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Abstract

Messaging applications are increasingly making use of end-to-end security mechanisms to

ensure that messages are only accessible to the communicating endpoints, and not to any servers

involved in delivering messages. Establishing keys to provide such protections is challenging for

group chat settings, in which more than two clients need to agree on a key but may not be online

at the same time. In this document, we specify a key establishment protocol that provides

efficient asynchronous group key establishment with forward secrecy (FS) and post-compromise

security (PCS) for groups in size ranging from two to thousands.
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1. Introduction 

A group of users who want to send each other encrypted messages needs a way to derive shared

symmetric encryption keys. For two parties, this problem has been studied thoroughly, with the

Double Ratchet emerging as a common solution  . Channels

implementing the Double Ratchet enjoy fine-grained forward secrecy as well as post-compromise

security, but are nonetheless efficient enough for heavy use over low-bandwidth networks.

For a group of size greater than two, a common strategy is to distribute symmetric "sender keys"

over existing 1:1 secure channels, and then for each member to send messages to the group

encrypted with their own sender key. On the one hand, using sender keys improves efficiency

relative to pairwise transmission of individual messages, and it provides forward secrecy (with

the addition of a hash ratchet). On the other hand, it is difficult to achieve post-compromise

security with sender keys, requiring a number of key update messages that scales as the square

of the group size. An adversary who learns a sender key can often indefinitely and passively

eavesdrop on that member's messages. Generating and distributing a new sender key provides a

form of post-compromise security with regard to that sender. However, it requires computation

and communications resources that scale linearly with the size of the group.

In this document, we describe a protocol based on tree structures that enables asynchronous

group keying with forward secrecy and post-compromise security. Based on earlier work on

"asynchronous ratcheting trees" , the protocol presented here uses an asynchronous key-

encapsulation mechanism for tree structures. This mechanism allows the members of the group

to derive and update shared keys with costs that scale as the log of the group size.

[DoubleRatchet] [Signal]

[ART]
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Client:

Group:

Epoch:

Member:

Key Package:

Group Context:

Signature Key:

Proposal:

Commit:

PublicMessage:

PrivateMessage:

Handshake Message:

Application Message:

2. Terminology 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

An agent that uses this protocol to establish shared cryptographic state with other

clients. A client is defined by the cryptographic keys it holds. 

A group represents a logical collection of clients that share a common secret value at

any given time. Its state is represented as a linear sequence of epochs in which each epoch

depends on its predecessor. 

A state of a group in which a specific set of authenticated clients hold shared

cryptographic state. 

A client that is included in the shared state of a group and hence has access to the

group's secrets. 

A signed object describing a client's identity and capabilities, including a hybrid

public key encryption (HPKE)  public key that can be used to encrypt to that client.

Other clients can use a client's KeyPackage to introduce the client to a new group. 

An object that summarizes the shared, public state of the group. The group

context is typically distributed in a signed GroupInfo message, which is provided to new

members to help them join a group. 

A signing key pair used to authenticate the sender of a message. 

A message that proposes a change to the group, e.g., adding or removing a member. 

A message that implements the changes to the group proposed in a set of Proposals. 

An MLS protocol message that is signed by its sender and authenticated as

coming from a member of the group in a particular epoch, but not encrypted. 

An MLS protocol message that is signed by its sender, authenticated as coming

from a member of the group in a particular epoch, and encrypted so that it is confidential to

the members of the group in that epoch. 

A PublicMessage or PrivateMessage carrying an MLS Proposal or Commit

object, as opposed to application data. 

A PrivateMessage carrying application data. 

Terminology specific to tree computations is described in Section 4.1.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC9180]
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In general, symmetric values are referred to as "keys" or "secrets" interchangeably. Either term

denotes a value that  be kept confidential to a client. When labeling individual values, we

typically use "secret" to refer to a value that is used to derive further secret values and "key" to

refer to a value that is used with an algorithm such as Hashed Message Authentication Code

(HMAC) or an Authenticated Encryption with Associated Data (AEAD) algorithm.

The PublicMessage and PrivateMessage formats are defined in Section 6. Security notions such as

forward secrecy and post-compromise security are defined in Section 16.

