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Type Substitution
A type substitution  maps type variables to types or type variables.

, if 
otherwise, 

The composition of two substitutions is

When apply the substitution  to term ,  is , where  denotes the variables in .

Similarly, when apply the substitution  to context ,  is , where .

Algorithm W

This is the original type inference algorithm of Damas and Miller.

The input to the algorithm is an expression and a typing environment (context) which is a set of assumptions, i.e. bindings of type variables
to type expressions.

The output of the algorithm is a type for the given expression, and a substitution of type expressions for types which results in the overall
type.

, where

 is the context
 is the expression to be typed

 is the substitution of type expressions for type variables which gives the value of 
 is the type of 

Several cases:

if  is a variable, say , then

, where

,
,

and  are fresh variables

if  is an abstraction (  expression), say , then

, where

,
and  is a fresh variable

if  is an application, say , then

, where

,
,

,
and  is a fresh variable

if  is a conditional, say if  then  else , then

, where

,
,

,
,

and 

if  is a fix-point expression, say fix , then

, where

,
,

and  is a fresh variable

if  is a let expression, say let  in , then

, where

,
, where , and  are the free variables in  which do

not appear in .

Algorithm U

Algorithm U solves unification which is what we need to complete our description of Algorithm W.

The input to the algorithm is two type expressions.

The output of the algorithm is a substitution or an error if we cannot find an unification.

, where

 are the type expressions to be unified
 is the substitution if we find an unification of  and 

Also several cases:

if both  and  are base type, then

, if 
otherwise, we find an error

if both  and  are type variables, then

, if 
if  occurs in , or  occurs in , then we find an error: circularity (e.g. )
otherwise, 

if  and  have the same type constructor , i.e.  and , then

, where 

otherwise, we find an error

Damas and Milner proved that Algorithm W computes the principal type scheme for a given expression and context.

According to Cardelli(1985), the order of type inference does NOT affect the final result and it solves the system of type constraints.

This version taken from Field and Harrison, also treats expressions involving the fix-point operator fix.
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σ ∘ γ = {X → σ(T ) ∣ (X → T ) ∈ γ} ∪ {X → T ∣ (X → T ) ∈ σ, X ∉ domain(γ)}
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