
RFC 9449

OAuth 2.0 Demonstrating Proof of Possession (DPoP)

Abstract

This document describes a mechanism for sender-constraining OAuth 2.0 tokens via a proof-of-

possession mechanism on the application level. This mechanism allows for the detection of

replay attacks with access and refresh tokens.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9449

Standards Track

September 2023

2070-1721

D. Fett

Authlete

B. Campbell

Ping Identity

J. Bradley

Yubico

T. Lodderstedt

Tuconic

M. Jones

Self-Issued Consulting

D. Waite

Ping Identity

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9449

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Fett, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9449
https://www.rfc-editor.org/info/rfc9449
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Objectives

3. Concept

4. DPoP Proof JWTs

4.1. The DPoP HTTP Header

4.2. DPoP Proof JWT Syntax

4.3. Checking DPoP Proofs

5. DPoP Access Token Request

5.1. Authorization Server Metadata

5.2. Client Registration Metadata

6. Public Key Confirmation

6.1. JWK Thumbprint Confirmation Method

6.2. JWK Thumbprint Confirmation Method in Token Introspection

7. Protected Resource Access

7.1. The DPoP Authentication Scheme

7.2. Compatibility with the Bearer Authentication Scheme

7.3. Client Considerations

8. Authorization Server-Provided Nonce

8.1. Nonce Syntax

8.2. Providing a New Nonce Value

9. Resource Server-Provided Nonce

10. Authorization Code Binding to a DPoP Key

10.1. DPoP with Pushed Authorization Requests

11. Security Considerations

11.1. DPoP Proof Replay

11.2. DPoP Proof Pre-generation

4

4

5

6

8

8

9

10

11

14

14

14

15

15

16

17

20

21

22

23

23

24

25

25

26

26

27

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 2

11.3. DPoP Nonce Downgrade

11.4. Untrusted Code in the Client Context

11.5. Signed JWT Swapping

11.6. Signature Algorithms

11.7. Request Integrity

11.8. Access Token and Public Key Binding

11.9. Authorization Code and Public Key Binding

11.10. Hash Algorithm Agility

11.11. Binding to Client Identity

12. IANA Considerations

12.1. OAuth Access Token Types Registration

12.2. OAuth Extensions Error Registration

12.3. OAuth Parameters Registration

12.4. HTTP Authentication Schemes Registration

12.5. Media Type Registration

12.6. JWT Confirmation Methods Registration

12.7. JSON Web Token Claims Registration

12.7.1. "nonce" Registration Update

12.8. Hypertext Transfer Protocol (HTTP) Field Name Registration

12.9. OAuth Authorization Server Metadata Registration

12.10. OAuth Dynamic Client Registration Metadata

13. References

13.1. Normative References

13.2. Informative References

Acknowledgements

Authors' Addresses

27

27

28

28

28

29

29

29

30

30

30

30

31

31

31

32

32

33

34

34

34

35

35

36

38

38

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 3

1. Introduction

Demonstrating Proof of Possession (DPoP) is an application-level mechanism for sender-

constraining OAuth access and refresh tokens. It enables a client to prove the

possession of a public/private key pair by including a DPoP header in an HTTP request. The value

of the header is a JSON Web Token (JWT) that enables the authorization server to bind

issued tokens to the public part of a client's key pair. Recipients of such tokens are then able to

verify the binding of the token to the key pair that the client has demonstrated that it holds via

the DPoP header, thereby providing some assurance that the client presenting the token also

possesses the private key. In other words, the legitimate presenter of the token is constrained to

be the sender that holds and proves possession of the private part of the key pair.

The mechanism specified herein can be used in cases where other methods of sender-

constraining tokens that utilize elements of the underlying secure transport layer, such as

 or , are not available or desirable. For example, due to a sub-par

user experience of TLS client authentication in user agents and a lack of support for HTTP token

binding, neither mechanism can be used if an OAuth client is an application that is dynamically

downloaded and executed in a web browser (sometimes referred to as a "single-page

application"). Additionally, applications that are installed and run directly on a user's device are

well positioned to benefit from DPoP-bound tokens that guard against the misuse of tokens by a

compromised or malicious resource. Such applications often have dedicated protected storage

for cryptographic keys.

DPoP can be used to sender-constrain access tokens regardless of the client authentication

method employed, but DPoP itself is not used for client authentication. DPoP can also be used to

sender-constrain refresh tokens issued to public clients (those without authentication credentials

associated with the client_id).

[RFC6749]

[RFC7519]

[RFC8705] [TOKEN-BINDING]

1.1. Conventions and Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

This specification uses the Augmented Backus-Naur Form (ABNF) notation of .

This specification uses the terms "access token", "refresh token", "authorization server", "resource

server", "authorization endpoint", "authorization request", "authorization response", "token

endpoint", "grant type", "access token request", "access token response", "client", "public client",

and "confidential client" defined by "The OAuth 2.0 Authorization Framework" .

The terms "request", "response", "header field", and "target URI" are imported from .

The terms "JOSE" and "JOSE Header" are imported from .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5234]

[RFC6749]

[RFC9110]

[RFC7515]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 4

This document contains non-normative examples of partial and complete HTTP messages. Some

examples use a single trailing backslash to indicate line wrapping for long values, as per

. The character and leading spaces on wrapped lines are not part of the value.[RFC8792]

2. Objectives

The primary aim of DPoP is to prevent unauthorized or illegitimate parties from using leaked or

stolen access tokens, by binding a token to a public key upon issuance and requiring that the

client proves possession of the corresponding private key when using the token. This constrains

the legitimate sender of the token to only the party with access to the private key and gives the

server receiving the token added assurances that the sender is legitimately authorized to use it.

Access tokens that are sender-constrained via DPoP thus stand in contrast to the typical bearer

token, which can be used by any party in possession of such a token. Although protections

generally exist to prevent unintended disclosure of bearer tokens, unforeseen vectors for leakage

have occurred due to vulnerabilities and implementation issues in other layers in the protocol or

software stack (see, e.g., Compression Ratio Info-leak Made Easy (CRIME) , Browser

Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) ,

Heartbleed , and the Cloudflare parser bug). There have also been

numerous published token theft attacks on OAuth implementations themselves (

is just one high-profile example). DPoP provides a general defense in depth against the impact of

unanticipated token leakage. DPoP is not, however, a substitute for a secure transport and

always be used in conjunction with HTTPS.

The very nature of the typical OAuth protocol interaction necessitates that the client discloses the

access token to the protected resources that it accesses. The attacker model in

describes cases where a protected resource might be counterfeit, malicious, or compromised and

plays received tokens against other protected resources to gain unauthorized access. Audience-

restricted access tokens (e.g., using the JWT aud claim) can prevent such misuse.

However, doing so in practice has proven to be prohibitively cumbersome for many deployments

(despite extensions such as). Sender-constraining access tokens is a more robust and

straightforward mechanism to prevent such token replay at a different endpoint, and DPoP is an

accessible application-layer means of doing so.

Due to the potential for cross-site scripting (XSS), browser-based OAuth clients bring to bear

added considerations with respect to protecting tokens. The most straightforward XSS-based

attack is for an attacker to exfiltrate a token and use it themselves completely independent of the

legitimate client. A stolen access token is used for protected resource access, and a stolen refresh

token is used for obtaining new access tokens. If the private key is non-extractable (as is possible

with), DPoP renders exfiltrated tokens alone unusable.

XSS vulnerabilities also allow an attacker to execute code in the context of the browser-based

client application and maliciously use a token indirectly through the client. That execution

context has access to utilize the signing key; thus, it can produce DPoP proofs to use in

[CRIME]

[BREACH]

[Heartbleed] [Cloudbleed]

[GitHub.Tokens]

MUST

[SECURITY-TOPICS]

[RFC7519]

[RFC8707]

[W3C.WebCryptoAPI]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 5

conjunction with the token. At this application layer, there is most likely no feasible defense

against this threat except generally preventing XSS; therefore, it is considered out of scope for

DPoP.

Malicious XSS code executed in the context of the browser-based client application is also in a

position to create DPoP proofs with timestamp values in the future and exfiltrate them in

conjunction with a token. These stolen artifacts can later be used independent of the client

application to access protected resources. To prevent this, servers can optionally require clients

to include a server-chosen value into the proof that cannot be predicted by an attacker (nonce).

In the absence of the optional nonce, the impact of pre-computed DPoP proofs is limited

somewhat by the proof being bound to an access token on protected resource access. Because a

proof covering an access token that does not yet exist cannot feasibly be created, access tokens

obtained with an exfiltrated refresh token and pre-computed proofs will be unusable.

Additional security considerations are discussed in Section 11.

3. Concept

The main data structure introduced by this specification is a DPoP proof JWT that is sent as a

header in an HTTP request, as described in detail below. A client uses a DPoP proof JWT to prove

the possession of a private key corresponding to a certain public key.

Roughly speaking, a DPoP proof is a signature over:

some data of the HTTP request to which it is attached,

a timestamp,

a unique identifier,

an optional server-provided nonce, and

a hash of the associated access token when an access token is present within the request.

•

•

•

•

•

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 6

The basic steps of an OAuth flow with DPoP (without the optional nonce) are shown in Figure 1.

In the token request, the client sends an authorization grant (e.g., an authorization code,

refresh token, etc.) to the authorization server in order to obtain an access token (and

potentially a refresh token). The client attaches a DPoP proof to the request in an HTTP

header.

The authorization server binds (sender-constrains) the access token to the public key

claimed by the client in the DPoP proof; that is, the access token cannot be used without

proving possession of the respective private key. If a refresh token is issued to a public client,

it is also bound to the public key of the DPoP proof.

To use the access token, the client has to prove possession of the private key by, again, adding

a header to the request that carries a DPoP proof for that request. The resource server needs

to receive information about the public key to which the access token is bound. This

information may be encoded directly into the access token (for JWT-structured access

tokens) or provided via token introspection endpoint (not shown). The resource server

verifies that the public key to which the access token is bound matches the public key of the

DPoP proof. It also verifies that the access token hash in the DPoP proof matches the access

token presented in the request.

The resource server refuses to serve the request if the signature check fails or if the data in

the DPoP proof is wrong, e.g., the target URI does not match the URI claim in the DPoP proof

JWT. The access token itself, of course, must also be valid in all other respects.

The DPoP mechanism presented herein is not a client authentication method. In fact, a primary

use case of DPoP is for public clients (e.g., single-page applications and applications on a user's

device) that do not use client authentication. Nonetheless, DPoP is designed to be compatible

with private_key_jwt and all other client authentication methods.

DPoP does not directly ensure message integrity, but it relies on the TLS layer for that purpose.

See Section 11 for details.

Figure 1: Basic DPoP Flow

+--------+ +---------------+
	--(A)-- Token Request ------------------->	
Client	(DPoP Proof)	Authorization
		Server
	<-(B)-- DPoP-Bound Access Token ----------	
	(token_type=DPoP) +---------------+	
	+---------------+	
	--(C)-- DPoP-Bound Access Token --------->	
	(DPoP Proof)	Resource
		Server
	<-(D)-- Protected Resource ---------------	
	+---------------+	
+--------+

A.

B.

C.

D.

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 7

4. DPoP Proof JWTs

DPoP introduces the concept of a DPoP proof, which is a JWT created by the client and sent with

an HTTP request using the DPoP header field. Each HTTP request requires a unique DPoP proof.

A valid DPoP proof demonstrates to the server that the client holds the private key that was used

to sign the DPoP proof JWT. This enables authorization servers to bind issued tokens to the

corresponding public key (as described in Section 5) and enables resource servers to verify the

key-binding of tokens that it receives (see Section 7.1), which prevents said tokens from being

used by any entity that does not have access to the private key.

The DPoP proof demonstrates possession of a key and, by itself, is not an authentication or access

control mechanism. When presented in conjunction with a key-bound access token as described

in Section 7.1, the DPoP proof provides additional assurance about the legitimacy of the client to

present the access token. However, a valid DPoP proof JWT is not sufficient alone to make access

control decisions.

DPoP:

4.1. The DPoP HTTP Header

A DPoP proof is included in an HTTP request using the following request header field.

A JWT that adheres to the structure and syntax of Section 4.2.

Figure 2 shows an example DPoP HTTP header field. The example uses "\" line wrapping per

.

Note that per , header field names are case insensitive; thus, DPoP, DPOP, dpop, etc., are

all valid and equivalent header field names. However, case is significant in the header field

value.

The DPoP HTTP header field value uses the token68 syntax defined in

and is repeated below in Figure 3 for ease of reference.

[RFC8792]

Figure 2: Example DPoP Header

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

[RFC9110]

Section 11.2 of [RFC9110]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc9110#section-11.2

Figure 3: DPoP Header Field ABNF

DPoP = token68
token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "~" / "+" / "/") *"="

typ:

alg:

jwk:

jti:

htm:

htu:

iat:

ath:

4.2. DPoP Proof JWT Syntax

A DPoP proof is a JWT that is signed (using JSON Web Signature (JWS)) with

a private key chosen by the client (see below). The JOSE Header of a DPoP JWT contain at

least the following parameters:

A field with the value dpop+jwt, which explicitly types the DPoP proof JWT as

recommended in .

An identifier for a JWS asymmetric digital signature algorithm from . It

 be none or an identifier for a symmetric algorithm (Message Authentication Code

(MAC)).

Represents the public key chosen by the client in JSON Web Key (JWK) format as

defined in . It contain a private key.

The payload of a DPoP proof contain at least the following claims:

Unique identifier for the DPoP proof JWT. The value be assigned such that there is a

negligible probability that the same value will be assigned to any other DPoP proof used in the

same context during the time window of validity. Such uniqueness can be accomplished by

encoding (base64url or any other suitable encoding) at least 96 bits of pseudorandom data or

by using a version 4 Universally Unique Identifier (UUID) string according to . The

jti can be used by the server for replay detection and prevention; see Section 11.1.

The value of the HTTP method () of the request to which the JWT is

attached.

The HTTP target URI () of the request to which the JWT is attached,

without query and fragment parts.

Creation timestamp of the JWT ().

When the DPoP proof is used in conjunction with the presentation of an access token in

protected resource access (see Section 7), the DPoP proof also contain the following claim:

Hash of the access token. The value be the result of a base64url encoding (as defined

in) the SHA-256 hash of the ASCII encoding of the associated

access token's value.

[RFC7519] [RFC7515]

MUST

Section 3.11 of [RFC8725]

[IANA.JOSE.ALGS]

MUST NOT

[RFC7517]

Section 4.1.3 of [RFC7515] MUST NOT

MUST

MUST

[RFC4122]

Section 9.1 of [RFC9110]

Section 7.1 of [RFC9110]

Section 4.1.6 of [RFC7519]

MUST

MUST

Section 2 of [RFC7515] [SHS]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 9

https://rfc-editor.org/rfc/rfc8725#section-3.11
https://rfc-editor.org/rfc/rfc7515#section-4.1.3
https://rfc-editor.org/rfc/rfc9110#section-9.1
https://rfc-editor.org/rfc/rfc9110#section-7.1
https://rfc-editor.org/rfc/rfc7519#section-4.1.6
https://rfc-editor.org/rfc/rfc7515#section-2

nonce:

When the authentication server or resource server provides a DPoP-Nonce HTTP header in a

response (see Sections 8 and 9), the DPoP proof also contain the following claim:

A recent nonce provided via the DPoP-Nonce HTTP header.

A DPoP proof contain other JOSE Header Parameters or claims as defined by extension,

profile, or deployment-specific requirements.

Figure 4 is a conceptual example showing the decoded content of the DPoP proof in Figure 2. The

JSON of the JWT header and payload are shown, but the signature part is omitted. As usual, line

breaks and extra spaces are included for formatting and readability.

Of the HTTP request, only the HTTP method and URI are included in the DPoP JWT; therefore,

only these two message parts are covered by the DPoP proof. The idea is to sign just enough of

the HTTP data to provide reasonable proof of possession with respect to the HTTP request. This

design approach of using only a minimal subset of the HTTP header data is to avoid the

substantial difficulties inherent in attempting to normalize HTTP messages. Nonetheless, DPoP

proofs can be extended to contain other information of the HTTP request (see also Section 11.7).

MUST

MAY

Figure 4: Example JWT Content of a DPoP Proof

{
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
}
.
{
 "jti":"-BwC3ESc6acc2lTc",
 "htm":"POST",
 "htu":"https://server.example.com/token",
 "iat":1562262616
}

4.3. Checking DPoP Proofs

To validate a DPoP proof, the receiving server ensure the following:

There is not more than one DPoP HTTP request header field.

The DPoP HTTP request header field value is a single and well-formed JWT.

All required claims per Section 4.2 are contained in the JWT.

