorithmic debugging are shorter than
explanations of typings. Also algorithmic debugging leads
to the source of the error without the programmer having to
understand how typings were inferred. On the other hand
the programmer might want to understand typings. Fur-
thermore, it is in practice much easier to locate an erroneous
typing in a set of typings than to state whether a typing is
an instance of the intended one.

We believe that a combination of algorithmic debugging
together with free navigation through explanations of type
inference steps is desirable. Practical experience is needed
to determine how exactly the programmer can use the ex-
planation tree most effectively.

8. IMPLEMENTATION
We built a prototype type explanation and debugging

tool. For a program in the language defined in Section 6
it constructs the type explanation graph; in case of an unty-
pable program the root of the graph is a type error message.
The tool only has a simple textual user interface but enables
navigation through the explanation graph in various ways.
With the prototype we tested many examples and refined
our ideas. All the examples in this paper were obtained
from the output of the prototype.

The prototype is written in Haskell, based on Mark Jones’
type checker for core Haskell [7]. Although we had to replace
the actual type checking algorithm by our own type checking
algorithm, Jones’ type checker provides a framework and
will be even more useful when we extend the prototype to
handle the Haskell class system.

In the development of our prototype we concentrated on
quick development and ease of modification to explore our
ideas. In return it is not efficient at all. The main effi-
ciency issue for a practical tool is the space required for the
explanation graph. The graph is huge. However, it does
not need to be constructed in full but can be constructed
in small pieces as needed. The type checker may first only
store the typings of polymorphic variables. Then, when the
programmer requires an explanation of some program frag-
ment, this fragment is type checked again and its part of the
explanation graph constructed. Note that the type checking
algorithm of principal monomorphic typings only requires
the typings of all polymorphic variables in scope to type
check a program fragment.

Even an improved implementation of our type checking
algorithm is probably less efficient than a good implemen-
tation of Milner’s W algorithm. Our algorithm introduces

more type variables and performs more unifications. Fur-
thermore, during the construction of the explanation tree
type variables cannot be implemented as mutable variables
for efficient substitution, because all type variables appear
in the explanation graph. However, a combination of our al-
gorithm with algorithm W is possible. Both stop at a type
conflict in the same top-level definition. So W may be used
first and only the erroneous definition has to be type checked
again with our algorithm.

9. RELATED WORK
Many people have investigated methods for improving the

understanding of type errors. Several of these also saw the
need for a type checking algorithm different from W. Bern-
stein and Stark use a type checking algorithm similar to
ours that defines type inference trees that are compositional
without any post-processing [2]. Basically, the algorithm
determines a type for each occurrence of a variable. These
types are unified (or matched in the case of a polymorphic
variable) at the binding occurrence of the variable. The sys-
tem enables the programmer to obtain the types of subex-
pressions; the authors do not take advantage of the compo-
sitionality. The large number of types for a single variable
make types and especially typings hard to understand. To-
gether with Simon and Huch we developed a variation of
this type checking algorithm that reduces the problem [19]:
the algorithm collects several types only for monomorphic
variables. However, we had not yet realised the importance
of compositionality and typings. Yang also outlines a similar
algorithm [24]. He suggests combining it with algorithm M.
M passes more type information downward than W when
traversing an expression. Lee and Yi show that M finds type
conflicts earlier than W [8]. McAdam defines unification of
substitutions to avoid the left-to-right bias of W [9].

Walz and Johnson apply a maximum flow technique to the
set of type equations to determine the most likely source of
an error [21]. Wand [22] modifies the unification algorithm
used by W to keep track for every type variable which pro-
gram fragment forces its instantiation. Beaven and Stansifer
[1] and later Duggan and Bent [4] improve Wand’s method.
Choppella and Haynes present a related method [3]. It might
be possible to transfer some of these approaches to our type
system to guide and reduce the number of questions in al-
gorithmic debugging.

Several people note the importance of an interactive tool.
Soosaipillai developed a tool for a small functional language
that interactively explains each step of algorithm W [20].
Rittri outlines the design of an interactive type error ex-
planation system based on Wand’s method [17]. Together
with Simon and Huch we developed a tool for interactively
viewing the types of subexpressions in their context [19].

McAdam defines a graph with type information to gen-
eralises the approaches of Wand and Bernstein and Stark
[10] Yang and Michaelson investigate psychological aspects
of explaining type errors [25, 26]. Yang, Michaelson, Trinder
and Wells present a manifesto of properties a good type er-
ror reporting system should have [23]. We think our system
has all seven properties.

10. SUMMARY AND FUTURE WORK
We analysed the problem of understanding types and type

errors and identified compositionality as a key to generating

good explanations. A tree of principal types is not compo-
sitional. A tree of principal typings is compositional. In
the Hindley-Milner type system not every expression has
a principal typing, but we noticed that Mitchell’s type al-
gorithm PTL implicitly defines a type system of principal
monomorphic typings. From the type inference tree of this
type system we construct a compositional acyclic type expla-
nation graph. Each inference step of the graph is uniquely
determined by the premises and can hence be understood on
its own. An explicit ∀-quantifier or generic and non-generic
type variables are unnecessary. We demonstrated how in-
teractive navigation of the explanation graph assists under-
standing types and type errors and how algorithmic debug-
ging based on the explanation graph can semi-automatically
locate the source of type errors.