As detailed in Section 13.5, MLS uses the "Generate Random Extensions And Sustain

Extensibility" (GREASE) approach to maintaining extensibility, where senders insert random

values into fields in which receivers are required to ignore unknown values. Specific "GREASE

values" for this purpose are registered in the appropriate IANA registries.

MUST

2.1. Presentation Language 

We use the TLS presentation language  to describe the structure of protocol messages.

In addition to the base syntax, we add two additional features: the ability for fields to be optional

and the ability for vectors to have variable-size length headers.

[RFC8446]

2.1.1. Optional Value 

An optional value is encoded with a presence-signaling octet, followed by the value itself if

present. When decoding, a presence octet with a value other than 0 or 1  be rejected as

malformed.

MUST

struct {

    uint8 present;

    select (present) {

        case 0: struct{};

        case 1: T value;

    };

} optional<T>;

2.1.2. Variable-Size Vector Length Headers 

In the TLS presentation language, vectors are encoded as a sequence of encoded elements

prefixed with a length. The length field has a fixed size set by specifying the minimum and

maximum lengths of the encoded sequence of elements.

In MLS, there are several vectors whose sizes vary over significant ranges. So instead of using a

fixed-size length field, we use a variable-size length using a variable-length integer encoding

based on the one described in . They differ only in that the one here

requires a minimum-size encoding. Instead of presenting min and max values, the vector

description simply includes a V. For example:

Section 16 of [RFC9000]
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Such a vector can represent values with length from 0 bytes to 230 bytes. The variable-length

integer encoding reserves the two most significant bits of the first byte to encode the base 2

logarithm of the integer encoding length in bytes. The integer value is encoded on the remaining

bits, so that the overall value is in network byte order. The encoded value  use the smallest

number of bits required to represent the value. When decoding, values using more bits than

necessary  be treated as malformed.

This means that integers are encoded in 1, 2, or 4 bytes and can encode 6-, 14-, or 30-bit values,

respectively.

Vectors that start with the prefix "11" are invalid and  be rejected.

For example:

The four-byte length value 0x9d7f3e7d decodes to 494878333. 

The two-byte length value 0x7bbd decodes to 15293. 

The single-byte length value 0x25 decodes to 37. 

The following figure adapts the pseudocode provided in  to add a check for minimum-

length encoding:

struct {

    uint32 fixed<0..255>;

    opaque variable<V>;

} StructWithVectors;

MUST

MUST

Prefix Length Usable Bits Min Max

00 1 6 0 63

01 2 14 64 16383

10 4 30 16384 1073741823

11 invalid - - -

Table 1: Summary of Integer Encodings 

MUST

• 

• 

• 

[RFC9000]
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The use of variable-size integers for vector lengths allows vectors to grow very large, up to 230

bytes. Implementations should take care not to allow vectors to overflow available storage. To

facilitate debugging of potential interoperability problems, implementations  provide a

clear error when such an overflow condition occurs.

ReadVarint(data):

  // The length of variable-length integers is encoded in the

  // first two bits of the first byte.

  v = data.next_byte()

  prefix = v >> 6

  if prefix == 3:

    raise Exception('invalid variable length integer prefix')

  length = 1 << prefix

  // Once the length is known, remove these bits and read any

  // remaining bytes.

  v = v & 0x3f

  repeat length-1 times:

    v = (v << 8) + data.next_byte()

  // Check if the value would fit in half the provided length.

  if prefix >= 1 && v < (1 << (8*(length/2) - 2)):

    raise Exception('minimum encoding was not used')

  return v

SHOULD

3. Protocol Overview 

MLS is designed to operate in the context described in . In particular, we assume that

the following services are provided:

An Authentication Service (AS) that enables group members to authenticate the credentials

presented by other group members. 

A Delivery Service (DS) that routes MLS messages among the participants in the protocol. 

MLS assumes a trusted AS but a largely untrusted DS. Section 16.10 describes the impact of

compromise or misbehavior of an AS. MLS is designed to protect the confidentiality and integrity

of the group data even in the face of a compromised DS; in general, the DS is only expected to

reliably deliver messages. Section 16.9 describes the impact of compromise or misbehavior of a

DS.

The core functionality of MLS is continuous group authenticated key exchange (AKE). As with

other authenticated key exchange protocols (such as TLS), the participants in the protocol agree

on a common secret value, and each participant can verify the identity of the other participants.