The typ JOSE Header Parameter has the value dpop+jwt.

MUST

1.

2.

3.

4.

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 10

The alg JOSE Header Parameter indicates a registered asymmetric digital signature

algorithm , is not none, is supported by the application, and is acceptable

per local policy.

The JWT signature verifies with the public key contained in the jwk JOSE Header Parameter.

The jwk JOSE Header Parameter does not contain a private key.

The htm claim matches the HTTP method of the current request.

The htu claim matches the HTTP URI value for the HTTP request in which the JWT was

received, ignoring any query and fragment parts.

If the server provided a nonce value to the client, the nonce claim matches the server-

provided nonce value.

The creation time of the JWT, as determined by either the iat claim or a server managed

timestamp via the nonce claim, is within an acceptable window (see Section 11.1).

If presented to a protected resource in conjunction with an access token,

ensure that the value of the ath claim equals the hash of that access token, and

confirm that the public key to which the access token is bound matches the public key

from the DPoP proof.

To reduce the likelihood of false negatives, servers employ syntax-based normalization

() and scheme-based normalization () before

comparing the htu claim.

These checks may be performed in any order.

5.

[IANA.JOSE.ALGS]

6.

7.

8.

9.

10.

11.

12.

◦

◦

SHOULD

Section 6.2.2 of [RFC3986] Section 6.2.3 of [RFC3986]

5. DPoP Access Token Request

To request an access token that is bound to a public key using DPoP, the client provide a

valid DPoP proof JWT in a DPoP header when making an access token request to the

authorization server's token endpoint. This is applicable for all access token requests regardless

of grant type (e.g., the common authorization_code and refresh_token grant types and

extension grants such as the JWT authorization grant). The HTTP request shown in

Figure 5 illustrates such an access token request using an authorization code grant with a DPoP

proof JWT in the DPoP header. Figure 5 uses "\" line wrapping per .

MUST

[RFC7523]

[RFC8792]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 11

https://rfc-editor.org/rfc/rfc3986#section-6.2.2
https://rfc-editor.org/rfc/rfc3986#section-6.2.3

The DPoP HTTP header field contain a valid DPoP proof JWT. If the DPoP proof is invalid,

the authorization server issues an error response per with

invalid_dpop_proof as the value of the error parameter.

To sender-constrain the access token after checking the validity of the DPoP proof, the

authorization server associates the issued access token with the public key from the DPoP proof,

which can be accomplished as described in Section 6. A token_type of DPoP be included in

the access token response to signal to the client that the access token was bound to its DPoP key

and can be used as described in Section 7.1. The example response shown in Figure 6 illustrates

such a response.

The example response in Figure 6 includes a refresh token that the client can use to obtain a new

access token when the previous one expires. Refreshing an access token is a token request using

the refresh_token grant type made to the authorization server's token endpoint. As with all

access token requests, the client makes it a DPoP request by including a DPoP proof, as shown in

Figure 7. Figure 7 uses "\" line wrapping per .

Figure 5: Token Request for a DPoP Sender-Constrained Token Using an Authorization Code

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code\
&client_id=s6BhdRkqt\
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

MUST

Section 5.2 of [RFC6749]

MUST

Figure 6: Access Token Response

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU",
 "token_type": "DPoP",
 "expires_in": 2677,
 "refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"
}

[RFC8792]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc6749#section-5.2

When an authorization server supporting DPoP issues a refresh token to a public client that

presents a valid DPoP proof at the token endpoint, the refresh token be bound to the

respective public key. The binding be validated when the refresh token is later presented to

get new access tokens. As a result, such a client present a DPoP proof for the same key that

was used to obtain the refresh token each time that refresh token is used to obtain a new access

token. The implementation details of the binding of the refresh token are at the discretion of the

authorization server. Since the authorization server both produces and validates its refresh

tokens, there is no interoperability consideration in the specific details of the binding.

An authorization server elect to issue access tokens that are not DPoP bound, which is

signaled to the client with a value of Bearer in the token_type parameter of the access token

response per . For a public client that is also issued a refresh token, this has the effect

of DPoP-binding the refresh token alone, which can improve the security posture even when

protected resources are not updated to support DPoP.

If the access token response contains a different token_type value than DPoP, the access token

protection provided by DPoP is not given. The client discard the response in this case if this

protection is deemed important for the security of the application; otherwise, the client may

continue as in a regular OAuth interaction.

Refresh tokens issued to confidential clients (those having established authentication credentials

with the authorization server) are not bound to the DPoP proof public key because they are

already sender-constrained with a different existing mechanism. The OAuth 2.0 Authorization

Framework already requires that an authorization server bind refresh tokens to the

client to which they were issued and that confidential clients authenticate to the authorization

server when presenting a refresh token. As a result, such refresh tokens are sender-constrained

by way of the client identifier and the associated authentication requirement. This existing

sender-constraining mechanism is more flexible (e.g., it allows credential rotation for the client

without invalidating refresh tokens) than binding directly to a particular public key.

Figure 7: Token Request for a DPoP-Bound Token Using a Refresh Token

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs\
 GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

grant_type=refresh_token\
&client_id=s6BhdRkqt\
&refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

MUST

MUST

MUST

MAY

[RFC6750]

MUST

[RFC6749]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 13

dpop_signing_alg_values_supported:

5.1. Authorization Server Metadata

This document introduces the following authorization server metadata parameter to

signal support for DPoP in general and the specific JWS alg values the authorization server

supports for DPoP proof JWTs.

A JSON array containing a list of the JWS alg values

(from the registry) supported by the authorization server for DPoP proof

JWTs.

[RFC8414]

[IANA.JOSE.ALGS]

dpop_bound_access_tokens:

5.2. Client Registration Metadata

The Dynamic Client Registration Protocol defines an API for dynamically registering

OAuth 2.0 client metadata with authorization servers. The metadata defined by , and

registered extensions to it, also imply a general data model for clients that is useful for

authorization server implementations even when the Dynamic Client Registration Protocol isn't

in play. Such implementations will typically have some sort of user interface available for

managing client configuration.

This document introduces the following client registration metadata parameter to

indicate that the client always uses DPoP when requesting tokens from the authorization server.

A boolean value specifying whether the client always uses DPoP

for token requests. If omitted, the default value is false.

If the value is true, the authorization server reject token requests from the client that do

not contain the DPoP header.

[RFC7591]

[RFC7591]

[RFC7591]

MUST

6. Public Key Confirmation

Resource servers be able to reliably identify whether an access token is DPoP-bound and

ascertain sufficient information to verify the binding to the public key of the DPoP proof (see

Section 7.1). Such a binding is accomplished by associating the public key with the token in a way

that can be accessed by the protected resource, such as embedding the JWK hash in the issued

access token directly, using the syntax described in Section 6.1, or through token introspection as

described in Section 6.2. Other methods of associating a public key with an access token are

possible per an agreement by the authorization server and the protected resource; however, they

are beyond the scope of this specification.

Resource servers supporting DPoP ensure that the public key from the DPoP proof matches

the one bound to the access token.

MUST

MUST

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 14

jkt:

6.1. JWK Thumbprint Confirmation Method

When access tokens are represented as JWTs , the public key information is

represented using the jkt confirmation method member defined herein. To convey the hash of a

public key in a JWT, this specification introduces the following JWT Confirmation Method

 member for use under the cnf claim.

JWK SHA-256 Thumbprint confirmation method. The value of the jkt member be

the base64url encoding (as defined in) of the JWK SHA-256 Thumbprint (according

to) of the DPoP public key (in JWK format) to which the access token is bound.

The following example JWT in Figure 8 with a decoded JWT payload shown in Figure 9 contains a

cnf claim with the jkt JWK Thumbprint confirmation method member. The jkt value in these

examples is the hash of the public key from the DPoP proofs in the examples shown in Section 5.

The example uses "\" line wrapping per .

[RFC7519]

[RFC7800]

MUST

[RFC7515]

[RFC7638]

[RFC8792]

Figure 8: JWT Containing a JWK SHA-256 Thumbprint Confirmation

eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1\
wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE\
1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll\
5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO\
YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA

Figure 9: JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation

{
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":
 {
 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
}

6.2. JWK Thumbprint Confirmation Method in Token Introspection

"OAuth 2.0 Token Introspection" defines a method for a protected resource to query an

authorization server about the active state of an access token. The protected resource also

determines metainformation about the token.

For a DPoP-bound access token, the hash of the public key to which the token is bound is

conveyed to the protected resource as metainformation in a token introspection response. The

hash is conveyed using the same cnf content with jkt member structure as the JWK Thumbprint

[RFC7662]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 15

confirmation method, described in Section 6.1, as a top-level member of the introspection

response JSON. Note that the resource server does not send a DPoP proof with the introspection

request, and the authorization server does not validate an access token's DPoP binding at the

introspection endpoint. Rather, the resource server uses the data of the introspection response to

validate the access token binding itself locally.

If the token_type member is included in the introspection response, it contain the value

DPoP.

The example introspection request in Figure 10 and corresponding response in Figure 11

illustrate an introspection exchange for the example DPoP-bound access token that was issued in

Figure 6.

MUST

Figure 10: Example Introspection Request

POST /as/introspect.oauth2 HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp

token=Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

Figure 11: Example Introspection Response for a DPoP-Bound Access Token

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "active": true,
 "sub": "someone@example.com",
 "iss": "https://server.example.com",
 "nbf": 1562262611,
 "exp": 1562266216,
 "cnf":
 {
 "jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
}

7. Protected Resource Access

Requests to DPoP-protected resources include both a DPoP proof as per Section 4 and the

access token as described in Section 7.1. The DPoP proof include the ath claim with a valid

hash of the associated access token.

Binding the token value to the proof in this way prevents a proof to be used with multiple

different access token values across different requests. For example, if a client holds tokens

bound to two different resource owners, AT1 and AT2, and uses the same key when talking to the

MUST

MUST

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 16

authorization server, it's possible that these tokens could be swapped. Without the ath field to

bind it, a captured signature applied to AT1 could be replayed with AT2 instead, changing the

rights and access of the intended request. This same substitution prevention remains for rotated

access tokens within the same combination of client and resource owner -- a rotated token value

would require the calculation of a new proof. This binding additionally ensures that a proof

intended for use with the access token is not usable without an access token, or vice-versa.

The resource server is required to calculate the hash of the token value presented and verify that

it is the same as the hash value in the ath field as described in Section 4.3. Since the ath field

value is covered by the DPoP proof's signature, its inclusion binds the access token value to the

holder of the key used to generate the signature.

Note that the ath field alone does not prevent replay of the DPoP proof or provide binding to the

request in which the proof is presented, and it is still important to check the time window of the

proof as well as the included message parameters, such as htm and htu.

7.1. The DPoP Authentication Scheme

A DPoP-bound access token is sent using the Authorization request header field per

 with an authentication scheme of DPoP. The syntax of the Authorization

header field for the DPoP scheme uses the token68 syntax defined in for

credentials and is repeated below for ease of reference. The ABNF notation syntax for DPoP

authentication scheme credentials is as follows:

For such an access token, a resource server check that a DPoP proof was also received in

the DPoP header field of the HTTP request, check the DPoP proof according to the rules in Section

4.3, and check that the public key of the DPoP proof matches the public key to which the access

token is bound per Section 6.

The resource server grant access to the resource unless all checks are successful.

Figure 13 shows an example request to a protected resource with a DPoP-bound access token in

the Authorization header and the DPoP proof in the DPoP header. The example uses "\" line

wrapping per . Figure 14 shows the decoded content of that DPoP proof. The JSON of

the JWT header and payload are shown, but the signature part is omitted. As usual, line breaks

and indentation are included for formatting and readability.

Section

11.6.2 of [RFC9110]

Section 11.2 of [RFC9110]

Figure 12: DPoP Authentication Scheme ABNF

token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "~" / "+" / "/") *"="

credentials = "DPoP" 1*SP token68

MUST

MUST NOT

[RFC8792]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 17

https://rfc-editor.org/rfc/rfc9110#section-11.6.2
https://rfc-editor.org/rfc/rfc9110#section-11.6.2
https://rfc-editor.org/rfc/rfc9110#section-11.2

Upon receipt of a request to a protected resource within the protection space requiring DPoP

authentication, the server can respond with a challenge to the client to provide DPoP

authentication information if the request does not include valid credentials or does not contain

an access token sufficient for access. Such a challenge is made using the 401 (Unauthorized)

response status code () and the WWW-Authenticate header field

(). The server include the WWW-Authenticate header in response to

other conditions as well.

In such challenges:

The scheme name is DPoP.

The authentication parameter realm be included to indicate the scope of protection in

the manner described in .

A scope authentication parameter be included as defined in .

Figure 13: DPoP-Protected Resource Request

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj\
 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z\
 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF\
 c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E\
 OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA

Figure 14: Decoded Content of the DPoP Proof JWT in Figure 13

{
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
}
.
{
 "jti":"e1j3V_bKic8-LAEB",
 "htm":"GET",
 "htu":"https://resource.example.org/protectedresource",
 "iat":1562262618,
 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo"
}

[RFC9110], Section 15.5.2

[RFC9110], Section 11.6.1 MAY

•

• MAY

[RFC9110], Section 11.5

• MAY [RFC6750], Section 3

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc9110#section-15.5.2
https://rfc-editor.org/rfc/rfc9110#section-11.6.1
https://rfc-editor.org/rfc/rfc9110#section-11.5
https://rfc-editor.org/rfc/rfc6750#section-3

An error parameter () be included to indicate the reason why

the request was declined, if the request included an access token but failed authentication.

The error parameter values described in are suitable, as are any

appropriate values defined by extension. The value use_dpop_nonce can be used as

described in Section 9 to signal that a nonce is needed in the DPoP proof of a subsequent

request(s). Additionally, invalid_dpop_proof is used to indicate that the DPoP proof itself

was deemed invalid based on the criteria of Section 4.3.

An error_description parameter () be included along with the

error parameter to provide developers a human-readable explanation that is not meant to

be displayed to end-users.

An algs parameter be included to signal to the client the JWS algorithms that are

acceptable for the DPoP proof JWT. The value of the parameter is a space-delimited list of

JWS alg (Algorithm) header values ().

Additional authentication parameters be used, and unknown parameters be

ignored by recipients.

Figure 15 shows a response to a protected resource request without authentication.

Figure 16 shows a response to a protected resource request that was rejected due to the failed

confirmation of the DPoP binding in the access token. Figure 16 uses "\" line wrapping per

.

Note that browser-based client applications using Cross-Origin Resource Sharing (CORS)

 only have access to CORS-safelisted response HTTP headers by default. In

order for the application to obtain and use the WWW-Authenticate HTTP response header value,

the server needs to make it available to the application by including WWW-Authenticate in the

Access-Control-Expose-Headers response header list value.

This authentication scheme is for origin-server authentication only. Therefore, this

authentication scheme be used with the Proxy-Authenticate or Proxy-

Authorization header fields.

• [RFC6750], Section 3 SHOULD

[RFC6750], Section 3.1

• [RFC6750], Section 3 MAY

• SHOULD

[RFC7515], Section 4.1.1

• MAY MUST

Figure 15: HTTP 401 Response to a Protected Resource Request without Authentication

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP algs="ES256 PS256"

[RFC8792]

Figure 16: HTTP 401 Response to a Protected Resource Request with an Invalid Token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: DPoP error="invalid_token", \
 error_description="Invalid DPoP key binding", algs="ES256"

[WHATWG.Fetch]

MUST NOT

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 19

https://rfc-editor.org/rfc/rfc6750#section-3
https://rfc-editor.org/rfc/rfc6750#section-3.1
https://rfc-editor.org/rfc/rfc6750#section-3
https://rfc-editor.org/rfc/rfc7515#section-4.1.1

Note that the syntax of the Authorization header field for this authentication scheme follows

the usage of the Bearer scheme defined in . While it is not the preferred

credential syntax of , it is compatible with the general authentication framework

therein and is used for consistency and familiarity with the Bearer scheme.

Section 2.1 of [RFC6750]

[RFC9110]

7.2. Compatibility with the Bearer Authentication Scheme

Protected resources simultaneously supporting both the DPoP and Bearer schemes need to

update how the evaluation process is performed for bearer tokens to prevent downgraded usage

of a DPoP-bound access token. Specifically, such a protected resource reject a DPoP-bound

access token received as a bearer token per .

 allows a protected resource to indicate support for multiple

authentication schemes (i.e., Bearer and DPoP) with the WWW-Authenticate header field of a 401

(Unauthorized) response.

