Application Modeling

With Morphir

Introduction

© Open-sourced by Morgan Stanley:

@ Goals:

- Stakes:

""" Desired Outcome:

Morphir

Productivity
Efficiency
Risk

Costs
Reputation
Competitivity

New ways to develop
Community participation

Why Morphir?

@ Value:
¥ Who:

% Learn More:

Development automation
Effortless compliance
Bug free guarantees

App developers
Infrastructure engineers
Business users & analysts

Morphir open-source

https://github.com/Morgan-Stanley/morphir

Common Impediments

* Developers
* Most development effort on non-business code.
* Keeping up-to-date is a costly burden.

* Infrastructure engineers
* Lack of consistency prevents holistic optimization & automation

* Business users
* Disconnect between business and technology
* Lack of transparency

Example: Developer Effort

The most value

* Turn business concepts into computer concepts

Make it run

The most effort

Code to frameworks & libraries

Conform to regulations (i.e., Policy 2.0)
Ensure the code does what it’s supposed to
Keep documents up-to-date

Hygiene & keeping tech up-to-date

Follow blueprints and best practices
Monitoring

Security & vulnerability remediation
Supportability

Testing

Audit

Plug into firm infrastructure (i.e., APl Gateway)
Evolution & future readiness (i.e., cloud)

Telemetry, metrics, and observability (i.e., Backtrace)

What if...

Let developers focus on this:

» Turn business concepts into computer concepts

e Make it run

Demo

Morphir + Dapr

\YERE]

Semi

Optimize the Development Pipeline

Automatic

Development now

Capture

business : Build Test Deploy
solution
specs

Architect

+ developer automation

Development with Morphir + Dapr

Capture

business ArChIFECt Code Build Test Deploy
solution
specs

The Tools

Dapr Morphir
* Framework: * Application mOdeling
e Infrastructure abstraction * Development automation

* Cloud and on-prem

 Qut-of-the box features * Knowledge tools

* Open-sourced by Microsoft * Correctness

* Open-sourced by Morgan
Stanley

Modeling services

* Patterns enable automation
* Modeling defines those patterns

* Demo pattern = service
* Take requests to perform some action
* Produce a result
* Manage some state

* Simple Books & Records service for managing deals

Books & Records Service:
Request

Specifications:

1. As aclient, | want to instruct to record a new deal for a
guantity of a product at a specified price...

2. Asaclient, | want to instruct to close an existing deal...

l

= OpenDeal
| CloseDeal

Morphir.Dapr. Input. Example

import Morphir.SDK.StatefulApp exposing (

type alias =

Books & Records Service: e
Resu |t [pmoea

= DealOpened

| DealClosed

| InvalidQuantity
| InvalidPrice

Specifications: i
1. Asaclient, | want to know how my instructions were |
processed...
As an interested party, | want to be notified of any deal

activity...

As a regulator, | want to ensure there’s a temporal system of
record for all deal activity...

1

DealOpened
DealClosed
InvalidQuantity
InvalidPrice
DuplicateDeal
DeallotFound

Morphir.Dapr. Input. Example

import Morphir.SDK.StatefulApp exposing (

Books & Records Service: CHie
State [pmoea

= DealOpened

| DealClosed

| InvalidQuantity
| InvalidPrice

Specifications: | Dupricateveat

1.

| DealNotFound
) . |
As a client, | want the state of all of my deals to be accessible

at any time...

{ id
» product
» price

As a system owner, | want to ensure that deal state is resilient ;e
to process restarts...

id
product
price
quantity

Books & Records Service:
Processing logic

Specifications:
1. Asabusiness owner, | want an open deal request to be accepted only

if that deal doesn’t already exist, the price is free or more, and the
guantity is 1 or more.

As a business owner, | want a close deal request to be accepted only if
the deal is currently open.

logic ID -> Maybe Deal -»> DealCmd -> ID, Maybe Deal, DealEvent)
logic dealld deal dealCmd

case deal of
Just d ->
case dealCmd of
CloseDeal _ ->
{ dealld, Mothing, DealClosed dealld)

OpenDeal _ ->

({ dealld, deal, DuplicateDeal dealld)

Nothing ->
case dealCmd of
OpenDeal id productId price gty ->
if price < @ then
{ dealld, deal, InvalidPrice id price)

else if qty < @ then
{ dealld, deal, InvalidQuantity id qty)

m
]

e
(dealld
, Deal id productld price qty |> Just
, DealOpened id productId price gty

)

CloseDeal _ ->
{ dealld, deal, DealNotFound dealld)

pL!