That secret can then be used to protect messages sent from one participant in the group to the

other participants using the MLS framing layer or can be exported for use with other protocols.

[MLS-ARCH]

• 

• 

RFC 9420 MLS July 2023

Barnes, et al. Standards Track Page 10



MLS provides group AKE in the sense that there can be more than two participants in the

protocol, and continuous group AKE in the sense that the set of participants in the protocol can

change over time.

The core organizing principles of MLS are groups and epochs. A group represents a logical

collection of clients that share a common secret value at any given time. The history of a group is

divided into a linear sequence of epochs. In each epoch, a set of authenticated members agree on

an epoch secret that is known only to the members of the group in that epoch. The set of

members involved in the group can change from one epoch to the next, and MLS ensures that

only the members in the current epoch have access to the epoch secret. From the epoch secret,

members derive further shared secrets for message encryption, group membership

authentication, and so on.

The creator of an MLS group creates the group's first epoch unilaterally, with no protocol

interactions. Thereafter, the members of the group advance their shared cryptographic state

from one epoch to another by exchanging MLS messages.

A KeyPackage object describes a client's capabilities and provides keys that can be used to

add the client to a group. 

A Proposal message proposes a change to be made in the next epoch, such as adding or

removing a member. 

A Commit message initiates a new epoch by instructing members of the group to implement

a collection of proposals. 

A Welcome message provides a new member to the group with the information to initialize

their state for the epoch in which they were added or in which they want to add themselves

to the group. 

KeyPackage and Welcome messages are used to initiate a group or introduce new members, so

they are exchanged between group members and clients not yet in the group. A client publishes

a KeyPackage via the DS, thus enabling other clients to add it to groups. When a group member

wants to add a new member to a group, it uses the new member's KeyPackage to add them and

constructs a Welcome message with which the new member can initialize their local state.

Proposal and Commit messages are sent from one member of a group to the others. MLS

provides a common framing layer for sending messages within a group: A PublicMessage

provides sender authentication for unencrypted Proposal and Commit messages. A 

PrivateMessage provides encryption and authentication for both Proposal/Commit messages as

well as any application data.

• 

• 

• 

• 

3.1. Cryptographic State and Evolution 

The cryptographic state at the core of MLS is divided into three areas of responsibility:
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A ratchet tree that represents the membership of the group, providing group members a way

to authenticate each other and efficiently encrypt messages to subsets of the group. Each

epoch has a distinct ratchet tree. It seeds the key schedule. 

A key schedule that describes the chain of key derivations used to progress from epoch to

epoch (mainly using the init_secret and epoch_secret), as well as the derivation of a variety of

other secrets (see Table 4). For example:

An encryption secret that is used to initialize the secret tree for the epoch. 

An exporter secret that allows other protocols to leverage MLS as a generic authenticated

group key exchange. 

A resumption secret that members can use to prove their membership in the group, e.g.,

when creating a subgroup or a successor group. 

A secret tree derived from the key schedule that represents shared secrets used by the

members of the group for encrypting and authenticating messages. Each epoch has a distinct

secret tree. 

Each member of the group maintains a partial view of these components of the group's state.

MLS messages are used to initialize these views and keep them in sync as the group transitions

between epochs.

Figure 1: Overview of MLS Group Evolution 

...

Key Schedule

epoch_secret

Ratchet Secret

Tree Tree

commit_secret epoch_secret encryption_secret

epoch_secret

...

• 

• 

◦ 

◦ 

◦ 

• 
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Each new epoch is initiated with a Commit message. The Commit instructs existing members of

the group to update their views of the ratchet tree by applying a set of Proposals, and uses the

updated ratchet tree to distribute fresh entropy to the group. This fresh entropy is provided only

to members in the new epoch and not to members who have been removed. Commits thus

maintain the property that the epoch secret is confidential to the members in the current epoch.

For each Commit that adds one or more members to the group, there are one or more

corresponding Welcome messages. Each Welcome message provides new members with the

information they need to initialize their views of the key schedule and ratchet tree, so that these

views align with the views held by other members of the group in this epoch.

3.2. Example Protocol Execution 

There are three major operations in the life of a group:

Adding a member, initiated by a current member; 

Updating the keys that represent a member in the tree; and 

Removing a member. 