A protected resource that supports only and is unaware of DPoP would most

presumably accept a DPoP-bound access token as a bearer token (JWT says to ignore

unrecognized claims, Introspection says that other parameters might be present while

placing no functional requirements on their presence, and is effectively silent on the

content of the access token since it relates to validity). As such, a client can send a DPoP-bound

access token using the Bearer scheme upon receipt of a WWW-Authenticate: Bearer challenge

from a protected resource (or it can send a DPoP-bound access token if it has prior knowledge of

the capabilities of the protected resource). The effect of this likely simplifies the logistics of

phased upgrades to protected resources in their support DPoP or prolonged deployments of

protected resources with mixed token type support.

If a protected resource supporting both Bearer and DPoP schemes elects to respond with multiple

WWW-Authenticate challenges, attention should be paid to which challenge(s) should deliver the

actual error information. It is that the following rules be adhered to:

If no authentication information has been included with the request, then the challenges

 include an error code or other error information, as per

 (Figure 17).

If the mechanism used to attempt authentication could be established unambiguously, then

the corresponding challenge be used to deliver error information (Figure 18).

Otherwise, both Bearer and DPoP challenges be used to deliver error information

(Figure 19).

The following examples use "\" line wrapping per .

MUST

[RFC6750]

Section 11.6.1 of [RFC9110]

[RFC6750]

[RFC7519]

[RFC7662]

[RFC6750]

RECOMMENDED

•

SHOULD NOT Section 3.1 of

[RFC6750]

•

SHOULD

• MAY

[RFC8792]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc6750#section-2.1
https://rfc-editor.org/rfc/rfc9110#section-11.6.1
https://rfc-editor.org/rfc/rfc6750#section-3.1

Figure 17: HTTP 401 Response to a Protected Resource Request without Authentication

GET /protectedresource HTTP/1.1
Host: resource.example.org

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer, DPoP algs="ES256 PS256"

Figure 18: HTTP 401 Response to a Protected Resource Request with Invalid Authentication

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: Bearer INVALID_TOKEN

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token", \
 error_description="Invalid token", DPoP algs="ES256 PS256"

Figure 19: HTTP 400 Response to a Protected Resource Request with Ambiguous Authentication

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: Bearer Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU
Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

HTTP/1.1 400 Bad Request
WWW-Authenticate: Bearer error="invalid_request", \
 error_description="Multiple methods used to include access token", \
 DPoP algs="ES256 PS256", error="invalid_request", \
 error_description="Multiple methods used to include access token"

7.3. Client Considerations

Authorization including a DPoP proof may not be idempotent (depending on server enforcement

of jti, iat, and nonce claims). Consequently, all previously idempotent requests for protected

resources that were previously idempotent may no longer be idempotent. It is

that clients generate a unique DPoP proof, even when retrying idempotent requests in response

to HTTP errors generally understood as transient.

Clients that encounter frequent network errors may experience additional challenges when

interacting with servers with stricter nonce validation implementations.

RECOMMENDED

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 21

8. Authorization Server-Provided Nonce

This section specifies a mechanism using opaque nonces provided by the server that can be used

to limit the lifetime of DPoP proofs. Without employing such a mechanism, a malicious party

controlling the client (potentially including the end-user) can create DPoP proofs for use

arbitrarily far in the future.

Including a nonce value contributed by the authorization server in the DPoP proof be used

by authorization servers to limit the lifetime of DPoP proofs. The server determines when to

issue a new DPoP nonce challenge and if it is needed, thereby requiring the use of the nonce

value in subsequent DPoP proofs. The logic through which the server makes that determination

is out of scope of this document.

An authorization server supply a nonce value to be included by the client in DPoP proofs

sent. In this case, the authorization server responds to requests that do not include a nonce with

an HTTP 400 (Bad Request) error response per using use_dpop_nonce as

the error code value. The authorization server includes a DPoP-Nonce HTTP header in the

response supplying a nonce value to be used when sending the subsequent request. Nonce values

 be unpredictable. This same error code is used when supplying a new nonce value when

there was a nonce mismatch. The client will typically retry the request with the new nonce value

supplied upon receiving a use_dpop_nonce error with an accompanying nonce value.

For example, in response to a token request without a nonce when the authorization server

requires one, the authorization server can respond with a DPoP-Nonce value such as the

following to provide a nonce value to include in the DPoP proof:

Other HTTP headers and JSON fields also be included in the error response, but there

 be more than one DPoP-Nonce header.

Upon receiving the nonce, the client is expected to retry its token request using a DPoP proof

including the supplied nonce value in the nonce claim of the DPoP proof. An example unencoded

JWT payload of such a DPoP proof including a nonce is shown below.

MAY

MAY

Section 5.2 of [RFC6749]

MUST

Figure 20: HTTP 400 Response to a Token Request without a Nonce

 HTTP/1.1 400 Bad Request
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 {
 "error": "use_dpop_nonce",
 "error_description":
 "Authorization server requires nonce in DPoP proof"
 }

MAY MUST

NOT

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 22

https://rfc-editor.org/rfc/rfc6749#section-5.2

The nonce is opaque to the client.

If the nonce claim in the DPoP proof does not exactly match a nonce recently supplied by the

authorization server to the client, the authorization server reject the request. The rejection

response include a DPoP-Nonce HTTP header providing a new nonce value to use for

subsequent requests.

The intent is that clients need to keep only one nonce value and servers need to keep a window

of recent nonces. That said, transient circumstances may arise in which the stored nonce values

for the server and the client differ. However, this situation is self-correcting. With any rejection

message, the server can send the client the nonce value it wants to use to the client, and the

client can store that nonce value and retry the request with it. Even if the client and/or server

discard their stored nonce values, that situation is also self-correcting because new nonce values

can be communicated when responding to or retrying failed requests.

Note that browser-based client applications using CORS only have access to

CORS-safelisted response HTTP headers by default. In order for the application to obtain and use

the DPoP-Nonce HTTP response header value, the server needs to make it available to the

application by including DPoP-Nonce in the Access-Control-Expose-Headers response header

list value.

Figure 21: DPoP Proof Payload including a Nonce Value

 {
 "jti": "-BwC3ESc6acc2lTc",
 "htm": "POST",
 "htu": "https://server.example.com/token",
 "iat": 1562262616,
 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"
 }

MUST

MAY

[WHATWG.Fetch]

8.1. Nonce Syntax

The nonce syntax in ABNF as used by (which is the same as the scope-token syntax) is

shown below.

[RFC6749]

Figure 22: Nonce ABNF

nonce = 1*NQCHAR

8.2. Providing a New Nonce Value

It is up to the authorization server when to supply a new nonce value for the client to use. The

client is expected to use the existing supplied nonce in DPoP proofs until the server supplies a

new nonce value.

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 23

The authorization server supply the new nonce in the same way that the initial one was

supplied: by using a DPoP-Nonce HTTP header in the response. The DPoP-Nonce HTTP header

field uses the nonce syntax defined in Section 8.1. Each time this happens, it requires an extra

protocol round trip.

A more efficient manner of supplying a new nonce value is also defined by including a DPoP-

Nonce HTTP header in the HTTP 200 (OK) response from the previous request. The client

use the new nonce value supplied for the next token request and for all subsequent token

requests until the authorization server supplies a new nonce.

Responses that include the DPoP-Nonce HTTP header should be uncacheable (e.g., using Cache-

Control: no-store in response to a GET request) to prevent the response from being used to

serve a subsequent request and a stale nonce value from being used as a result.

An example 200 OK response providing a new nonce value is shown below.

MAY

MUST

Figure 23: HTTP 200 Response Providing the Next Nonce Value

 HTTP/1.1 200 OK
 Cache-Control: no-store
 DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1

9. Resource Server-Provided Nonce

Resource servers can also choose to provide a nonce value to be included in DPoP proofs sent to

them. They provide the nonce using the DPoP-Nonce header in the same way that authorization

servers do as described in Sections 8 and 8.2. The error signaling is performed as described in

Section 7.1. Resource servers use an HTTP 401 (Unauthorized) error code with an accompanying

WWW-Authenticate: DPoP value and DPoP-Nonce value to accomplish this.

For example, in response to a resource request without a nonce when the resource server

requires one, the resource server can respond with a DPoP-Nonce value such as the following to

provide a nonce value to include in the DPoP proof. The example below uses "\" line wrapping

per .

Note that the nonces provided by an authorization server and a resource server are different and

should not be confused with one another since nonces will be only accepted by the server that

issued them. Likewise, should a client use multiple authorization servers and/or resource

[RFC8792]

Figure 24: HTTP 401 Response to a Resource Request without a Nonce

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP error="use_dpop_nonce", \
 error_description="Resource server requires nonce in DPoP proof"
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 24

servers, a nonce issued by any of them should be used only at the issuing server. Developers

should also be careful to not confuse DPoP nonces with the OpenID Connect ID

Token nonce.

[OpenID.Core]

10. Authorization Code Binding to a DPoP Key

Binding the authorization code issued to the client's proof-of-possession key can enable end-to-

end binding of the entire authorization flow. This specification defines the dpop_jkt

authorization request parameter for this purpose. The value of the dpop_jkt authorization

request parameter is the JWK Thumbprint of the proof-of-possession public key using

the SHA-256 hash function, which is the same value as used for the jkt confirmation method

defined in Section 6.1.

When a token request is received, the authorization server computes the JWK Thumbprint of the

proof-of-possession public key in the DPoP proof and verifies that it matches the dpop_jkt

parameter value in the authorization request. If they do not match, it reject the request.

An example authorization request using the dpop_jkt authorization request parameter is shown

below and uses "\" line wrapping per .

Use of the dpop_jkt authorization request parameter is . Note that the dpop_jkt

authorization request parameter also be used in combination with Proof Key for Code

Exchange (PKCE) , which is recommended by as a countermeasure

to authorization code injection. The dpop_jkt authorization request parameter only provides

similar protections when a unique DPoP key is used for each authorization request.

[RFC7638]

MUST

[RFC8792]

Figure 25: Authorization Request Using the dpop_jkt Parameter

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz\
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
 &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM\
 &code_challenge_method=S256\
 &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs HTTP/1.1
Host: server.example.com

OPTIONAL

MAY

[RFC7636] [SECURITY-TOPICS]

10.1. DPoP with Pushed Authorization Requests

When Pushed Authorization Requests (PARs) are used in conjunction with DPoP, there

are two ways in which the DPoP key can be communicated in the PAR request:

The dpop_jkt parameter can be used as described in Section 10 to bind the issued

authorization code to a specific key. In this case, dpop_jkt be included alongside other

authorization request parameters in the POST body of the PAR request.

Alternatively, the DPoP header can be added to the PAR request. In this case, the

authorization server check the provided DPoP proof JWT as defined in Section 4.3. It

 further behave as if the contained public key's thumbprint was provided using

dpop_jkt, i.e., reject the subsequent token request unless a DPoP proof for the same key is

[RFC9126]

•

MUST

•

MUST

MUST

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 25

provided. This can help to simplify the implementation of the client, as it can "blindly" attach

the DPoP header to all requests to the authorization server regardless of the type of request.

Additionally, it provides a stronger binding, as the DPoP header contains a proof of

possession of the private key.

Both mechanisms be supported by an authorization server that supports PAR and DPoP. If

both mechanisms are used at the same time, the authorization server reject the request if

the JWK Thumbprint in dpop_jkt does not match the public key in the DPoP header.

Allowing both mechanisms ensures that clients using dpop_jkt do not need to distinguish

between front-channel and pushed authorization requests, and at the same time, clients that

only have one code path for protecting all calls to authorization server endpoints do not need to

distinguish between requests to the PAR endpoint and the token endpoint.

MUST

MUST

11. Security Considerations

In DPoP, the prevention of token replay at a different endpoint (see Section 2) is achieved through

authentication of the server per and the binding of the DPoP proof to a certain URI

and HTTP method. However, DPoP has a somewhat different nature of protection than TLS-based

methods such as OAuth Mutual TLS or OAuth Token Binding (see

also Sections 11.1 and 11.7). TLS-based mechanisms can leverage a tight integration between the

TLS layer and the application layer to achieve strong message integrity, authenticity, and replay

protection.

[RFC6125]

[RFC8705] [TOKEN-BINDING]

11.1. DPoP Proof Replay

If an adversary is able to get hold of a DPoP proof JWT, the adversary could replay that token at

the same endpoint (the HTTP endpoint and method are enforced via the respective claims in the

JWTs). To limit this, servers only accept DPoP proofs for a limited time after their creation

(preferably only for a relatively brief period on the order of seconds or minutes).

In the context of the target URI, servers can store the jti value of each DPoP proof for the time

window in which the respective DPoP proof JWT would be accepted to prevent multiple uses of

the same DPoP proof. HTTP requests to the same URI for which the jti value has been seen

before would be declined. When strictly enforced, such a single-use check provides a very strong

protection against DPoP proof replay, but it may not always be feasible in practice, e.g., when

multiple servers behind a single endpoint have no shared state.

In order to guard against memory exhaustion attacks, a server that is tracking jti values should

reject DPoP proof JWTs with unnecessarily large jti values or store only a hash thereof.

Note: To accommodate for clock offsets, the server accept DPoP proofs that carry an iat

time in the reasonably near future (on the order of seconds or minutes). Because clock skews

between servers and clients may be large, servers limit DPoP proof lifetimes by using

server-provided nonce values containing the time at the server rather than comparing the client-

supplied iat time to the time at the server. Nonces created in this way yield the same result even

in the face of arbitrarily large clock skews.

MUST

MAY

MAY

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 26

Server-provided nonces are an effective means for further reducing the chances for successful

DPoP proof replay. Unlike cryptographic nonces, it is acceptable for clients to use the same nonce

multiple times and for the server to accept the same nonce multiple times. As long as the jti

value is tracked and duplicates are rejected for the lifetime of the nonce, there is no additional

risk of token replay.

11.2. DPoP Proof Pre-generation

An attacker in control of the client can pre-generate DPoP proofs for specific endpoints

arbitrarily far into the future by choosing the iat value in the DPoP proof to be signed by the

proof-of-possession key. Note that one such attacker is the person who is the legitimate user of

the client. The user may pre-generate DPoP proofs to exfiltrate from the machine possessing the

proof-of-possession key upon which they were generated and copy them to another machine that

does not possess the key. For instance, a bank employee might pre-generate DPoP proofs on a

bank computer and then copy them to another machine for use in the future, thereby bypassing

bank audit controls. When DPoP proofs can be pre-generated and exfiltrated, all that is actually

being proved in DPoP protocol interactions is possession of a DPoP proof -- not of the proof-of-

possession key.

Use of server-provided nonce values that are not predictable by attackers can prevent this attack.

By providing new nonce values at times of its choosing, the server can limit the lifetime of DPoP

proofs, preventing pre-generated DPoP proofs from being used. When server-provided nonces

are used, possession of the proof-of-possession key is being demonstrated -- not just possession of

a DPoP proof.

The ath claim limits the use of pre-generated DPoP proofs to the lifetime of the access token.

Deployments that do not utilize the nonce mechanism issue long-lived DPoP

constrained access tokens, preferring instead to use short-lived access tokens and refresh tokens.

Whilst an attacker could pre-generate DPoP proofs to use the refresh token to obtain a new

access token, they would be unable to realistically pre-generate DPoP proofs to use a newly

issued access token.

SHOULD NOT

11.3. DPoP Nonce Downgrade

A server accept any DPoP proofs without the nonce claim when a DPoP nonce has

been provided to the client.

MUST NOT

11.4. Untrusted Code in the Client Context

If an adversary is able to run code in the client's execution context, the security of DPoP is no

longer guaranteed. Common issues in web applications leading to the execution of untrusted

code are XSS and remote code inclusion attacks.

If the private key used for DPoP is stored in such a way that it cannot be exported, e.g., in a

hardware or software security module, the adversary cannot exfiltrate the key and use it to

create arbitrary DPoP proofs. The adversary can, however, create new DPoP proofs as long as the

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 27

client is online and uses these proofs (together with the respective tokens) either on the victim's

device or on a device under the attacker's control to send arbitrary requests that will be accepted

by servers.

To send requests even when the client is offline, an adversary can try to pre-compute DPoP

proofs using timestamps in the future and exfiltrate these together with the access or refresh

token.

An adversary might further try to associate tokens issued from the token endpoint with a key

pair under the adversary's control. One way to achieve this is to modify existing code, e.g., by

replacing cryptographic APIs. Another way is to launch a new authorization grant between the

client and the authorization server in an iframe. This grant needs to be "silent", i.e., not require

interaction with the user. With code running in the client's origin, the adversary has access to the

resulting authorization code and can use it to associate their own DPoP keys with the tokens

returned from the token endpoint. The adversary is then able to use the resulting tokens on their

own device even if the client is offline.

Therefore, protecting clients against the execution of untrusted code is extremely important even

if DPoP is used. Besides secure coding practices, Content Security Policy can be used as

a second layer of defense against XSS.

