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Type Substitution

A type substitution 6 maps type variables to types or type variables.

e 6 X)=T,fX—>T)€o
e otherwise, 0(X) = X

The composition of two substitutions is
coy={X->0T)| X->T)eylu{X>T|X->T)e€o,X & domain(y)}
When apply the substitution ¢ to term T', 6T is [X; — o(X;)]T, where X; denotes the variables in T .

Similarly, when apply the substitution ¢ to context I', ol is {6T;}, where T; € T".

Algorithm W

This is the original type inference algorithm of Damas and Miller.

® The input fo the algorithm is an expression and a typing environment (context) which is a set of assumptions, i.e. bindings of type variables
to type expressions.

® The output of the algorithm is a type for the given expression, and a substitution of type expressions for types which results in the overall
type.

W', expr) = (o, T), where

' is the context

expr is the expression to be typed

o is the substitution of type expressions for type variables which gives the value of T
T is the type of expr

Several cases:

e if exprisavariable, say x, then
W(T, expr) = (@, instantiate(x)), where

o instantiate(x) = [a; — bi]lar — ba] - [a, — b, ]T},
° X: (Val’a2’ °e aan)Tx e F;
o and by, by, -+, b,, are fresh variables

® if expr is an abstraction (1 expression), say Ax. f, then
W', expr) = (61,01 X — Ty), where

o WI'U{x:X},f)= (o1, Tf),
o and X is a fresh variable

® if expr is an application, say expr = f g, then
W', expr) = (03 © 0 ° 61,03X), where

Wd,f) = (o1, Ty),
W(o1l', g) = (02, Ty),
U(Gsz, Tg - X) = 03,
and X is a fresh variable
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e if expris a conditional, say if cond then f else g, then
W', expr) = (65 © 64 ° 03 ° 65 © 01,051,), where

W(F, COfld) — (01 ) Tcond),
U(Tconda BOOZ) = 02,
W(oro11,f) = (03, 1Ty),
W(os02011, g) = (04, Ty),
and U(O‘4Tf, Tg) = O35

O O O O O

e if expr is a fix-point expression, say fix x. f, then
W', expr) = (62 ° 01,05 o 6] o X), where

o WI'U {x:X},f) = (o, Tf),
o U(o1 X, Ty) = 02,
o and X is a fresh variable

e if exprisalet expression, say let x = f in g, then
W', expr) = (62 © 61, 1,), where

o W, f) = (o1, Ty),
o W(o1I' U {x : poly(Ty)}, g) = (62, T,), where poly(Ty) = (Vx1, x2, -+, x,)T7, and X1, X2, --- , X, are the free variables in Ty which do
not appear in o 1.

Algorithm U

® Algorithm U solves unification which is what we need to complete our description of Algorithm W.
® The input to the algorithm is two type expressions.

® The output of the algorithm is a substitution or an error if we cannot find an unification.

U(Ty,T>) = o, where

® T1,T, are the type expressions to be unified
® o is the substitution if we find an unification of 77 and 1>

Also several cases:

e if both 7| and T, are base type, then

o U(T\, T»)=0,ifT1 =T
o otherwise, we find an error

e if both 7 and T, are type variables, then

o U(Tl,T2)=ﬂ,ifT1 =1
o if T; occursin T, ,or T, occurs in T, then we find an error: circularity (e.g. Ax. xx)
o otherwise, U(Ty,T>) = {T; — 1>}

e if T1 and T, have the same type constructor C,ie. T = C(A1,A;, -+ ,Ax) and T, = C(By, By, *++, By), then
U(Tl, Tz) — Of ° Of—1 © *** 0], where O, — U(Ai,Bi)

® otherwise, we find an error

®  Damas and Milner proved that Algorithm W computes the principal type scheme for a given expression and context.
® According to Cardelli(1985), the order of type inference does NOT affect the final result and it solves the system of type constraints.

® This version taken from Field and Harrison, also treats expressions involving the fix-point operator fix.

Reference

e Algorithm W

e  Wikipedia: Hindley-Milner type system

® University of Waterloo, C5442 Lecture Note
® |ecture 22: Type Inference and Unification

® |Lecture 26: Type Inference and Unification
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