Each of these operations is "proposed" by sending a message of the corresponding type (Add /

Update / Remove). The state of the group is not changed, however, until a Commit message is sent

to provide the group with fresh entropy. In this section, we show each proposal being committed

immediately, but in more advanced deployment cases, an application might gather several

proposals before committing them all at once. In the illustrations below, we show the Proposal

and Commit messages directly, while in reality they would be sent encapsulated in

PublicMessage or PrivateMessage objects.

Before the initialization of a group, clients publish KeyPackages to a directory provided by the DS

(see Figure 2).

• 

• 

• 
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Figure 3 shows how these pre-published KeyPackages are used to create a group. When client A

wants to establish a group with clients B and C, it first initializes a group state containing only

itself and downloads KeyPackages for B and C. For each member, A generates an Add proposal

and a Commit message to add that member and then broadcasts the two messages to the group.

Client A also generates a Welcome message and sends it directly to the new member (there's no

need to send it to the group). Only after A has received its Commit message back from the

Delivery Service does it update its state to reflect the new member's addition.

Once A has updated its state, the new member has processed the Welcome, and any other group

members have processed the Commit, they will all have consistent representations of the group

state, including a group secret that is known only to the members the group. The new member

will be able to read and send new messages to the group, but messages sent before they were

added to the group will not be accessible.

Figure 2: Clients A, B, and C publish KeyPackages to the directory 

Delivery Service

Group

A B C Directory Channel

KeyPackageA

KeyPackageB

KeyPackageC
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Subsequent additions of group members proceed in the same way. Any member of the group can

download a KeyPackage for a new client, broadcast Add and Commit messages that the current

group will use to update their state, and send a Welcome message that the new client can use to

initialize its state and join the group.

To enforce the forward secrecy and post-compromise security of messages, each member

periodically updates the keys that represent them to the group. A member does this by sending a

Commit (possibly with no proposals) or by sending an Update message that is committed by

another member (see Figure 4). Once the other members of the group have processed these

messages, the group's secrets will be unknown to an attacker that had compromised the secrets

corresponding to the sender's leaf in the tree. At the end of the scenario shown in Figure 4, the

group has post-compromise security with respect to both A and B.

Figure 3: Client A creates a group with clients B and C 

Group

A B C Directory Channel

| |

KeyPackageB, KeyPackageC

Add(A->AB)

Commit(Add)

Welcome(B)

Add(A->AB)

Commit(Add)

Add(AB->ABC)

Commit(Add)

Welcome(C)

Add(AB->ABC)

Commit(Add)

| |
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Update messages  be sent at regular intervals of time as long as the group is active, and

members that don't update  eventually be removed from the group. It's left to the

application to determine an appropriate amount of time between Updates. Since the purpose of

sending an Update is to proactively constrain a compromise window, the right frequency is

usually on the order of hours or days, not milliseconds. For example, an application might send

an Update each time a member sends an application message after receiving any message from

another member, or daily if no application messages are sent.

The MLS architecture recommends that MLS be operated over a secure transport (see 

). Such transport protocols will typically provide functions such as congestion

control that manage the impact of an MLS-using application on other applications sharing the

same network. Applications should take care that they do not send MLS messages at a rate that

will cause problems such as network congestion, especially if they are not following the above

recommendation (e.g., sending MLS directly over UDP instead).

Members are removed from the group in a similar way, as shown in Figure 5. Any member of the

group can send a Remove proposal followed by a Commit message. The Commit message

provides new entropy to all members of the group except the removed member. This new

entropy is added to the epoch secret for the new epoch so that it is not known to the removed

member. Note that this does not necessarily imply that any member is actually allowed to evict

other members; groups can enforce access control policies on top of these basic mechanisms.

SHOULD

SHOULD

Section 7.1

of [MLS-ARCH]

Figure 4: Client B proposes to update its key, and client A commits the proposal 

Group

A B ... Z Directory Channel

Update(B)

| | Update(B)

Commit(Upd)

| | | Commit(Upd)

|
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Note that the flows in this section are examples; applications can arrange message flows in other

ways. For example:

Welcome messages don't necessarily need to be sent directly to new joiners. Since they are

encrypted to new joiners, they could be distributed more broadly, say if the application only

had access to a broadcast channel for the group. 