[W3C.CSP]

11.5. Signed JWT Swapping

Servers accepting signed DPoP proof JWTs verify that the typ field is dpop+jwt in the

headers of the JWTs to ensure that adversaries cannot use JWTs created for other purposes.

MUST

11.6. Signature Algorithms

Implementers ensure that only asymmetric digital signature algorithms (such as ES256)

that are deemed secure can be used for signing DPoP proofs. In particular, the algorithm none

 be allowed.

MUST

MUST NOT

11.7. Request Integrity

DPoP does not ensure the integrity of the payload or headers of requests. The DPoP proof only

contains claims for the HTTP URI and method, but not the message body or general request

headers, for example.

This is an intentional design decision intended to keep DPoP simple to use, but as described, it

makes DPoP potentially susceptible to replay attacks where an attacker is able to modify message

contents and headers. In many setups, the message integrity and confidentiality provided by TLS

is sufficient to provide a good level of protection.

Note: While signatures covering other parts of requests are out of the scope of this specification,

additional information to be signed can be added into DPoP proofs.

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 28

11.8. Access Token and Public Key Binding

The binding of the access token to the DPoP public key, as specified in Section 6, uses a

cryptographic hash of the JWK representation of the public key. It relies on the hash function

having sufficient second-preimage resistance so as to make it computationally infeasible to find

or create another key that produces to the same hash output value. The SHA-256 hash function

was used because it meets the aforementioned requirement while being widely available.

Similarly, the binding of the DPoP proof to the access token uses a hash of that access token as the

value of the ath claim in the DPoP proof (see Section 4.2). This relies on the value of the hash

being sufficiently unique so as to reliably identify the access token. The collision resistance of

SHA-256 meets that requirement.

11.9. Authorization Code and Public Key Binding

Cryptographic binding of the authorization code to the DPoP public key is specified in Section 10.

This binding prevents attacks in which the attacker captures the authorization code and creates

a DPoP proof using a proof-of-possession key other than the one held by the client and redeems

the authorization code using that DPoP proof. By ensuring end to end that only the client's DPoP

key can be used, this prevents captured authorization codes from being exfiltrated and used at

locations other than the one to which the authorization code was issued.

Authorization codes can, for instance, be harvested by attackers from places where the HTTP

messages containing them are logged. Even when efforts are made to make authorization codes

one-time-use, in practice, there is often a time window during which attackers can replay them.

For instance, when authorization servers are implemented as scalable replicated services, some

replicas may temporarily not yet have the information needed to prevent replay. DPoP binding of

the authorization code solves these problems.

If an authorization server does not (or cannot) strictly enforce the single-use limitation for

authorization codes and an attacker can access the authorization code (and if PKCE is used, the

code_verifier), the attacker can create a forged token request, binding the resulting token to an

attacker-controlled key. For example, using XSS, attackers might obtain access to the

authorization code and PKCE parameters. Use of the dpop_jkt parameter prevents this attack.

The binding of the authorization code to the DPoP public key uses a JWK Thumbprint of the

public key, just as the access token binding does. The same JWK Thumbprint considerations

apply.

11.10. Hash Algorithm Agility

The jkt confirmation method member, the ath JWT claim, and the dpop_jkt authorization

request parameter defined herein all use the output of the SHA-256 hash function as their value.

The use of a single hash function by this specification was intentional and aimed at simplicity

and avoidance of potential security and interoperability issues arising from common mistakes

implementing and deploying parameterized algorithm agility schemes. However, the use of a

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 29

different hash function is not precluded if future circumstances change and make SHA-256

insufficient for the requirements of this specification. Should that need arise, it is expected that a

short specification will be produced that updates this one. Using the output of an appropriate

hash function as the value, that specification will likely define a new confirmation method

member, a new JWT claim, and a new authorization request parameter. These items will be used

in place of, or alongside, their respective counterparts in the same message structures and flows

of the larger protocol defined by this specification.

11.11. Binding to Client Identity

In cases where DPoP is used with client authentication, it is only bound to authentication by

being coincident in the same TLS tunnel. Since the DPoP proof is not directly bound to the

authentication cryptographically, it's possible that the authentication or the DPoP messages were

copied into the tunnel. While including the URI in the DPoP can partially mitigate some of this

risk, modifying the authentication mechanism to provide cryptographic binding between

authentication and DPoP could provide better protection. However, providing additional binding

with authentication through the modification of authentication mechanisms or other means is

beyond the scope of this specification.

12. IANA Considerations

Name:

Additional Token Endpoint Response Parameters:

HTTP Authentication Scheme(s):

Change Controller:

Reference:

12.1. OAuth Access Token Types Registration

IANA has registered the following access token type in the "OAuth Access Token Types" registry

 established by .

DPoP

(none)

DPoP

IETF

RFC 9449

[IANA.OAuth.Params] [RFC6749]

Invalid DPoP proof:

Name:

Usage Location:

Protocol Extension:

12.2. OAuth Extensions Error Registration

IANA has registered the following error values in the "OAuth Extensions Error" registry

 established by .

invalid_dpop_proof

token error response, resource access error response

Demonstrating Proof of Possession (DPoP)

[IANA.OAuth.Params] [RFC6749]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 30

Change Controller:

Reference:

Use DPoP nonce:

Name:

Usage Location:

Protocol Extension:

Change Controller:

Reference:

IETF

RFC 9449

use_dpop_nonce

token error response, resource access error response

Demonstrating Proof of Possession (DPoP)

IETF

RFC 9449

Name:

Parameter Usage Location:

Change Controller:

Reference:

12.3. OAuth Parameters Registration

IANA has registered the following authorization request parameter in the "OAuth Parameters"

registry established by .

dpop_jkt

authorization request

IETF

Section 10 of RFC 9449

[IANA.OAuth.Params] [RFC6749]

Authentication Scheme Name:

Reference:

12.4. HTTP Authentication Schemes Registration

IANA has registered the following scheme in the "HTTP Authentication Schemes" registry

 established by .

DPoP

Section 7.1 of RFC 9449

[IANA.HTTP.AuthSchemes] [RFC9110], Section 16.4.1

Type name:

Subtype name:

Required parameters:

12.5. Media Type Registration

IANA has registered the application/dpop+jwt media type in the "Media Types"

registry in the manner described in , which is used to indicate that

the content is a DPoP JWT.

application

dpop+jwt

n/a

[RFC2046]

[IANA.MediaTypes] [RFC6838]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 31

https://rfc-editor.org/rfc/rfc9110#section-16.4.1

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

n/a

binary. A DPoP JWT is a JWT; JWT values are encoded as a series of

base64url-encoded values (some of which may be the empty string) separated by period ('.')

characters.

See Section 11 of RFC 9449

n/a

RFC 9449

Applications using RFC 9449 for application-level proof of

possession

n/a

n/a

n/a

Michael B. Jones,

michael_b_jones@hotmail.com

COMMON

none

Michael B. Jones, michael_b_jones@hotmail.com

IETF

Confirmation Method Value:

Confirmation Method Description:

Change Controller:

Reference:

12.6. JWT Confirmation Methods Registration

IANA has registered the following JWT cnf member value in the "JWT Confirmation Methods"

registry established by .

jkt

JWK SHA-256 Thumbprint

IETF

Section 6 of RFC 9449

[IANA.JWT] [RFC7800]

HTTP method:

12.7. JSON Web Token Claims Registration

IANA has registered the following Claims in the "JSON Web Token Claims" registry

established by .

[IANA.JWT]

[RFC7519]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 32

Claim Name:

Claim Description:

Change Controller:

Reference:

HTTP URI:

Claim Name:

Claim Description:

Change Controller:

Reference:

Access token hash:

Claim Name:

Claim Description:

Change Controller:

Reference:

htm

The HTTP method of the request

IETF

Section 4.2 of RFC 9449

htu

The HTTP URI of the request (without query and fragment parts)

IETF

Section 4.2 of RFC 9449

ath

The base64url-encoded SHA-256 hash of the ASCII encoding of the

associated access token's value

IETF

Section 4.2 of RFC 9449

Claim Name:

Claim Description:

Change Controller:

12.7.1. "nonce" Registration Update

The Internet Security Glossary provides a useful definition of nonce as a random or

non-repeating value that is included in data exchanged by a protocol, usually for the purpose of

guaranteeing liveness and thus detecting and protecting against replay attacks.

However, the initial registration of the nonce claim by used language that was

contextually specific to that application, which was potentially limiting to its general

applicability.

Therefore, IANA has updated the entry for nonce in the "JSON Web Token Claims" registry

 with an expanded definition to reflect that the claim can be used appropriately in

other contexts and with the addition of this document as a reference, as follows.

nonce

Value used to associate a Client session with an ID Token (also be used

for nonce values in other applications of JWTs)

OpenID Foundation Artifact Binding Working Group, openid-specs-

ab@lists.openid.net

[RFC4949]

[OpenID.Core]

[IANA.JWT]

MAY

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 33

Specification Document(s): and RFC 9449 Section 2 of [OpenID.Core]

DPoP:

Field Name:

Status:

Reference:

DPoP-Nonce:

Field Name:

Status:

Reference:

12.8. Hypertext Transfer Protocol (HTTP) Field Name Registration

IANA has registered the following HTTP header fields, as specified by this document, in the

"Hypertext Transfer Protocol (HTTP) Field Name Registry" established by

:

DPoP

permanent

RFC 9449

DPoP-Nonce

permanent

RFC 9449

[IANA.HTTP.Fields]

[RFC9110]

Metadata Name:

Metadata Description:

Change Controller:

Reference:

12.9. OAuth Authorization Server Metadata Registration

IANA has registered the following value in the "OAuth Authorization Server Metadata" registry

 established by .

dpop_signing_alg_values_supported

JSON array containing a list of the JWS algorithms supported for DPoP

proof JWTs

IETF

Section 5.1 of RFC 9449

[IANA.OAuth.Params] [RFC8414]

Client Metadata Name:

Client Metadata Description:

Change Controller:

12.10. OAuth Dynamic Client Registration Metadata

IANA has registered the following value in the IANA "OAuth Dynamic Client Registration

Metadata" registry established by .

dpop_bound_access_tokens

Boolean value specifying whether the client always uses DPoP for

token requests

IETF

[IANA.OAuth.Params] [RFC7591]

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 34

https://openid.net/specs/openid-connect-core-1_0.html#IDToken

[RFC2119]

[RFC3986]

[RFC5234]

[RFC6125]

[RFC6749]

[RFC6750]

[RFC7515]

[RFC7517]

[RFC7519]

[RFC7638]

[RFC7800]

[RFC8174]

13. References

13.1. Normative References

, , ,

, , March 1997,

.

, , and ,

, , , , January 2005,

.

 and ,

, , , , January 2008,

.

 and ,

,

, , March 2011,

.

, , ,

, October 2012, .

 and ,

, , , October 2012,

.

, , and , , ,

, May 2015, .

, , , , May 2015,

.

, , and , , ,

, May 2015, .

 and , , ,

, September 2015, .

, , and ,

, , , April 2016,

.

, ,

, , , May 2017,

.

Reference: Section 5.2 of RFC 9449

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Saint-Andre, P. J. Hodges "Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using X.

509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC

6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/

rfc6125>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token

Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-

editor.org/info/rfc6750>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515

DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517

<https://www.rfc-editor.org/info/rfc7517>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Jones, M. N. Sakimura "JSON Web Key (JWK) Thumbprint" RFC 7638 DOI

10.17487/RFC7638 <https://www.rfc-editor.org/info/rfc7638>

Jones, M. Bradley, J. H. Tschofenig "Proof-of-Possession Key Semantics for

JSON Web Tokens (JWTs)" RFC 7800 DOI 10.17487/RFC7800 <https://

www.rfc-editor.org/info/rfc7800>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 35

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7638
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[SHS]

[BREACH]

[Cloudbleed]

[CRIME]

[GitHub.Tokens]

[Heartbleed]

[IANA.HTTP.AuthSchemes]

[IANA.HTTP.Fields]

[IANA.JOSE.ALGS]

[IANA.JWT]

[IANA.MediaTypes]

[IANA.OAuth.Params]

[OpenID.Core]

[RFC2046]

[RFC4122]

, ,

, , August 2015,

.

13.2. Informative References

, ,

.

,

, February 2017,

.

, ,

.

,

, April 2022,

.

,

.

,

, .

, ,

.

, ,

.

, , .

, , .

, ,

.

, , , , and ,

, November 2014,

.

 and ,

, , , November 1996,

.

, , and ,

, , , July 2005,

.

National Institute of Standards and Technology "Secure Hash Standard (SHS)"

FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <http://dx.doi.org/

10.6028/NIST.FIPS.180-4>

CVE "CVE-2013-3587" <https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2013-3587>

Graham-Cumming, J. "Incident report on memory leak caused by Cloudflare

parser bug" <https://blog.cloudflare.com/incident-report-on-

memory-leak-caused-by-cloudflare-parser-bug/>

CVE "CVE-2012-4929" <https://cve.mitre.org/cgi-bin/cvename.cgi?

name=cve-2012-4929>

Hanley, M. "Security alert: Attack campaign involving stolen OAuth user

tokens issued to two third-party integrators" <https://github.blog/

2022-04-15-security-alert-stolen-oauth-user-tokens/>

"CVE-2014-0160" <https://cve.mitre.org/cgi-bin/cvename.cgi?

name=cve-2014-0160>

IANA "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" <https://www.iana.org/assignments/http-authschemes/>

IANA "Hypertext Transfer Protocol (HTTP) Field Name Registry" <https://

www.iana.org/assignments/http-fields/>

IANA "JSON Web Signature and Encryption Algorithms" <https://

www.iana.org/assignments/jose/>

IANA "JSON Web Token Claims" <https://www.iana.org/assignments/jwt/>

IANA "Media Types" <https://www.iana.org/assignments/media-types/>

IANA "OAuth Parameters" <https://www.iana.org/assignments/oauth-

parameters/>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID

Connect Core 1.0 incorporating errata set 1" <https://

openid.net/specs/openid-connect-core-1_0.html>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046

<https://www.rfc-editor.org/info/rfc2046>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 36

http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3587
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3587
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://www.iana.org/assignments/http-authschemes/
https://www.iana.org/assignments/http-fields/
https://www.iana.org/assignments/http-fields/
https://www.iana.org/assignments/jose/
https://www.iana.org/assignments/jose/
https://www.iana.org/assignments/jwt/
https://www.iana.org/assignments/media-types/
https://www.iana.org/assignments/oauth-parameters/
https://www.iana.org/assignments/oauth-parameters/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122

[RFC4949]

[RFC6838]

[RFC7523]

[RFC7591]

[RFC7636]

[RFC7662]

[RFC8414]

[RFC8705]

[RFC8707]

[RFC8725]

[RFC8792]

[RFC9110]

[RFC9126]

, , , ,

, August 2007, .

, , and ,

, , , , January 2013,

.

, , and ,

, ,

, May 2015, .

, , , , and ,

, , , July

2015, .

, , and ,

, , , September 2015,

.

, , , ,

October 2015, .

, , and ,

, , , June 2018,

.

, , , and ,

, ,

, February 2020, .

, , and , ,

, , February 2020,

.

, , and , ,

, , , February 2020,

.

, , , and ,

, , , June

2020, .

, , and , ,

, , , June 2022,

.

, , , , and ,

, , , September

2021, .

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI

10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration

Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://

www.rfc-editor.org/info/rfc6838>

Jones, M. Campbell, B. C. Mortimore "JSON Web Token (JWT) Profile for

OAuth 2.0 Client Authentication and Authorization Grants" RFC 7523 DOI

10.17487/RFC7523 <https://www.rfc-editor.org/info/rfc7523>

Richer, J., Ed. Jones, M. Bradley, J. Machulak, M. P. Hunt "OAuth 2.0

Dynamic Client Registration Protocol" RFC 7591 DOI 10.17487/RFC7591

<https://www.rfc-editor.org/info/rfc7591>

Sakimura, N., Ed. Bradley, J. N. Agarwal "Proof Key for Code Exchange by

OAuth Public Clients" RFC 7636 DOI 10.17487/RFC7636

<https://www.rfc-editor.org/info/rfc7636>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server

Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-

editor.org/info/rfc8414>

Campbell, B. Bradley, J. Sakimura, N. T. Lodderstedt "OAuth 2.0 Mutual-

TLS Client Authentication and Certificate-Bound Access Tokens" RFC 8705 DOI

10.17487/RFC8705 <https://www.rfc-editor.org/info/rfc8705>

Campbell, B. Bradley, J. H. Tschofenig "Resource Indicators for OAuth 2.0"

RFC 8707 DOI 10.17487/RFC8707 <https://www.rfc-editor.org/

info/rfc8707>

Sheffer, Y. Hardt, D. M. Jones "JSON Web Token Best Current Practices"

BCP 225 RFC 8725 DOI 10.17487/RFC8725 <https://www.rfc-

editor.org/info/rfc8725>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in

Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Lodderstedt, T. Campbell, B. Sakimura, N. Tonge, D. F. Skokan "OAuth 2.0

Pushed Authorization Requests" RFC 9126 DOI 10.17487/RFC9126

<https://www.rfc-editor.org/info/rfc9126>

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 37

https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9126

[SECURITY-TOPICS]

[TOKEN-BINDING]

[W3C.CSP]

[W3C.WebCryptoAPI]

[WHATWG.Fetch]

, , , and ,

, ,

, 5 June 2023,

.

