
 Yinyanghu's blogYinyanghu's blog  

————
 

Miscellaneous Gallery of Life

 Home   Archive   About   My Github   Contact   RSS

Type Inference: Algorithm W and Algorithm UType Inference: Algorithm W and Algorithm U
by Yinyanghu on March 13, 2014
Tagged as: Algorithm, Lambda Calculus, Type Inference, Logic, Polymorphism, Type System, Hindley-Milner, Programming Language.

Type Substitution
A type substitution  maps type variables to types or type variables.

, if 
otherwise, 

The composition of two substitutions is

When apply the substitution  to term ,  is , where  denotes the variables in .

Similarly, when apply the substitution  to context ,  is , where .

Algorithm W

This is the original type inference algorithm of Damas and Miller.

The input to the algorithm is an expression and a typing environment (context) which is a set of assumptions, i.e. bindings of type variables
to type expressions.

The output of the algorithm is a type for the given expression, and a substitution of type expressions for types which results in the overall
type.

, where

 is the context
 is the expression to be typed

 is the substitution of type expressions for type variables which gives the value of 
 is the type of 

Several cases:

if  is a variable, say , then

, where

,
,

and  are fresh variables

if  is an abstraction (  expression), say , then

, where

,
and  is a fresh variable

if  is an application, say , then

, where

,
,

,
and  is a fresh variable

if  is a conditional, say if  then  else , then

, where

,
,

,
,

and 

if  is a fix-point expression, say fix , then

, where

,
,

and  is a fresh variable

if  is a let expression, say let  in , then

, where

,
, where , and  are the free variables in  which do

not appear in .

Algorithm U

Algorithm U solves unification which is what we need to complete our description of Algorithm W.

The input to the algorithm is two type expressions.

The output of the algorithm is a substitution or an error if we cannot find an unification.

, where

 are the type expressions to be unified
 is the substitution if we find an unification of  and 

Also several cases:

if both  and  are base type, then

, if 
otherwise, we find an error

if both  and  are type variables, then

, if 
if  occurs in , or  occurs in , then we find an error: circularity (e.g. )
otherwise, 

if  and  have the same type constructor , i.e.  and , then

, where 

otherwise, we find an error

Damas and Milner proved that Algorithm W computes the principal type scheme for a given expression and context.

According to Cardelli(1985), the order of type inference does NOT affect the final result and it solves the system of type constraints.

This version taken from Field and Harrison, also treats expressions involving the fix-point operator fix.

Reference

Algorithm W

Wikipedia: Hindley-Milner type system

University of Waterloo, CS442 Lecture Note

Lecture 22: Type Inference and Unification

Lecture 26: Type Inference and Unification

☯ Yinyanghu, 2014

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License . 
© 2018 ☯ Yinyanghu - Site proudly generated by Hakyll. The entire source code of this website is available at Github.

Powered by Disqus

0 Comments Yinyanghu's Blog 🔒 Disqus' Privacy Policy "1 Login

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS 

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your sited Do Not Sell My Data⚠

 Favorite(

σ

σ(X) = T (X → T ) ∈ σ
σ(X) = X

σ ∘ γ = {X → σ(T ) ∣ (X → T ) ∈ γ} ∪ {X → T ∣ (X → T ) ∈ σ, X ∉ domain(γ)}

σ T σT [ → σ( )]TXi Xi Xi T

σ Γ σΓ {σ }Ti ∈ ΓTi

W(Γ, expr) = (σ, T )

Γ
expr
σ T
T expr

expr x

W(Γ, expr) = (∅, instantiate(x))

instantiate(x) = [ → ][ → ] ⋯ [ → ]a1 b1 a2 b2 an bn Tx
x : (∀ , , ⋯ , ) ∈ Γa1 a2 an Tx

, , ⋯ ,b1 b2 bn

expr λ λx. f

W(Γ, expr) = ( , X → )σ1 σ1 Tf

W(Γ ∪ {x : X}, f ) = ( , )σ1 Tf
X

expr expr = f g

W(Γ, expr) = ( ∘ ∘ , X)σ3 σ2 σ1 σ3

W(Γ, f ) = ( , )σ1 Tf
W( Γ, g) = ( , )σ1 σ2 Tg
U( , → X) =σ2Tf Tg σ3

X

expr cond f g

W(Γ, expr) = ( ∘ ∘ ∘ ∘ , )σ5 σ4 σ3 σ2 σ1 σ5Tg

W(Γ, cond) = ( , )σ1 Tcond
U( , Bool) =Tcond σ2
W( Γ, f ) = ( , )σ2σ1 σ3 Tf
W( Γ, g) = ( , )σ3σ2σ1 σ4 Tg

U( , ) =σ4Tf Tg σ5

expr x. f

W(Γ, expr) = ( ∘ , ∘ ∘ X)σ2 σ1 σ2 σ1

W(Γ ∪ {x : X}, f ) = ( , )σ1 Tf
U( X, ) =σ1 Tf σ2

X

expr x = f g

W(Γ, expr) = ( ∘ , )σ2 σ1 Tg

W(Γ, f ) = ( , )σ1 Tf
W( Γ ∪ {x : poly( )}, g) = ( , )σ1 Tf σ2 Tg poly( ) = (∀ , , ⋯ , )Tf x1 x2 xn Tf , , ⋯ ,x1 x2 xn Tf

Γσ1

U( , ) = σT1 T2

,T1 T2
σ T1 T2

T1 T2

U( , ) = ∅T1 T2 =T1 T2

T1 T2

U( , ) = ∅T1 T2 =T1 T2
T1 T2 T2 T1 λx. xx

U( , ) = { → }T1 T2 T1 T2

T1 T2 C = C( , , ⋯ , )T1 A1 A2 Ak = C( , , ⋯ , )T2 B1 B2 Bk

U( , ) = ∘ ∘ ⋯T1 T2 σk σk−1 σ1 = U( , )σi Ai Bi

http://yinyanghu.github.io/
http://yinyanghu.github.io/
http://yinyanghu.github.io/archive.html
http://yinyanghu.github.io/posts/2014-03-13-algorithm-w.html
https://github.com/yinyanghu
http://yinyanghu.github.io/contact.html
http://yinyanghu.github.io/rss.xml
http://yinyanghu.github.io/tags/Algorithm.html
http://yinyanghu.github.io/tags/Lambda%20Calculus.html
http://yinyanghu.github.io/tags/Type%20Inference.html
http://yinyanghu.github.io/tags/Logic.html
http://yinyanghu.github.io/tags/Polymorphism.html
http://yinyanghu.github.io/tags/Type%20System.html
http://yinyanghu.github.io/tags/Hindley-Milner.html
http://yinyanghu.github.io/tags/Programming%20Language.html
http://www.exso.com/courses/cs101a/slides/ml/sml10/node19.html
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://www.student.cs.uwaterloo.ca/~cs442/handouts/03-typeinf.pdf
http://inst.eecs.berkeley.edu/~cs164/sp11/lectures/lecture22.pdf
http://www.cs.cornell.edu/courses/cs3110/2011sp/lectures/lec26-type-inference/type-inference.htm

