YINYANGHU'S BLOG

—— Miscellaneous Gallery of Life

£ Home c= Archive R About @ My Github & Contact N\ RSS

Type Inference: Algorithm W _and Algorithm U

by Yinyanghu on March 13, 2014
Tagged as: Algorithm, Lambda Calculus, Type Inference, Logic, Polymorphism, Type System, Hindley-Milner, Programming Language.

Type Substitution

A type substitution 6 maps type variables to types or type variables.

e 6 X)=T,fX—>T)€o
e otherwise, 0(X) = X

The composition of two substitutions is
coy={X->0T)| X->T)eylu{X>T|X->T)e€o,X & domain(y)}
When apply the substitution ¢ to term T', 6T is [X; — o(X;)]T, where X; denotes the variables in T .

Similarly, when apply the substitution ¢ to context I', ol is {6T;}, where T; € T".

Algorithm W

This is the original type inference algorithm of Damas and Miller.

® The input fo the algorithm is an expression and a typing environment (context) which is a set of assumptions, i.e. bindings of type variables
to type expressions.

® The output of the algorithm is a type for the given expression, and a substitution of type expressions for types which results in the overall
type.

W', expr) = (o, T), where

' is the context

expr is the expression to be typed

o is the substitution of type expressions for type variables which gives the value of T
T is the type of expr

Several cases:

e if exprisavariable, say x, then
W(T, expr) = (@, instantiate(x)), where

o instantiate(x) = [a; — bi]lar — ba] - [a, — b,]T},
° X: (Val’a2’ °e aan)Tx e F;
o and by, by, -+, b,, are fresh variables

® if expr is an abstraction (1 expression), say Ax. f, then
W', expr) = (61,01 X — Ty), where

o WI'U{x:X},f)= (o1, Tf),
o and X is a fresh variable

® if expr is an application, say expr = f g, then
W', expr) = (03 © 0 ° 61,03X), where

Wd,f) = (o1, Ty),
W(o1l', g) = (02, Ty),
U(Gsz, Tg - X) = 03,
and X is a fresh variable

O O O O

e if expris a conditional, say if cond then f else g, then
W', expr) = (65 © 64 ° 03 ° 65 © 01,051,), where

W(F, COfld) — (01) Tcond),
U(Tconda BOOZ) = 02,
W(oro11,f) = (03, 1Ty),
W(os02011, g) = (04, Ty),
and U(O‘4Tf, Tg) = O35

O O O O O

e if expr is a fix-point expression, say fix x. f, then
W', expr) = (62 ° 01,05 o 6] o X), where

o WI'U {x:X},f) = (o, Tf),
o U(o1 X, Ty) = 02,
o and X is a fresh variable

e if exprisalet expression, say let x = f in g, then
W', expr) = (62 © 61, 1,), where

o W, f) = (o1, Ty),
o W(o1I' U {x : poly(Ty)}, g) = (62, T,), where poly(Ty) = (Vx1, x2, -+, x,)T7, and X1, X2, --- , X, are the free variables in Ty which do
not appear in o 1.

Algorithm U

® Algorithm U solves unification which is what we need to complete our description of Algorithm W.
® The input to the algorithm is two type expressions.

® The output of the algorithm is a substitution or an error if we cannot find an unification.

U(Ty,T>) = o, where

® T1,T, are the type expressions to be unified
® o is the substitution if we find an unification of 77 and 1>

Also several cases:

e if both 7| and T, are base type, then

o U(T\, T»)=0,ifT1 =T
o otherwise, we find an error

e if both 7 and T, are type variables, then

o U(Tl,T2)=ﬂ,ifT1 =1
o if T; occursin T, ,or T, occurs in T, then we find an error: circularity (e.g. Ax. xx)
o otherwise, U(Ty,T>) = {T; — 1>}

e if T1 and T, have the same type constructor C,ie. T = C(A1,A;, -+ ,Ax) and T, = C(By, By, *++, By), then
U(Tl, Tz) — Of ° Of—1 © *** 0], where O, — U(Ai,Bi)

® otherwise, we find an error

® Damas and Milner proved that Algorithm W computes the principal type scheme for a given expression and context.
® According to Cardelli(1985), the order of type inference does NOT affect the final result and it solves the system of type constraints.

® This version taken from Field and Harrison, also treats expressions involving the fix-point operator fix.

Reference

e Algorithm W

e Wikipedia: Hindley-Milner type system

® University of Waterloo, C5442 Lecture Note
® |ecture 22: Type Inference and Unification

® |Lecture 26: Type Inference and Unification

@ Yinyanghu, 2014

0 Comments Yinyanghu's Blog - Disqus' Privacy Policy Login

Favorite m Sort by Best

Start the discussion...

LOG IN WITH OR SIGN UP WITH Disqus (?)

000

Be the first to comment.

DA Subscribe Q Add Disqus to your site A Do Not Sell My Data DISQUS
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License . () OO

© 2018 @ Yinyanghu - Site proudly generated by Hakyll. The entire source code of this website is available at Github.

http://yinyanghu.github.io/
http://yinyanghu.github.io/
http://yinyanghu.github.io/archive.html
http://yinyanghu.github.io/posts/2014-03-13-algorithm-w.html
https://github.com/yinyanghu
http://yinyanghu.github.io/contact.html
http://yinyanghu.github.io/rss.xml
http://yinyanghu.github.io/tags/Algorithm.html
http://yinyanghu.github.io/tags/Lambda%20Calculus.html
http://yinyanghu.github.io/tags/Type%20Inference.html
http://yinyanghu.github.io/tags/Logic.html
http://yinyanghu.github.io/tags/Polymorphism.html
http://yinyanghu.github.io/tags/Type%20System.html
http://yinyanghu.github.io/tags/Hindley-Milner.html
http://yinyanghu.github.io/tags/Programming%20Language.html
http://www.exso.com/courses/cs101a/slides/ml/sml10/node19.html
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://www.student.cs.uwaterloo.ca/~cs442/handouts/03-typeinf.pdf
http://inst.eecs.berkeley.edu/~cs164/sp11/lectures/lecture22.pdf
http://www.cs.cornell.edu/courses/cs3110/2011sp/lectures/lec26-type-inference/type-inference.htm