, , , and ,

, , , 19

October 2018,

.

, , , July 2023,

.

, , , January

2017, .

, , July 2023,

.

Lodderstedt, T. Bradley, J. Labunets, A. D. Fett "OAuth 2.0 Security

Best Current Practice" Work in Progress Internet-Draft, draft-ietf-oauth-

security-topics-23 <https://datatracker.ietf.org/doc/html/draft-ietf-

oauth-security-topics-23>

Jones, M. Campbell, B. Bradley, J. W. Denniss "OAuth 2.0 Token

Binding" Work in Progress Internet-Draft, draft-ietf-oauth-token-binding-08

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-

binding-08>

West, M. "Content Security Policy Level 3" W3C Working Draft

<https://www.w3.org/TR/CSP3/>

Watson, M. "Web Cryptography API" W3C Recommendation

<https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126>

WHATWG "Fetch Living Standard" <https://

fetch.spec.whatwg.org/>

Acknowledgements

We would like to thank , , , ,

, , , , ,

, , , , , , ,

, , , , , ,

, , , , ,

, , , , , , ,

, , , , , and others for their

valuable input, feedback, and general support of this work.

This document originated from discussions at the 4th OAuth Security Workshop in Stuttgart,

Germany. We thank the organizers of this workshop (and).

Brock Allen Annabelle Backman Dominick Baier Spencer Balogh

Vittorio Bertocci Jeff Corrigan Domingos Creado Philippe De Ryck Andrii Deinega William

Denniss Vladimir Dzhuvinov Mike Engan Nikos Fotiou Mark Haine Dick Hardt Joseph Heenan

Bjorn Hjelm Jacob Ideskog Jared Jennings Benjamin Kaduk Pieter Kasselman Neil Madden

Rohan Mahy Karsten Meyer zu Selhausen Nicolas Mora Steinar Noem Mark Nottingham Rob

Otto Aaron Parecki Michael Peck Roberto Polli Paul Querna Justin Richer Joseph Salowey

Rifaat Shekh-Yusef Filip Skokan Dmitry Telegin Dave Tonge Jim Willeke

Ralf Küsters Guido Schmitz

Authors' Addresses

Daniel Fett

Authlete

 mail@danielfett.de Email:

Brian Campbell

Ping Identity

 bcampbell@pingidentity.com Email:

John Bradley

Yubico

 ve7jtb@ve7jtb.com Email:

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 38

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
mailto:mail@danielfett.de
mailto:bcampbell@pingidentity.com
mailto:ve7jtb@ve7jtb.com

Torsten Lodderstedt

Tuconic

 torsten@lodderstedt.net Email:

Michael Jones

Self-Issued Consulting

 michael_b_jones@hotmail.com Email:

 https://self-issued.info/ URI:

David Waite

Ping Identity

 david@alkaline-solutions.com Email:

RFC 9449 OAuth DPoP September 2023

Fett, et al. Standards Track Page 39

mailto:torsten@lodderstedt.net
mailto:michael_b_jones@hotmail.com
https://self-issued.info/
mailto:david@alkaline-solutions.com

	RFC 9449
	OAuth 2.0 Demonstrating Proof of Possession (DPoP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Objectives
	3. Concept
	4. DPoP Proof JWTs
	4.1. The DPoP HTTP Header
	4.2. DPoP Proof JWT Syntax
	4.3. Checking DPoP Proofs

	5. DPoP Access Token Request
	5.1. Authorization Server Metadata
	5.2. Client Registration Metadata

	6. Public Key Confirmation
	6.1. JWK Thumbprint Confirmation Method
	6.2. JWK Thumbprint Confirmation Method in Token Introspection

	7. Protected Resource Access
	7.1. The DPoP Authentication Scheme
	7.2. Compatibility with the Bearer Authentication Scheme
	7.3. Client Considerations

	8. Authorization Server-Provided Nonce
	8.1. Nonce Syntax
	8.2. Providing a New Nonce Value

	9. Resource Server-Provided Nonce
	10. Authorization Code Binding to a DPoP Key
	10.1. DPoP with Pushed Authorization Requests

	11. Security Considerations
	11.1. DPoP Proof Replay
	11.2. DPoP Proof Pre-generation
	11.3. DPoP Nonce Downgrade
	11.4. Untrusted Code in the Client Context
	11.5. Signed JWT Swapping
	11.6. Signature Algorithms
	11.7. Request Integrity
	11.8. Access Token and Public Key Binding
	11.9. Authorization Code and Public Key Binding
	11.10. Hash Algorithm Agility
	11.11. Binding to Client Identity

	12. IANA Considerations
	12.1. OAuth Access Token Types Registration
	12.2. OAuth Extensions Error Registration
	12.3. OAuth Parameters Registration
	12.4. HTTP Authentication Schemes Registration
	12.5. Media Type Registration
	12.6. JWT Confirmation Methods Registration
	12.7. JSON Web Token Claims Registration
	12.7.1. "nonce" Registration Update

	12.8. Hypertext Transfer Protocol (HTTP) Field Name Registration
	12.9. OAuth Authorization Server Metadata Registration
	12.10. OAuth Dynamic Client Registration Metadata

	13. References
	13.1. Normative References
	13.2. Informative References

	Acknowledgements
	Authors' Addresses

 OAuth 2.0 Demonstrating Proof of Possession (DPoP)

 Authlete

 mail@danielfett.de

 Ping Identity

 bcampbell@pingidentity.com

 Yubico

 ve7jtb@ve7jtb.com

 Tuconic

 torsten@lodderstedt.net

 Self-Issued Consulting

 michael_b_jones@hotmail.com
 https://self-issued.info/

 Ping Identity

 david@alkaline-solutions.com

 sec
 oauth
 security
 oauth2

 This document describes a mechanism for sender-constraining OAuth 2.0
tokens via a proof-of-possession mechanism on the application level.
This mechanism allows for the detection of replay attacks with access and refresh
tokens.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions and Terminology

 . Objectives

 . Concept

 . DPoP Proof JWTs

 . The DPoP HTTP Header

 . DPoP Proof JWT Syntax

 . Checking DPoP Proofs

 . DPoP Access Token Request

 . Authorization Server Metadata

 . Client Registration Metadata

 . Public Key Confirmation

 . JWK Thumbprint Confirmation Method

 . JWK Thumbprint Confirmation Method in Token Introspection

 . Protected Resource Access

 . The DPoP Authentication Scheme

 . Compatibility with the Bearer Authentication Scheme

 . Client Considerations

 . Authorization Server-Provided Nonce

 . Nonce Syntax

 . Providing a New Nonce Value

 . Resource Server-Provided Nonce

 . Authorization Code Binding to a DPoP Key

 . DPoP with Pushed Authorization Requests

 . Security Considerations

 . DPoP Proof Replay

 . DPoP Proof Pre-generation

 . DPoP Nonce Downgrade

 . Untrusted Code in the Client Context

 . Signed JWT Swapping

 . Signature Algorithms

 . Request Integrity

 . Access Token and Public Key Binding

 . Authorization Code and Public Key Binding

 . Hash Algorithm Agility

 . Binding to Client Identity

 . IANA Considerations

 . OAuth Access Token Types Registration

 . OAuth Extensions Error Registration

 . OAuth Parameters Registration

 . HTTP Authentication Schemes Registration

 . Media Type Registration

 . JWT Confirmation Methods Registration

 . JSON Web Token Claims Registration

 . "nonce" Registration Update

 . Hypertext Transfer Protocol (HTTP) Field Name Registration

 . OAuth Authorization Server Metadata Registration

 . OAuth Dynamic Client Registration Metadata

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 Demonstrating Proof of Possession (DPoP) is an application-level mechanism for
sender-constraining OAuth access and refresh tokens. It enables a client to
prove the possession of a public/private key pair by including
a DPoP header in an HTTP request. The value of the header is a JSON Web Token
(JWT) that enables the authorization
server to bind issued tokens to the public part of a client's
key pair. Recipients of such tokens are then able to verify the binding of the
token to the key pair that the client has demonstrated that it holds via
the DPoP header, thereby providing some assurance that the client presenting
the token also possesses the private key.
In other words, the legitimate presenter of the token is constrained to be
the sender that holds and proves possession of the private part of the
key pair.
 The mechanism specified herein can be used in cases where other
methods of sender-constraining tokens that utilize elements of the underlying
secure transport layer, such as or ,
are not available or desirable. For example, due to a sub-par user experience
of TLS client authentication in user agents and a lack of support for HTTP token
binding, neither mechanism can be used if an OAuth client is an application that
is dynamically downloaded and executed in a web browser (sometimes referred to as a
"single-page application").
 Additionally, applications that are installed and run directly
 on a user's device are well positioned to benefit from
 DPoP-bound tokens that guard against the misuse of tokens by
 a compromised or malicious resource.
Such applications often have dedicated protected storage
for cryptographic keys.
 DPoP can be used to sender-constrain access tokens regardless of the
client authentication method employed, but DPoP itself is not used for client authentication.
DPoP can also be used to sender-constrain refresh tokens issued to public clients
(those without authentication credentials associated with the client_id).

 Conventions and Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 This specification uses the Augmented Backus-Naur Form (ABNF) notation
of .
 This specification uses the terms "access token", "refresh token",
"authorization server", "resource server", "authorization endpoint",
"authorization request", "authorization response", "token endpoint",
"grant type", "access token request", "access token response",
"client", "public client", and "confidential client" defined by "The OAuth 2.0 Authorization Framework" .
 The terms "request", "response", "header field", and "target URI"
are imported from .
 The terms "JOSE" and "JOSE Header" are imported from .
 This document contains non-normative examples of partial and complete HTTP messages.
Some examples use a single trailing backslash to indicate line wrapping for long values, as per .
The character and leading spaces on wrapped lines are not part of the value.

 Objectives
 The primary aim of DPoP is to prevent unauthorized or illegitimate
parties from using leaked or stolen access tokens, by binding a token
to a public key upon issuance and requiring that the client proves
possession of the corresponding private key when using the token.
This constrains the legitimate sender of the token to only the party with
access to the private key and gives the server receiving the token added
assurances that the sender is legitimately authorized to use it.
 Access tokens that are sender-constrained via DPoP thus stand in
contrast to the typical bearer token, which can be used by any party in
possession of such a token. Although protections generally exist to prevent unintended disclosure of bearer tokens, unforeseen vectors for leakage have occurred due to vulnerabilities and implementation issues in other layers in the protocol or software stack (see, e.g., Compression Ratio Info-leak Made Easy (CRIME) , Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) ,
Heartbleed , and the Cloudflare parser bug).
There have also been numerous published token theft attacks on OAuth
implementations themselves (is just one high-profile example).
DPoP provides a general defense in depth
against the impact of unanticipated token leakage. DPoP is not, however,
a substitute for a secure transport and MUST always be used in
conjunction with HTTPS.
 The very nature of the typical OAuth protocol interaction
necessitates that the client discloses the access token to the
protected resources that it accesses. The attacker model
in describes cases where a
protected resource might be counterfeit, malicious, or compromised
and plays received tokens against other protected resources to gain
unauthorized access. Audience-restricted access tokens
(e.g., using the JWT aud claim) can
prevent such misuse. However, doing so in practice has proven to be
prohibitively cumbersome for many deployments (despite extensions such as).
Sender-constraining access tokens is a more robust and straightforward
mechanism to prevent such token replay at a different endpoint, and DPoP
is an accessible application-layer means of doing so.
 Due to the potential for cross-site scripting (XSS), browser-based
OAuth clients bring to bear added considerations with respect to protecting
tokens. The most straightforward XSS-based attack is for an attacker to
exfiltrate a token and use it themselves completely independent of the
legitimate client. A stolen access token is used for protected
resource access, and a stolen refresh token is used for obtaining new access tokens.
If the private key is non-extractable (as is possible with),
DPoP renders exfiltrated tokens alone unusable.
 XSS vulnerabilities also allow an attacker to execute code in the context of
the browser-based client application and maliciously use a token indirectly
through the client. That execution context has access to utilize the signing
key; thus, it can produce DPoP proofs to use in conjunction with the token.
At this application layer, there is most likely no feasible defense against
this threat except generally preventing XSS; therefore, it is considered
out of scope for DPoP.
 Malicious XSS code executed in the context of the browser-based client
application is also in a position to create DPoP proofs with timestamp values in
the future and exfiltrate them in conjunction with a token. These stolen
artifacts can later be used independent of the client application to
access protected resources. To prevent this, servers can optionally require
clients to include a server-chosen value into the proof that cannot be predicted
by an attacker (nonce). In the absence of the optional nonce, the impact of
pre-computed DPoP proofs is limited somewhat by the proof being bound to an
access token on protected resource access. Because a proof covering an access
token that does not yet exist cannot feasibly be created, access tokens obtained
with an exfiltrated refresh token and pre-computed proofs will be unusable.
 Additional security considerations are discussed in .

 Concept
 The main data structure introduced by this specification is a DPoP
proof JWT that is sent as a header in an
HTTP request, as described in detail below. A client uses a DPoP proof JWT to prove
the possession of a private key corresponding to a certain public key.
 Roughly speaking, a DPoP proof is a signature over:

 some data of the
HTTP request to which it is attached,
 a timestamp,
 a unique
identifier,
 an optional server-provided nonce, and
 a hash of the
associated access token when an access token is present within the
 request.

 Basic DPoP Flow

+--------+ +---------------+
	--(A)-- Token Request ------------------->	
Client	(DPoP Proof)	Authorization
		Server
	<-(B)-- DPoP-Bound Access Token ----------	
	(token_type=DPoP) +---------------+	
	+---------------+	
	--(C)-- DPoP-Bound Access Token --------->	
	(DPoP Proof)	Resource
		Server
	<-(D)-- Protected Resource ---------------	
	+---------------+	
+--------+

 The basic steps of an OAuth flow with DPoP (without the optional nonce) are shown in .

 In the token request, the client sends an authorization grant
(e.g., an authorization code, refresh token, etc.)
to the authorization server in order to obtain an access token
(and potentially a refresh token). The client attaches a DPoP
proof to the request in an HTTP header.
 The authorization server binds (sender-constrains) the access token to the
public key claimed by the client in the DPoP proof; that is, the access token cannot
be used without proving possession of the respective private key.
If a refresh token is issued to a public client, it is also bound to the public key of the DPoP proof.
 To use the access token, the client has to prove
possession of the private key by, again, adding a header to the
request that carries a DPoP proof for that request. The resource server needs to
receive information about the public key to which the access token is bound. This
information may be encoded directly into the access token (for
JWT-structured access tokens) or provided via token
introspection endpoint (not shown).
The resource server verifies that the public key to which the
access token is bound matches the public key of the DPoP proof.
It also verifies that the access token hash in the DPoP proof matches the
access token presented in the request.
 The resource server refuses to serve the request if the
signature check fails or if the data in the DPoP proof is wrong,
e.g., the target URI does not match the URI claim in the DPoP
proof JWT. The access token itself, of course, must also be
valid in all other respects.

 The DPoP mechanism presented herein is not a client authentication method.
In fact, a primary use case of DPoP is for public clients (e.g., single-page
applications and applications on a user's device) that do not use client authentication. Nonetheless, DPoP
is designed to be compatible with private_key_jwt and all
other client authentication methods.
 DPoP does not directly ensure message integrity, but it relies on the TLS
layer for that purpose. See for details.

 DPoP Proof JWTs
 DPoP introduces the concept of a DPoP proof, which is a JWT created by
the client and sent with an HTTP request using the DPoP header field.
Each HTTP request requires a unique DPoP proof.
 A valid DPoP proof demonstrates to the server that the client holds the private
key that was used to sign the DPoP proof JWT. This enables authorization servers to bind
issued tokens to the corresponding public key (as described in)
and enables resource servers to verify the key-binding of tokens that
it receives (see), which prevents said tokens from
being used by any entity that does not have access to the private key.
 The DPoP proof demonstrates possession of a key and, by itself, is not
an authentication or access control mechanism. When presented
in conjunction with a key-bound access token as described in ,
the DPoP proof provides additional assurance about the legitimacy of the client
to present the access token. However, a valid DPoP proof JWT is not sufficient alone
to make access control decisions.