logic ID -> Maybe Deal -> DealCmd
logic dealld deal dealCmd =

nodule Morphir.Dapr.Input.Example exposing (..)

import Morphir.SDK.StatefulApp exposing (Statefulfpp)

= OpenDeal ID ProductID Price Quantity
| CloseDeal IO

= DealOpened ID ProductID Price Quantit
| DealClosed IU

| InvalidQuantity ID Quantit

| InvalidPrice ID Price
| DuplicateDeal IC
| DealNotFound IO

{ id
» product ProductID
» price : Pri
, quantity Quantity

}

case deal of
Just d ->
case dealCmd of
CloseDeal ->
{ dealld, Nothing, DealClosed dealld)

OpenDeal _ -»

{ dealld, d;alJ DuplicateDeal dealld)

Nothing ->
case dealCmd of
OpenDeal id productld price qty -»>
if price < @ then

{ dealld, deal, InvalidPrice id price)

else if gty < @ then

(dealld, deal, InvalidQuantity id qty)

else
{ dealld

, Deal id productId price gty |»> Just
, DealOpened id productld price gty

)

CloseDeal _ ->
(dealld, deal, DealNotFound dealld)

app : App
app = StatefulApp logic

Morphir.Dapr.Input. Example

t Morphir.SDK.StatefulApp

type alias
type alias
type alias

app
app

OpenDeal
CloseDeal

DealOpenead
DealClosed
InvalidQuantity
InvalidPrice
DuplicateDeal
DealNotFound

product

price
quantity

==

dealld deal dealCmd

deal of
Just d -
e dealCmd
CloseDeal =5
(dealld, Mothing, DealClosed dealld)

OpenDeal =5
{ dealld, deal, DuplicateDeal dealld)

Nothing ->
e dealCmd of
OpenDeal id productld price qty ->
if price < @ then
(dealld, deal, InvalidPrice id pri

if qty < @ then
dealld, deal, InvalidQuantity id qty)

dealld
Deal id productId pri qty |> Just
DealOpened id productld price qty

CloseDeal _ ->
(dealld, deal, DealNotFound dealld)

StatefulApp logic

What we automated

e Code
 JSON serialization

e Code
e JSON serialization
e Kafka Publish

e Code
 Persistence

 Code
e REST binding

What else could we automate?

* Observability & telemetry
* Policy 2.0 Data dictionary & lineage
* Documentation & audit

* Service Discovery

* OpenAPI / APl Gateway
 GraphQL

* Schema registry

logic dealld deal dealCmd =

e Cloud & security Blueprints

Just d ->
e dealCmd of

e < e Contract-Driven Development full

(dealld, Wothing, DealClosed dealld)
operest ____ > verification
{ dealld, deal, DuplicateDeal dealld)
Nothing -> ° TeSts
" opmoet L0 proscetspice ot - * Hygiene & Vulnerability remediation
T Firm-wide Performance optimizations
r (dealld, deal, InvalidQuantity id qty) ° Cloud readiness
_“-f ;:ilgd productId price gty |> Just d Futu re platforms...

, DealOpened id productld price qty
)

CloseDeal _ ->
(dealld, deal, DealNotFound dealld)

app = StatefulApp logic

The Code(s)

Morphir Generated
* Application Model * Dapr

* Query * Spring Boot

https://github.com/Morgan-Stanley/morphir-dapr
https://github.com/Morgan-Stanley/morphir-jvm/tree/master/examples/app-model/BooksAndRecords/src/main/java/com/ms/booksandrecords
https://github.com/Morgan-Stanley/morphir-examples/blob/master/src/Company/Operations/BooksAndRecords.elm

Other patterns...

Query & Aggregation
saL

Morphir Model SELECT product_id, sum (quantity)
FROM DEALS
GROUP BY product_id

Company .Operations.BooksAndRecords

import Company.Operations.BooksAndRecords exposing (..)

positionByProduct deals

deals
|> List.groupwhile (\a,b -> a.productId == b.productId)
|> List.map Spark, Kafka Streams, Jet, Flink...
(\key,items -> (key, items
|> List.map (.quantity) deals
|> List.sum .groupBy (x => x.productId)
.map ((key,items) => |(key, items.map(_.amount).sum))

‘ deals
.groupBy (x => x.productId)
.map ((key,items) => |(key, items.map(_.amount).sum))

‘ deals
.groupBy (x => x.productId)
.map ((key,items) => |(key, items.map(_.amount).sum))

What’'s Next?

Community Open-source
* By developers for developers * Morphir

https://github.com/Morgan-Stanley/morphir