Experiments with our prototype tool are encouraging. The
tool needs a better user interface. To improve orientation
in the explanation graph, we envision the tool to show ex-
planations of typings in one window and the source program
with the relevant program fragments highlighted in a second
window. The programmer should also be free to mark any
program fragment and ask for its typing. A mouse pointer
would ease marking erroneous parts of types.

The polymorphism of the Haskell class system makes type
errors even worse. Just view Hugs’ error message for the tiny
expression (print . div) 42:

ERROR: Illegal Haskell 98 class constraint in

inferred type

* Expression : (print . div) 42

* Type : (Show (a -> a), Integral a) => IO ()

We are currently working on extending our prototype to
handle the Haskell class system. The extension of the ex-
planation graph by classes appears to be straightforward.

Type systems for various kinds of program analysis have
been developed [14]. We speculate that explanation graphs
similar to ours can be constructed for many of these sys-
tems. Such a graph may be a good basis for showing the
inferred information to the developer of the analysis or even
the programmer.

A navigation and algorithmic debugging tool based on
the type explanation graph is no magic wand which turns
all problems with types into wisps of white smoke. But we
claim that it substantially helps to understand types and to
find the cause of most type errors.

Acknowledgements
I thank Simon Thompson, Axel Simon, Frank Huch, Colin
Runciman and the anonymous referees.

11. REFERENCES
[1] M. Beaven and R. Stansifer. Explaining type errors in

polymorphic languages. ACM LOPLAS, 2(4):17–30,
1993.

[2] K. Bernstein and E. Stark. Debugging type errors.
Technical report, Stony Brook, 1995.

[3] V. Choppella and C. T. Haynes. Diagnosis of ill-typed
programs. TR426, Indiana University, 1995.

[4] D. Duggan and F. Bent. Explaining type inference.
Science of Computer Programming, 27(1):37–83, 1996.

[5] P. Fritzson, N. Shahmehri, M. Kamkar, and
T. Gyimothy. Generalized algorithmic debugging and
testing. ACM LOPLAS, 1(4):303–322, Dec. 1992.

[6] T. Jim. What are principal typings and what are they
good for? In POPL ’96, pages 42–53. ACM, 1996.

[7] M. P. Jones. Typing Haskell in Haskell. In Proceedings

of the 1999 Haskell Workshop, pages 1–14.
Universiteit Utrecht, UU-CS-1999-28, 1999.

[8] O. Lee and K. Yi. Proofs about a folklore
let-polymorphic type inference algorithm. ACM

TOPLAS, 20(4):707–723, July 1998.

[9] B. J. McAdam. On the unification of substitutions in
type inference. In IFL’98, LNCS 1595, pages 137–152,
1999.

[10] B. J. McAdam. Generalising techniques for type
debugging. In Trends in Functional Programming,
chapter 6. Intellect, 2000.

[11] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System

Sciences, 17:348–375, Dec. 1978.

[12] J. C. Mitchell. Foundations for Programming

Languages. MIT Press, 1996.

[13] L. Naish. A declarative debugging scheme. Journal of

Functional and Logic Programming, 1997(3), 1997.

[14] F. Nielson, H. R. Nielson, and C. Hankin. Principles

of Program Analysis. Springer, 1999.

[15] H. Nilsson. Declarative Debugging for Lazy Functional

Languages. PhD thesis, Linköping, Sweden, May 1998.

[16] S. L. Peyton Jones, J. Hughes, et al. Haskell 98: A
non-strict, purely functional language.
http://www.haskell.org, Feb. 1999.

[17] M. Rittri. Finding the source of type errors
interactively. In Proceedings of El Wintermöte, pages
273–276. University of Göteborg and Chalmers
University of Technology, 1993. PMG report 73.

[18] E. Y. Shapiro. Algorithmic Program Debugging. MIT
Press, 1983.

[19] A. Simon, O. Chitil, and F. Huch. Typeview: A tool
for understanding type errors. In Draft Proc. of IFL

2000, pages 63–69. RWTH Aachen, 2000. AIB 00-7.

[20] H. Soosaipillai. An explanation based polymorphic
type checker for Standard ML. Master’s thesis, Heriot
Watt University, Edinburgh, Scotland, 1990.

[21] J. A. Walz and G. F. Johnson. A maximum flow
approach to anomaly isolation in unification-based
incremental type inference. In POPL’86, pages 44–57.
ACM, 1986.

[22] M. Wand. Finding the source of type errors. In
POPL’86, pages 38–43. ACM, 1986.

[23] J. Yan, G. Michaelson, P. Trinder, and J. B. Wells.
Improved type error reporting. In Draf Proc. of IFL

2000, pages 71–86. RWTH Aachen, 2000. AIB 00-7.

[24] J. Yang. Explaining type errors by finding the source
of a type conflict. In Trends in Functional

Programming, chapter 7. Intellect, 2000.

[25] J. Yang and G. Michaelson. A visualisation of
polymorphic type checking. Journal of Functional

Programming, 10(1):57–75, 2000.

[26] J. Yang, G. Michaelson, and P. Trinder. How do
people check polymorphic types? In Proceedings of

12th Workshop on Psychology of Programming, pages
67–77. Edizioni Memoria, 2000.