 The DPoP HTTP Header
 A DPoP proof is included in an HTTP request using the following request header field.

 DPoP:
 A JWT that adheres to the structure and syntax of .

 shows an example DPoP HTTP header field. The example uses "\" line wrapping per .

 Example DPoP Header
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

 Note that per , header field names are case insensitive; thus, DPoP, DPOP, dpop, etc., are all valid and equivalent header
field names. However, case is significant in the header field value.
 The DPoP HTTP header field value
uses the token68 syntax defined in and is repeated below in for ease of reference.

 DPoP Header Field ABNF

DPoP = token68
token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "~" / "+" / "/") *"="

 DPoP Proof JWT Syntax
 A DPoP proof is a JWT that is signed (using JSON Web Signature (JWS)) with a private key chosen by the client (see below). The
JOSE Header of a DPoP JWT MUST contain at least the following parameters:

 typ:
 A field with the value dpop+jwt, which explicitly types the DPoP proof JWT as recommended in .
 alg:
 An identifier for a JWS asymmetric digital signature algorithm from . It
 MUST NOT be none or an identifier for a symmetric algorithm (Message Authentication Code (MAC)).
 jwk:
 Represents the public key chosen by the client in JSON Web Key (JWK) format as defined in . It
 MUST NOT contain a private key.

 The payload of a DPoP proof MUST contain at least the following claims:

 jti:
 Unique identifier for the DPoP proof JWT.
The value MUST be assigned such that there is a negligible
probability that the same value will be assigned to any
other DPoP proof used in the same context during the time window of validity.
Such uniqueness can be accomplished by encoding (base64url or any other
suitable encoding) at least 96 bits of
pseudorandom data or by using a version 4 Universally Unique Identifier (UUID) string according to .
The jti can be used by the server for replay
detection and prevention; see .
 htm:
 The value of the HTTP method () of the
request to which the JWT is attached.
 htu:
 The HTTP target URI () of the request to which the JWT is attached, without query and fragment
parts.
 iat:
 Creation timestamp of the JWT ().

 When the DPoP proof is used in conjunction with the presentation of an access token in protected resource access (see
), the DPoP proof MUST also contain the following claim:

 ath:
 Hash of the access token.
The value MUST be the result of a base64url encoding (as defined in) the SHA-256
hash of the ASCII encoding of the associated access token's value.

 When the authentication server or resource server provides a DPoP-Nonce HTTP header
in a response (see Sections and), the DPoP proof MUST also contain
the following claim:

 nonce:
 A recent nonce provided via the DPoP-Nonce HTTP header.

 A DPoP proof MAY contain other JOSE Header Parameters or claims as defined by extension,
profile, or deployment-specific requirements.
 is a conceptual example showing the decoded content of the DPoP
proof in . The JSON of the JWT header and payload are shown,
but the signature part is omitted. As usual, line breaks and extra spaces
are included for formatting and readability.

 Example JWT Content of a DPoP Proof
 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
}
.
{
 "jti":"-BwC3ESc6acc2lTc",
 "htm":"POST",
 "htu":"https://server.example.com/token",
 "iat":1562262616
}

 Of the HTTP request, only the HTTP method and URI are
included in the DPoP JWT; therefore, only these two message parts
are covered by the DPoP proof.
The idea is to sign just enough of the HTTP data to
provide reasonable proof of possession with respect to the HTTP request.
This design approach of using only a minimal subset of the HTTP header
data is to avoid the substantial difficulties inherent in attempting to
normalize HTTP messages.
Nonetheless, DPoP proofs can be extended to contain other information of the
HTTP request (see also).

 Checking DPoP Proofs
 To validate a DPoP proof, the receiving server MUST ensure the following:

 There is not more than one DPoP HTTP request header field.
 The DPoP HTTP request header field value is a single and well-formed JWT.
 All required claims per are contained in the JWT.
 The typ JOSE Header Parameter has the value dpop+jwt.
 The alg JOSE Header Parameter indicates a registered asymmetric digital
signature algorithm , is not none, is supported by the
application, and is acceptable per local policy.
 The JWT signature verifies with the public key contained in the jwk
JOSE Header Parameter.
 The jwk JOSE Header Parameter does not contain a private key.
 The htm claim matches the HTTP method of the current request.
 The htu claim matches the HTTP URI value for the HTTP
request in which the JWT was received, ignoring any query and
fragment parts.
 If the server provided a nonce value to the client,
the nonce claim matches the server-provided nonce value.
 The creation time of the JWT, as determined by either the iat claim or a server managed timestamp via the nonce claim, is within an acceptable window (see).

 If presented to a protected resource in conjunction with an access token,

 ensure that the value of the ath claim equals the hash of that access token, and
 confirm that the public key to which the access token is bound matches the public key from the DPoP proof.

 To reduce the likelihood of false negatives,
servers SHOULD employ syntax-based normalization () and scheme-based
normalization () before comparing the htu claim.
 These checks may be performed in any order.

 DPoP Access Token Request
 To request an access token that is bound to a public key using DPoP, the client MUST
provide a valid DPoP proof JWT in a DPoP header when making an access token
request to the authorization server's token endpoint. This is applicable for all
access token requests regardless of grant type (e.g.,
the common authorization_code and refresh_token grant types and extension grants
such as the JWT authorization grant). The HTTP request shown in
 illustrates such an access
token request using an authorization code grant with a DPoP proof JWT
in the DPoP header. uses "\" line wrapping per .

 Token Request for a DPoP Sender-Constrained Token Using an Authorization Code
 POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code\
&client_id=s6BhdRkqt\
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

 The DPoP HTTP header field MUST contain a valid DPoP proof JWT.
If the DPoP proof is invalid, the authorization server issues an error
response per with invalid_dpop_proof as the
value of the error parameter.
 To sender-constrain the access token after checking the validity of the
DPoP proof, the authorization server associates the issued access token with the
public key from the DPoP proof, which can be accomplished as described in .
A token_type of DPoP MUST be included in the access token
response to signal to the client that the access token was bound to
its DPoP key and can be used as described in .
The example response shown in illustrates such a
response.

 Access Token Response
 HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU",
 "token_type": "DPoP",
 "expires_in": 2677,
 "refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"
}

 The example response in includes a refresh token that the
client can use to obtain a new access token when the previous one expires.
Refreshing an access token is a token request using the refresh_token
grant type made to the authorization server's token endpoint. As with
all access token requests, the client makes it a DPoP request by including
a DPoP proof, as shown in . uses "\" line wrapping per .

 Token Request for a DPoP-Bound Token Using a Refresh Token
 POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs\
 GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

grant_type=refresh_token\
&client_id=s6BhdRkqt\
&refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

 When an authorization server supporting DPoP issues a
refresh token to a public client that presents a valid DPoP proof at the
token endpoint, the refresh token MUST be bound
to the respective public key. The binding MUST be validated when the refresh
token is later presented to get new access tokens. As a result, such a client
 MUST present a DPoP proof for the same key that was used to obtain the refresh
token each time that refresh token is used to obtain a new access token.
The implementation details of the binding of the refresh token are at the discretion of
the authorization server. Since the authorization server both produces and
validates its refresh tokens, there is no interoperability
consideration in the specific details of the binding.
 An authorization server MAY elect to issue access tokens that are not DPoP bound,
which is signaled to the client with a value of Bearer in the token_type parameter
of the access token response per . For a public client that is
also issued a refresh token, this has the effect of DPoP-binding the refresh token
alone, which can improve the security posture even when protected resources are not
updated to support DPoP.
 If the access token response contains a different token_type value than DPoP, the
access token protection provided by DPoP is not given. The client MUST discard the response in this
case if this protection is deemed important for the security of the
application; otherwise, the client may continue as in a regular OAuth interaction.
 Refresh tokens issued to confidential clients (those having
established authentication credentials with the authorization server)
are not bound to the DPoP proof public key because they are already
sender-constrained with a different existing mechanism. The OAuth 2.0 Authorization
Framework already requires that an authorization server bind
refresh tokens to the client to which they were issued and that
confidential clients authenticate to the authorization server when
presenting a refresh token. As a result, such refresh tokens
are sender-constrained by way of the client identifier and the associated
authentication requirement. This existing sender-constraining mechanism
is more flexible (e.g., it allows credential rotation for the client
without invalidating refresh tokens) than binding directly to a particular public key.

 Authorization Server Metadata
 This document introduces the following authorization server metadata
 parameter to signal support for DPoP in general and the specific
JWS alg values the authorization server supports for DPoP proof JWTs.

 dpop_signing_alg_values_supported:
 A JSON array containing a list of the JWS alg values (from the registry) supported
by the authorization server for DPoP proof JWTs.

 Client Registration Metadata
 The Dynamic Client Registration Protocol defines an API
for dynamically registering OAuth 2.0 client metadata with authorization servers.
The metadata defined by , and registered extensions to it,
also imply a general data model for clients that is useful for authorization server implementations
even when the Dynamic Client Registration Protocol isn't in play.
Such implementations will typically have some sort of user interface available for managing client configuration.
 This document introduces the following client registration metadata
 parameter to indicate that the client always uses
DPoP when requesting tokens from the authorization server.

 dpop_bound_access_tokens:
 A boolean value specifying whether the client always uses DPoP for token requests. If omitted, the default value is false.

 If the value is true, the authorization server MUST reject token requests from the client that do not contain the DPoP header.

 Public Key Confirmation
 Resource servers MUST be able to reliably identify whether
an access token is DPoP-bound and ascertain sufficient information
to verify the binding to the public key of the DPoP proof (see).
Such a binding is accomplished by associating the public key
with the token in a way that can be
accessed by the protected resource, such as embedding the JWK
hash in the issued access token directly, using the syntax described
in , or through token introspection as described in
 .
Other methods of associating a
public key with an access token are possible per an agreement by the
authorization server and the protected resource; however, they are beyond the
scope of this specification.
 Resource servers supporting DPoP MUST ensure that the public key from
the DPoP proof matches the one bound to the access token.

 JWK Thumbprint Confirmation Method
 When access tokens are represented as JWTs ,
the public key information is represented
using the jkt confirmation method member defined herein.
To convey the hash of a public key in a JWT, this specification
introduces the following JWT Confirmation Method member for
use under the cnf claim.

 jkt:
 JWK SHA-256 Thumbprint confirmation method. The value of the jkt member
 MUST be the base64url encoding (as defined in)
of the JWK SHA-256 Thumbprint (according to) of the DPoP public key
(in JWK format) to which the access token is bound.

 The following example JWT in with a decoded JWT payload shown in
 contains a cnf claim with the jkt JWK Thumbprint confirmation
method member. The jkt value in these examples is the hash of the public key
from the DPoP proofs in the examples shown in .
The example uses "\" line wrapping per .

 JWT Containing a JWK SHA-256 Thumbprint Confirmation
 eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1\
wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE\
1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll\
5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO\
YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA

 JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation
 {
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":
 {
 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
}

 JWK Thumbprint Confirmation Method in Token Introspection
 "OAuth 2.0 Token Introspection" defines a method for a
protected resource to query an authorization server about the active
state of an access token. The protected resource also determines metainformation
about the token.
 For a DPoP-bound access token, the hash of the public key to which the token
is bound is conveyed to the protected resource as metainformation in a token
introspection response. The hash is conveyed using the same cnf content with
 jkt member structure as the JWK Thumbprint confirmation method, described in
 , as a top-level member of the
introspection response JSON. Note that the resource server
does not send a DPoP proof with the introspection request, and the authorization
server does not validate an access token's DPoP binding at the introspection
endpoint. Rather, the resource server uses the data of the introspection response
to validate the access token binding itself locally.
 If the token_type member is included in the introspection response, it MUST contain
the value DPoP.
 The example introspection request in and corresponding response in
 illustrate an introspection exchange for the example DPoP-bound
access token that was issued in .

 Example Introspection Request
 POST /as/introspect.oauth2 HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp

token=Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

 Example Introspection Response for a DPoP-Bound Access Token
 HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "active": true,
 "sub": "someone@example.com",
 "iss": "https://server.example.com",
 "nbf": 1562262611,
 "exp": 1562266216,
 "cnf":
 {
 "jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
}

 Protected Resource Access
 Requests to DPoP-protected resources
 MUST include both a DPoP proof as per and
the access token as described in .
The DPoP proof MUST include the ath claim with a valid hash of the
associated access token.
 Binding the token value to the proof in this way prevents a proof
to be used with multiple different access token values across different requests.
For example, if a client holds tokens bound to two different resource owners, AT1 and AT2,
and uses the same key when talking to the authorization server, it's possible that these tokens could be swapped.
Without the ath field to bind it, a captured signature applied to AT1 could be
replayed with AT2 instead, changing the rights and access of the intended request.
This same substitution prevention remains for rotated access tokens within the same
combination of client and resource owner -- a rotated token value would require the
calculation of a new proof. This binding additionally ensures that a proof intended for use
with the access token is not usable without an access token, or vice-versa.
 The resource server is required to calculate the hash of the token value presented
and verify that it is the same as the hash value in the ath field as described in .
Since the ath field value is covered by the DPoP proof's signature, its inclusion binds
the access token value to the holder of the key used to generate the signature.
 Note that the ath field alone does not prevent replay of the DPoP proof or provide binding
to the request in which the proof is presented, and it is still important to check the time
window of the proof as well as the included message parameters, such as htm and htu.

 The DPoP Authentication Scheme
 A DPoP-bound access token is sent using the Authorization request
header field per with an authentication scheme of DPoP. The syntax of the Authorization
header field for the DPoP scheme
uses the token68 syntax defined in for credentials and is repeated below for ease of reference.
The ABNF notation syntax for DPoP authentication scheme credentials is as follows:

 DPoP Authentication Scheme ABNF

token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "~" / "+" / "/") *"="

credentials = "DPoP" 1*SP token68

 For such an access token, a resource server MUST check that a DPoP proof
was also received in the DPoP header field of the HTTP request,
check the DPoP proof according to the rules in ,
and check that the public key of the DPoP proof matches the public
key to which the access token is bound per .
 The resource server MUST NOT grant access to the resource unless all
checks are successful.
 shows an example request to a protected
resource with a DPoP-bound access token in the Authorization header
and the DPoP proof in the DPoP header.
The example uses "\" line wrapping per .
 shows the decoded content of that DPoP
proof. The JSON of the JWT header and payload are shown,
but the signature part is omitted. As usual, line breaks and indentation
are included for formatting and readability.

 DPoP-Protected Resource Request
 GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj\
 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z\
 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF\
 c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E\
 OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA

 Decoded Content of the DPoP Proof JWT in Figure 13
 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
}
.
{
 "jti":"e1j3V_bKic8-LAEB",
 "htm":"GET",
 "htu":"https://resource.example.org/protectedresource",
 "iat":1562262618,
 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo"
}

 Upon receipt of a request to a protected resource within the protection
space requiring DPoP authentication, the server can respond with a challenge
to the client to provide DPoP authentication information if the request does
not include valid credentials or does not contain an access token sufficient
for access. Such a challenge is made using the 401 (Unauthorized) response
status code () and the WWW-Authenticate header field
(). The
server MAY include the WWW-Authenticate header in
response to other conditions as well.
 In such challenges:

 The scheme name is DPoP.
 The authentication parameter realm MAY be included to indicate the
scope of protection in the manner described in .
 A scope authentication parameter MAY be included as defined in
 .
 An error parameter () SHOULD be included
to indicate the reason why the request was declined,
if the request included an access token but failed authentication.
The error parameter values described in are suitable,
as are any appropriate values defined by extension. The value use_dpop_nonce can be
used as described in to signal that a nonce is needed in the DPoP proof of a
subsequent request(s). Additionally, invalid_dpop_proof is used to indicate that the DPoP proof
itself was deemed invalid based on the criteria of .
 An error_description parameter () MAY be included
along with the error parameter to provide developers a human-readable
explanation that is not meant to be displayed to end-users.
 An algs parameter SHOULD be included to signal to the client the
JWS algorithms that are acceptable for the DPoP proof JWT.
The value of the parameter is a space-delimited list of JWS alg (Algorithm)
header values ().
 Additional authentication parameters MAY be used, and unknown parameters
 MUST be ignored by recipients.

 shows a response to a protected resource request without
authentication.

 HTTP 401 Response to a Protected Resource Request without Authentication

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP algs="ES256 PS256"

 shows a response to a protected resource request that was rejected
due to the failed confirmation of the DPoP binding in the access token.
uses "\" line wrapping per .

 HTTP 401 Response to a Protected Resource Request with an Invalid Token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: DPoP error="invalid_token", \
 error_description="Invalid DPoP key binding", algs="ES256"

 Note that browser-based client applications using Cross-Origin Resource Sharing (CORS) only have access
to CORS-safelisted response HTTP headers by default.
In order for the application to obtain and use the WWW-Authenticate HTTP response header
value, the server needs to make it available to the application by including
 WWW-Authenticate in the Access-Control-Expose-Headers response header list value.
 This authentication scheme is for origin-server authentication only.
Therefore, this authentication scheme MUST NOT be used with the
 Proxy-Authenticate or Proxy-Authorization header fields.
 Note that the syntax of the Authorization header field for this authentication scheme
follows the usage of the Bearer scheme defined in .
While it is not the preferred credential syntax of , it is compatible
with the general authentication framework therein and is used for consistency
and familiarity with the Bearer scheme.

 Compatibility with the Bearer Authentication Scheme
 Protected resources simultaneously supporting both the DPoP and Bearer
schemes need to update how the evaluation process is performed for bearer tokens to prevent
downgraded usage of a DPoP-bound access token.
Specifically, such a protected resource MUST reject a DPoP-bound access
token received as a bearer token per .
 allows a protected resource to indicate support for
multiple authentication schemes (i.e., Bearer and DPoP) with the
 WWW-Authenticate header field of a 401 (Unauthorized) response.
 A protected resource that supports only and is unaware of DPoP
would most presumably accept a DPoP-bound access token as a bearer token
(JWT says to ignore unrecognized claims, Introspection
says that other parameters might be present while placing no functional
requirements on their presence, and is effectively silent on
the content of the access token since it relates to validity).
As such, a
client can send a DPoP-bound access token using the Bearer scheme upon
receipt of a WWW-Authenticate: Bearer challenge from a protected resource
(or it can send a DPoP-bound access token if it has prior knowledge of the capabilities of the protected
resource). The effect of this likely simplifies the logistics of phased
upgrades to protected resources in their support DPoP or
prolonged deployments of protected resources with mixed token type support.
 If a protected resource supporting both Bearer and DPoP schemes elects to
respond with multiple WWW-Authenticate challenges, attention should be paid to
which challenge(s) should deliver the actual error information. It is
 RECOMMENDED that the following rules be adhered to:

 If no authentication information has been included with the request, then the
challenges SHOULD NOT include an error code or other error information, as per
 ().

 If the mechanism used to attempt authentication could be established
unambiguously, then the corresponding challenge SHOULD be used to deliver error
information ().

 Otherwise, both Bearer and DPoP challenges MAY be used to deliver error information ().

 The following examples use "\" line wrapping per .

 HTTP 401 Response to a Protected Resource Request without Authentication
 GET /protectedresource HTTP/1.1
Host: resource.example.org

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer, DPoP algs="ES256 PS256"

 HTTP 401 Response to a Protected Resource Request with Invalid Authentication
 GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: Bearer INVALID_TOKEN

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token", \
 error_description="Invalid token", DPoP algs="ES256 PS256"

 HTTP 400 Response to a Protected Resource Request with Ambiguous Authentication
 GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: Bearer Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU
Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

HTTP/1.1 400 Bad Request
WWW-Authenticate: Bearer error="invalid_request", \
 error_description="Multiple methods used to include access token", \
 DPoP algs="ES256 PS256", error="invalid_request", \
 error_description="Multiple methods used to include access token"

 Client Considerations
 Authorization including a DPoP proof may not be idempotent (depending on server
enforcement of jti, iat, and nonce claims). Consequently, all previously
idempotent requests for protected resources that were previously idempotent may
no longer be idempotent. It is RECOMMENDED that clients generate a unique DPoP
proof, even when retrying idempotent requests in response to HTTP errors
generally understood as transient.
 Clients that encounter frequent network errors may experience additional
challenges when interacting with servers with stricter nonce validation
implementations.

 Authorization Server-Provided Nonce
 This section specifies a mechanism using opaque nonces provided by the server
that can be used to limit the lifetime of DPoP proofs.
Without employing such a mechanism, a malicious party controlling the client
(potentially including the end-user)
can create DPoP proofs for use arbitrarily far in the future.
 Including a nonce value contributed by the authorization server in the DPoP proof
 MAY be used by authorization servers to limit the lifetime of DPoP proofs.
 The server determines when to issue a new DPoP nonce challenge and if
 it is needed, thereby requiring the use of the nonce value in
 subsequent DPoP proofs.
The logic through which the server makes that determination is out of scope of this document.
 An authorization server MAY supply a nonce value to be included by the client
in DPoP proofs sent. In this case, the authorization server responds to requests that do not include a nonce
with an HTTP 400 (Bad Request) error response per using use_dpop_nonce as the
error code value. The authorization server includes a DPoP-Nonce HTTP header in the response supplying
a nonce value to be used when sending the subsequent request. Nonce values MUST be unpredictable.
This same error code is used when supplying a new nonce value when there was a nonce mismatch.
The client will typically retry the request with the new nonce value supplied
upon receiving a use_dpop_nonce error with an accompanying nonce value.
 For example, in response to a token request without a nonce when the authorization server requires one,
the authorization server can respond with a DPoP-Nonce value such as the following to provide
a nonce value to include in the DPoP proof:

 HTTP 400 Response to a Token Request without a Nonce

 HTTP/1.1 400 Bad Request
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 {
 "error": "use_dpop_nonce",
 "error_description":
 "Authorization server requires nonce in DPoP proof"
 }

 Other HTTP headers and JSON fields MAY also be included in the error response,
but there MUST NOT be more than one DPoP-Nonce header.
 Upon receiving the nonce, the client is expected to retry its token request
using a DPoP proof including the supplied nonce value in the nonce claim
of the DPoP proof.
An example unencoded JWT payload of such a DPoP proof including a nonce is shown below.

 DPoP Proof Payload including a Nonce Value

 {
 "jti": "-BwC3ESc6acc2lTc",
 "htm": "POST",
 "htu": "https://server.example.com/token",
 "iat": 1562262616,
 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"
 }

 The nonce is opaque to the client.
 If the nonce claim in the DPoP proof
does not exactly match a nonce recently supplied by the authorization server to the client,
the authorization server MUST reject the request.
The rejection response MAY include a DPoP-Nonce HTTP header
providing a new nonce value to use for subsequent requests.
 The intent is that clients need to keep only one nonce value and servers need to keep a
window of recent nonces.
That said, transient circumstances may arise in which the
 stored nonce values for the server and the client differ.
However, this situation is self-correcting.
With any rejection message,
the server can send the client the nonce value it wants to use
to the client, and the client can store that nonce value and retry the request with it.
Even if the client and/or server discard their stored nonce values,
that situation is also self-correcting because new nonce values can be communicated
when responding to or retrying failed requests.
 Note that browser-based client applications using CORS only have access
to CORS-safelisted response HTTP headers by default.
In order for the application to obtain and use the DPoP-Nonce HTTP response header
value, the server needs to make it available to the application by including
 DPoP-Nonce in the Access-Control-Expose-Headers response header list value.

 Nonce Syntax
 The nonce syntax in ABNF as used by
(which is the same as the scope-token syntax) is shown below.

 Nonce ABNF

 nonce = 1*NQCHAR

 Providing a New Nonce Value
 It is up to the authorization server when to supply a new nonce value
for the client to use.
The client is expected to use the existing supplied nonce in DPoP proofs
until the server supplies a new nonce value.
 The authorization server MAY supply the new nonce in the same way that
the initial one was supplied: by using a DPoP-Nonce HTTP header in the response.
The DPoP-Nonce HTTP header field uses the nonce syntax defined in .
Each time this happens, it requires an extra protocol round trip.
 A more efficient manner of supplying a new nonce value is also defined
by including a DPoP-Nonce HTTP header
in the HTTP 200 (OK) response from the previous request.
The client MUST use the new nonce value supplied for the next token request
and for all subsequent token requests until the authorization server
supplies a new nonce.
 Responses that include the DPoP-Nonce HTTP header should be uncacheable
(e.g., using Cache-Control: no-store in response to a GET request) to
prevent the response from being used to serve a subsequent request and a stale
nonce value from being used as a result.
 An example 200 OK response providing a new nonce value is shown below.

 HTTP 200 Response Providing the Next Nonce Value

 HTTP/1.1 200 OK
 Cache-Control: no-store
 DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1

 Resource Server-Provided Nonce
 Resource servers can also choose to provide a nonce value to be included
in DPoP proofs sent to them.
They provide the nonce using the DPoP-Nonce header in the same way that authorization servers do
as described in Sections and .
The error signaling is performed as described in .
Resource servers use an HTTP 401 (Unauthorized) error code
with an accompanying WWW-Authenticate: DPoP value
and DPoP-Nonce value to accomplish this.
 For example, in response to a resource request without a nonce when the resource server requires one,
the resource server can respond with a DPoP-Nonce value such as the following to provide
a nonce value to include in the DPoP proof.
The example below uses "\" line wrapping per .

 HTTP 401 Response to a Resource Request without a Nonce

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP error="use_dpop_nonce", \
 error_description="Resource server requires nonce in DPoP proof"
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 Note that the nonces provided by an authorization server and a resource server are different
and should not be confused with one another
since nonces will be only accepted by the server that issued them.
Likewise, should a client use multiple authorization servers and/or resource servers,
a nonce issued by any of them should be used only at the issuing server.
Developers should also be careful to not confuse DPoP nonces with the
OpenID Connect ID Token nonce.

 Authorization Code Binding to a DPoP Key
 Binding the authorization code issued to the client's proof-of-possession key
can enable end-to-end binding of the entire authorization flow.
This specification defines the dpop_jkt authorization request parameter for this purpose.
The value of the dpop_jkt authorization request parameter is the
JWK Thumbprint of the proof-of-possession public key
using the SHA-256 hash function, which is
the same value as used for the jkt confirmation method defined in .
 When a token request is received, the authorization server computes the
JWK Thumbprint of the proof-of-possession public key in the DPoP proof
and verifies that it matches the dpop_jkt parameter value in the authorization request.
If they do not match, it MUST reject the request.
 An example authorization request using the dpop_jkt authorization request parameter is shown below and uses "\" line wrapping per .

 Authorization Request Using the dpop_jkt Parameter

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz\
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
 &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM\
 &code_challenge_method=S256\
 &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs HTTP/1.1
Host: server.example.com

 Use of the dpop_jkt authorization request parameter is OPTIONAL.
Note that the dpop_jkt authorization request parameter MAY also be used
in combination with Proof Key for Code Exchange (PKCE) , which is recommended by
as a countermeasure to authorization code injection. The dpop_jkt authorization
request parameter only provides similar protections when a unique DPoP key is
used for each authorization request.

 DPoP with Pushed Authorization Requests
 When Pushed Authorization Requests (PARs) are used in conjunction with DPoP, there are two ways in which the DPoP key can be communicated in the PAR request:

 The dpop_jkt parameter can be used as described in to bind the issued
authorization code to a specific key. In this case, dpop_jkt MUST be included alongside other authorization request parameters in the POST body of the PAR request.
 Alternatively, the DPoP header can be added to the PAR request. In this
case, the authorization server MUST check the provided DPoP proof JWT as
defined in . It MUST further behave as if the contained public key's
thumbprint was provided using dpop_jkt, i.e., reject the subsequent token
request unless a DPoP proof for the same key is provided. This can help to
simplify the implementation of the client, as it can "blindly" attach the
 DPoP header to all requests to the authorization server regardless of the
type of request. Additionally, it provides a stronger binding, as the DPoP
header contains a proof of possession of the private key.

 Both mechanisms MUST be supported by an authorization server that supports PAR and DPoP. If both mechanisms are used at the same time, the authorization server MUST reject the request if the JWK Thumbprint in dpop_jkt does not match the public key in the DPoP header.
 Allowing both mechanisms ensures that clients using dpop_jkt do not need to
distinguish between front-channel and pushed authorization requests, and at the
same time, clients that only have one code path for protecting all calls to authorization server
endpoints do not need to distinguish between requests to the PAR endpoint and the
token endpoint.

 Security Considerations
 In DPoP, the prevention of token replay at a different endpoint (see
) is achieved through authentication of the server per and
the binding of the DPoP proof to a certain URI and HTTP method. However, DPoP
has a somewhat different nature of protection than TLS-based
methods such as OAuth Mutual TLS or OAuth Token
Binding (see also Sections and).
TLS-based mechanisms can leverage a tight integration
between the TLS layer and the application layer to achieve strong
message integrity, authenticity,
and replay protection.

 DPoP Proof Replay
 If an adversary is able to get hold of a DPoP proof JWT, the adversary
could replay that token at the same endpoint (the HTTP endpoint
and method are enforced via the respective claims in the JWTs). To
limit this, servers MUST only accept DPoP proofs for a limited time
after their creation (preferably only for a relatively brief period
on the order of seconds or minutes).
 In the context of the target URI, servers can store the jti value of
each DPoP proof for the time window in which the respective DPoP proof JWT
would be accepted to prevent multiple uses of the same DPoP proof.
HTTP requests to the same URI for which the jti value has been seen before
would be declined. When strictly enforced, such a single-use check provides a very strong protection against DPoP
proof replay, but it may not always be feasible in practice, e.g., when
multiple servers behind a single endpoint have no shared state.
 In order to guard against
memory exhaustion attacks, a server that is tracking jti values should reject
DPoP proof JWTs with unnecessarily large jti values or store only a hash thereof.
 Note: To accommodate for clock offsets, the server MAY accept DPoP
proofs that carry an iat time in the reasonably near future (on the order of seconds or minutes).
Because clock skews between servers
and clients may be large, servers MAY limit DPoP proof lifetimes by using
server-provided nonce values containing the time at the server rather than
comparing the client-supplied iat time to the time at the server. Nonces
created in this way yield the same result even in the face of arbitrarily
large clock skews.
 Server-provided nonces are an effective means for further reducing the chances for successful DPoP proof replay.
Unlike cryptographic nonces, it is acceptable for clients to use the same
 nonce multiple times and for the server to accept the same nonce multiple
times. As long as the jti value is tracked and duplicates are rejected for the lifetime of the nonce, there
is no additional risk of token replay.

 DPoP Proof Pre-generation
 An attacker in control of the client can pre-generate DPoP proofs for
specific endpoints arbitrarily far into the future by choosing the
 iat value in the DPoP proof to be signed by the proof-of-possession key.
Note that one such attacker is the person who is the legitimate user of the client.
The user may pre-generate DPoP proofs to exfiltrate
from the machine possessing the proof-of-possession key
upon which they were generated
and copy them to another machine that does not possess the key.
For instance, a bank employee might pre-generate DPoP proofs
on a bank computer and then copy them to another machine
for use in the future, thereby bypassing bank audit controls.
When DPoP proofs can be pre-generated and exfiltrated,
all that is actually being proved in DPoP protocol interactions
is possession of a DPoP proof -- not of the proof-of-possession key.
 Use of server-provided nonce values that are not predictable by attackers can prevent this attack.
By providing new nonce values at times of its choosing,
the server can limit the lifetime of DPoP proofs,
preventing pre-generated DPoP proofs from being used.
When server-provided nonces are used, possession
of the proof-of-possession key is being demonstrated --
not just possession of a DPoP proof.
 The ath claim limits the use of pre-generated DPoP proofs to the lifetime
of the access token. Deployments that do not utilize the nonce mechanism
 SHOULD NOT issue long-lived DPoP constrained access tokens,
preferring instead to use short-lived access tokens and refresh tokens.
Whilst an attacker could pre-generate DPoP proofs to use the refresh token
to obtain a new access token, they would be unable to realistically
pre-generate DPoP proofs to use a newly issued access token.

 DPoP Nonce Downgrade
 A server MUST NOT accept any DPoP proofs without the nonce claim when a DPoP nonce has been provided to the client.

 Untrusted Code in the Client Context
 If an adversary is able to run code in the client's execution context,
the security of DPoP is no longer guaranteed. Common issues in web
applications leading to the execution of untrusted code are XSS and remote code inclusion attacks.
 If the private key used for DPoP is stored in such a way that it
cannot be exported, e.g., in a hardware or software security module,
the adversary cannot exfiltrate the key and use it to create arbitrary
DPoP proofs. The adversary can, however, create new DPoP proofs as
long as the client is online and uses these proofs (together with the
respective tokens) either on the victim's device or on a device under
the attacker's control to send arbitrary requests that will be
accepted by servers.
 To send requests even when the client is offline, an adversary can try
to pre-compute DPoP proofs using timestamps in the future and
exfiltrate these together with the access or refresh token.
 An adversary might further try to associate tokens issued from the
token endpoint with a key pair under the adversary's control. One way
to achieve this is to modify existing code, e.g., by replacing
cryptographic APIs. Another way is to launch a new authorization grant
between the client and the authorization server in an iframe. This
grant needs to be "silent", i.e., not require interaction with the
user. With code running in the client's origin, the adversary has
access to the resulting authorization code and can use it to associate
their own DPoP keys with the tokens returned from the token endpoint.
The adversary is then able to use the resulting tokens on their own
device even if the client is offline.
 Therefore, protecting clients against the execution of untrusted code
is extremely important even if DPoP is used. Besides secure coding
practices, Content Security Policy can be used as a second
layer of defense against XSS.

 Signed JWT Swapping
 Servers accepting signed DPoP proof JWTs MUST verify that the typ field is dpop+jwt in the
headers of the JWTs to ensure that adversaries cannot use JWTs created
for other purposes.

 Signature Algorithms
 Implementers MUST ensure that only asymmetric digital signature algorithms (such as ES256) that
are deemed secure can be used for signing DPoP proofs. In particular,
the algorithm none MUST NOT be allowed.

 Request Integrity
 DPoP does not ensure the integrity of the payload or headers of
requests. The DPoP proof only contains claims for the HTTP URI and
method, but not the message body or general request
headers, for example.
 This is an intentional design decision intended to keep DPoP simple to use, but
as described, it makes DPoP potentially susceptible to replay attacks
where an attacker is able to modify message contents and headers. In
many setups, the message integrity and confidentiality provided by TLS
is sufficient to provide a good level of protection.
 Note: While signatures covering other parts of requests are out of the scope of
this specification, additional information to be signed can be
added into DPoP proofs.

 Access Token and Public Key Binding
 The binding of the access token to the DPoP public key, as specified in , uses a cryptographic hash of the JWK
representation of the public key. It relies
on the hash function having sufficient second-preimage resistance so
as to make it computationally infeasible to find or create another
key that produces to the same hash output value. The SHA-256
hash function was used because it meets the aforementioned
requirement while being widely available.
 Similarly, the binding of the DPoP proof to the access token uses a
hash of that access token as the value of the ath claim
in the DPoP proof (see). This relies on the value
of the hash being sufficiently unique so as to reliably identify the
access token. The collision resistance of SHA-256 meets that requirement.

 Authorization Code and Public Key Binding
 Cryptographic binding of the authorization code to the DPoP public key
is specified in .
 This binding prevents attacks in which the attacker captures the
 authorization code and creates a DPoP proof using a proof-of-possession key
 other than the one held by the client and redeems the authorization code
 using that DPoP proof. By ensuring end to end that only the client's DPoP
 key can be used, this prevents captured authorization codes from being
 exfiltrated and used at locations other than the one to which the
 authorization code was issued.
 Authorization codes can, for instance, be harvested by attackers
from places where the HTTP messages containing them are logged.
Even when efforts are made to make authorization codes one-time-use, in practice,
there is often a time window during which attackers can replay them.
For instance, when authorization servers are implemented as scalable replicated services,
some replicas may temporarily not yet have the information needed to prevent replay.
DPoP binding of the authorization code solves these problems.
 If an authorization server does not (or cannot) strictly enforce the single-use limitation for authorization codes
and an attacker can access the authorization code (and if PKCE is used, the code_verifier),
the attacker can create a forged token request, binding the resulting token to an attacker-controlled key.
For example, using XSS, attackers might obtain access to the authorization code and PKCE parameters.
Use of the dpop_jkt parameter prevents this attack.
 The binding of the authorization code to the DPoP public key
uses a JWK Thumbprint of the public key, just as the access token binding does.
The same JWK Thumbprint considerations apply.

 Hash Algorithm Agility
 The jkt confirmation method member, the ath JWT claim, and the dpop_jkt authorization
request parameter defined herein all use the output of the SHA-256 hash function as their value.
The use of a single hash function by this specification was intentional and aimed at
simplicity and avoidance of potential security and interoperability issues arising from
common mistakes implementing and deploying parameterized algorithm agility schemes.
However, the use of a different hash function is not precluded if future circumstances
change and make SHA-256 insufficient for the requirements of this specification.
Should that need arise, it is expected that a short specification will be produced that
updates this one.
Using the output of an appropriate
hash function as the value, that specification will likely define a new confirmation method member, a new JWT claim,
and a new authorization request parameter. These items will be used in place of, or alongside, their
respective counterparts in the same message structures and flows of the larger protocol defined
by this specification.

 Binding to Client Identity
 In cases where DPoP is used with client authentication, it is only bound to authentication by being
coincident in the same TLS tunnel. Since the DPoP proof is not directly bound
to the authentication cryptographically, it's possible that the authentication or the DPoP messages were copied into
the tunnel. While including the URI in the DPoP can partially mitigate some of this risk, modifying
the authentication mechanism to provide cryptographic binding between authentication and DPoP could
provide better protection. However, providing additional binding with authentication through the
modification of authentication mechanisms or other means is beyond the scope of this specification.

 IANA Considerations

 OAuth Access Token Types Registration
 IANA has registered the following access token
type in the "OAuth Access Token Types" registry
established by .

 Name:

 DPoP
 Additional Token Endpoint Response Parameters:
 (none)
 HTTP Authentication Scheme(s):

 DPoP
 Change Controller:
 IETF
 Reference:
 RFC 9449

 OAuth Extensions Error Registration
 IANA has registered the following error values
in the "OAuth Extensions Error" registry
established by .

 Invalid DPoP proof:

 Name:

 invalid_dpop_proof
 Usage Location:
 token error response, resource access error response
 Protocol Extension:
 Demonstrating Proof of Possession (DPoP)
 Change Controller:
 IETF
 Reference:
 RFC 9449

 Use DPoP nonce:

 Name:

 use_dpop_nonce
 Usage Location:
 token error response, resource access error response
 Protocol Extension:
 Demonstrating Proof of Possession (DPoP)
 Change Controller:
 IETF
 Reference:
 RFC 9449

 OAuth Parameters Registration
 IANA has registered the following authorization request parameter
in the "OAuth Parameters" registry
established by .

 Name:

 dpop_jkt
 Parameter Usage Location:
 authorization request
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 HTTP Authentication Schemes Registration
 IANA has registered the following scheme in the
"HTTP Authentication Schemes" registry established by .

 Authentication Scheme Name:

 DPoP
 Reference:

 of RFC 9449

 Media Type Registration
 IANA has registered the application/dpop+jwt media type
in the "Media Types" registry in the manner described in ,
which is used to indicate that the content is a DPoP JWT.

 Type name:
 application
 Subtype name:
 dpop+jwt
 Required parameters:
 n/a
 Optional parameters:
 n/a
 Encoding considerations:
 binary. A DPoP JWT is a JWT; JWT values are encoded as a series of base64url-encoded values (some of which may be the empty string) separated by period ('.') characters.
 Security considerations:
 See of RFC 9449
 Interoperability considerations:
 n/a
 Published specification:
 RFC 9449
 Applications that use this media type:
 Applications using RFC 9449 for application-level proof of possession
 Fragment identifier considerations:
 n/a
 Additional information:

 File extension(s):
 n/a
 Macintosh file type code(s):
 n/a

 Person & email address to contact for further information:
 Michael B. Jones, michael_b_jones@hotmail.com
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 Michael B. Jones, michael_b_jones@hotmail.com
 Change controller:
 IETF

 JWT Confirmation Methods Registration
 IANA has registered the following JWT cnf member value
in the "JWT Confirmation Methods" registry
established by .

 Confirmation Method Value:

 jkt
 Confirmation Method Description:
 JWK SHA-256 Thumbprint
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 JSON Web Token Claims Registration
 IANA has registered the following Claims in the "JSON Web Token Claims" registry established by .

 HTTP method:

 Claim Name:

 htm
 Claim Description:
 The HTTP method of the request
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 HTTP URI:

 Claim Name:

 htu
 Claim Description:
 The HTTP URI of the request (without query and fragment parts)
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 Access token hash:

 Claim Name:

 ath
 Claim Description:
 The base64url-encoded SHA-256 hash of the ASCII encoding of the associated access token's value
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 "nonce" Registration Update
 The Internet Security Glossary provides a useful definition of nonce
as a random or non-repeating value that is included in data
exchanged by a protocol, usually for the purpose of guaranteeing
liveness and thus detecting and protecting against replay attacks.
 However, the initial registration of the nonce claim by
used language that was contextually specific to that application,
which was potentially limiting to its general applicability.
 Therefore, IANA has updated the entry for nonce in the
"JSON Web Token Claims" registry with an expanded definition to reflect
that the claim can be used appropriately in other contexts and with the addition of this document as a reference, as follows.

 Claim Name:

 nonce
 Claim Description:
 Value used to associate a Client session with an ID Token (MAY also be used for nonce values in other applications of JWTs)
 Change Controller:
 OpenID Foundation Artifact Binding Working Group, openid-specs-ab@lists.openid.net
 Specification Document(s):

 and RFC 9449

 Hypertext Transfer Protocol (HTTP) Field Name Registration
 IANA has registered the following HTTP header fields, as specified by this document, in the "Hypertext Transfer Protocol (HTTP) Field Name Registry"
 established by :

 DPoP:

 Field Name:

 DPoP
 Status:
 permanent
 Reference:
 RFC 9449

 DPoP-Nonce:

 Field Name:

 DPoP-Nonce
 Status:
 permanent
 Reference:
 RFC 9449

 OAuth Authorization Server Metadata Registration
 IANA has registered the following value
in the "OAuth Authorization Server Metadata" registry
established by .

 Metadata Name:

 dpop_signing_alg_values_supported
 Metadata Description:
 JSON array containing a list of the JWS algorithms supported for DPoP proof JWTs
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 OAuth Dynamic Client Registration Metadata
 IANA has registered the following value
in the IANA "OAuth Dynamic Client Registration Metadata" registry
established by .

 Client Metadata Name:

 dpop_bound_access_tokens
 Client Metadata Description:
 Boolean value specifying whether the client always uses DPoP for token requests
 Change Controller:
 IETF
 Reference:

 of RFC 9449

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)

 Many application technologies enable secure communication between two entities by means of Internet Public Key Infrastructure Using X.509 (PKIX) certificates in the context of Transport Layer Security (TLS). This document specifies procedures for representing and verifying the identity of application services in such interactions. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework: Bearer Token Usage

 This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [STANDARDS-TRACK]

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Key (JWK)

 A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 JSON Web Key (JWK) Thumbprint

 This specification defines a method for computing a hash value over a JSON Web Key (JWK). It defines which fields in a JWK are used in the hash computation, the method of creating a canonical form for those fields, and how to convert the resulting Unicode string into a byte sequence to be hashed. The resulting hash value can be used for identifying or selecting the key represented by the JWK that is the subject of the thumbprint.

 Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

 This specification describes how to declare in a JSON Web Token (JWT) that the presenter of the JWT possesses a particular proof-of- possession key and how the recipient can cryptographically confirm proof of possession of the key by the presenter. Being able to prove possession of a key is also sometimes described as the presenter being a holder-of-key.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Secure Hash Standard (SHS)

 National Institute of Standards and Technology

 Informative References

 CVE-2013-3587

 CVE

 Incident report on memory leak caused by Cloudflare parser bug

 CVE-2012-4929

 CVE

 Security alert: Attack campaign involving stolen OAuth user tokens issued to two third-party integrators

 CVE-2014-0160

 Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry

 IANA

 Hypertext Transfer Protocol (HTTP) Field Name Registry

 IANA

 JSON Web Signature and Encryption Algorithms

 IANA

 JSON Web Token Claims

 IANA

 Media Types

 IANA

 OAuth Parameters

 IANA

 OpenID Connect Core 1.0 incorporating errata set 1

 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

 This second document defines the general structure of the MIME media typing system and defines an initial set of media types. [STANDARDS-TRACK]

 A Universally Unique IDentifier (UUID) URN Namespace

 This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group). Information from earlier versions of the DCE specification have been incorporated into this document. [STANDARDS-TRACK]

 Internet Security Glossary, Version 2

 This Glossary provides definitions, abbreviations, and explanations of terminology for information system security. The 334 pages of entries offer recommendations to improve the comprehensibility of written material that is generated in the Internet Standards Process (RFC 2026). The recommendations follow the principles that such writing should (a) use the same term or definition whenever the same concept is mentioned; (b) use terms in their plainest, dictionary sense; (c) use terms that are already well-established in open publications; and (d) avoid terms that either favor a particular vendor or favor a particular technology or mechanism over other, competing techniques that already exist or could be developed. This memo provides information for the Internet community.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants

 This specification defines the use of a JSON Web Token (JWT) Bearer Token as a means for requesting an OAuth 2.0 access token as well as for client authentication.

 OAuth 2.0 Dynamic Client Registration Protocol

 This specification defines mechanisms for dynamically registering OAuth 2.0 clients with authorization servers. Registration requests send a set of desired client metadata values to the authorization server. The resulting registration responses return a client identifier to use at the authorization server and the client metadata values registered for the client. The client can then use this registration information to communicate with the authorization server using the OAuth 2.0 protocol. This specification also defines a set of common client metadata fields and values for clients to use during registration.

 Proof Key for Code Exchange by OAuth Public Clients

 OAuth 2.0 public clients utilizing the Authorization Code Grant are susceptible to the authorization code interception attack. This specification describes the attack as well as a technique to mitigate against the threat through the use of Proof Key for Code Exchange (PKCE, pronounced "pixy").

 OAuth 2.0 Token Introspection

 This specification defines a method for a protected resource to query an OAuth 2.0 authorization server to determine the active state of an OAuth 2.0 token and to determine meta-information about this token. OAuth 2.0 deployments can use this method to convey information about the authorization context of the token from the authorization server to the protected resource.

 OAuth 2.0 Authorization Server Metadata

 This specification defines a metadata format that an OAuth 2.0 client can use to obtain the information needed to interact with an OAuth 2.0 authorization server, including its endpoint locations and authorization server capabilities.

 OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

 This document describes OAuth client authentication and certificate-bound access and refresh tokens using mutual Transport Layer Security (TLS) authentication with X.509 certificates. OAuth clients are provided a mechanism for authentication to the authorization server using mutual TLS, based on either self-signed certificates or public key infrastructure (PKI). OAuth authorization servers are provided a mechanism for binding access tokens to a client's mutual-TLS certificate, and OAuth protected resources are provided a method for ensuring that such an access token presented to it was issued to the client presenting the token.

 Resource Indicators for OAuth 2.0

 This document specifies an extension to the OAuth 2.0 Authorization Framework defining request parameters that enable a client to explicitly signal to an authorization server about the identity of the protected resource(s) to which it is requesting access.

 JSON Web Token Best Current Practices

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity and in other application areas. This Best Current Practices document updates RFC 7519 to provide actionable guidance leading to secure implementation and deployment of JWTs.

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 OAuth 2.0 Pushed Authorization Requests

 This document defines the pushed authorization request (PAR) endpoint, which allows clients to push the payload of an OAuth 2.0 authorization request to the authorization server via a direct request and provides them with a request URI that is used as reference to the data in a subsequent call to the authorization endpoint.

 OAuth 2.0 Security Best Current Practice

 yes.com

 Yubico

 Independent Researcher

 Authlete

 This document describes best current security practice for OAuth 2.0. It updates and extends the OAuth 2.0 Security Threat Model to incorporate practical experiences gathered since OAuth 2.0 was published and covers new threats relevant due to the broader application of OAuth 2.0.

 Work in Progress

 OAuth 2.0 Token Binding

 Microsoft

 Ping Identity

 Yubico

 Google

 This specification enables OAuth 2.0 implementations to apply Token Binding to Access Tokens, Authorization Codes, Refresh Tokens, JWT Authorization Grants, and JWT Client Authentication. This cryptographically binds these tokens to a client's Token Binding key pair, possession of which is proven on the TLS connections over which the tokens are intended to be used. This use of Token Binding protects these tokens from man-in-the-middle and token export and replay attacks.

 Work in Progress

 Content Security Policy Level 3

 W3C Working Draft

 Web Cryptography API

 W3C Recommendation

 Fetch Living Standard

 WHATWG

 Acknowledgements
 We would like to thank
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
and others for their valuable input, feedback, and general support of this work.
 This document originated from discussions at the 4th OAuth Security
Workshop in Stuttgart, Germany. We thank the organizers of this
workshop (and).

 Authors' Addresses

 Authlete

 mail@danielfett.de

 Ping Identity

 bcampbell@pingidentity.com

 Yubico

 ve7jtb@ve7jtb.com

 Tuconic

 torsten@lodderstedt.net

 Self-Issued Consulting

 michael_b_jones@hotmail.com
 https://self-issued.info/

 Ping Identity

 david@alkaline-solutions.com