Proposal messages don't need to be immediately sent to all group members. They need to be

available to the committer before generating a Commit, and to other members before

processing the Commit. 

The sender of a Commit doesn't necessarily have to wait to receive its own Commit back

before advancing its state. It only needs to know that its Commit will be the next one applied

by the group, say based on a promise from an orchestration server. 

Figure 5: Client Z removes client B from the group 

Group

A B ... Z Directory Channel

Remove(B)

Commit(Rem)

Remove(B)

Commit(Rem)

|

• 

• 

• 

3.3. External Joins 

In addition to the Welcome-based flow for adding a new member to the group, it is also possible

for a new member to join by means of an "external Commit". This mechanism can be used when

the existing members don't have a KeyPackage for the new member, for example, in the case of

an "open" group that can be joined by new members without asking permission from existing

members.

Figure 6 shows a typical message flow for an external join. To enable a new member to join the

group in this way, a member of the group (A, B) publishes a GroupInfo object that includes the

GroupContext for the group as well as a public key that can be used to encrypt a secret to the

existing members of the group. When the new member Z wishes to join, they download the

GroupInfo object and use it to form a Commit of a special form that adds Z to the group (as

detailed in Section 12.4.3.2). The existing members of the group process this external Commit in a

similar way to a normal Commit, advancing to a new epoch in which Z is now a member of the

group.
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Figure 6: Client A publishes a GroupInfo object, and Client Z uses it to join the group 

                                                          Group

A              B              Z          Directory        Channel

|              |              |              |              |

| GroupInfo    |              |              |              |

+------------------------------------------->|              |

|              |              | GroupInfo    |              |

|              |              |<-------------+              |

|              |              |              |              |

|              |              | Commit(ExtZ) |              |

|              |              +---------------------------->|

|              |              |              | Commit(ExtZ) |

|<----------------------------------------------------------+

|              |<-------------------------------------------+

|              |              |<----------------------------+

|              |              |              |              |

3.4. Relationships between Epochs 

A group has a single linear sequence of epochs. Groups and epochs are generally independent of

one another. However, it can sometimes be useful to link epochs cryptographically, either within

a group or across groups. MLS derives a resumption pre-shared key (PSK) from each epoch to

allow entropy extracted from one epoch to be injected into a future epoch. A group member that

wishes to inject a PSK issues a PreSharedKey proposal (Section 12.1.4) describing the PSK to be

injected. When this proposal is committed, the corresponding PSK will be incorporated into the

key schedule as described in Section 8.4.

Linking epochs in this way guarantees that members entering the new epoch agree on a key if

and only if they were members of the group during the epoch from which the resumption key

was extracted.

MLS supports two ways to tie a new group to an existing group, which are illustrated in Figures 7

and 8. Reinitialization closes one group and creates a new group comprising the same members

with different parameters. Branching starts a new group with a subset of the original group's

participants (with no effect on the original group). In both cases, the new group is linked to the

old group via a resumption PSK.
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Applications may also choose to use resumption PSKs to link epochs in other ways. For example, 

Figure 9 shows a case where a resumption PSK from epoch n is injected into epoch n+k. This

demonstrates that the members of the group at epoch n+k were also members at epoch n,

irrespective of any changes to these members' keys due to Updates or Commits.

Figure 7: Reinitializing a Group 

epoch_A_[n-1]

ReInit

epoch_A_[n] epoch_B_[0]

.

. PSK(usage=reinit)

.....................>

epoch_B_[1]

Figure 8: Branching a Group 

epoch_A_[n] epoch_B_[0]

PSK(usage=branch)

....................>

epoch_A_[n+1] epoch_B_[1]
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Figure 9: Reinjecting Entropy from an Earlier Epoch 

epoch_A_[n]

PSK(usage=application)

.....................

.

.

. . ...

.

.

.

epoch_A_[n+k-1] .

.

.

<....................

epoch_A_[n+k]

4. Ratchet Tree Concepts 

The protocol uses "ratchet trees" for deriving shared secrets among a group of clients. A ratchet

tree is an arrangement of secrets and key pairs among the members of a group in a way that

allows for secrets to be efficiently updated to reflect changes in the group.

Ratchet trees allow a group to efficiently remove any member by encrypting new entropy to a

subset of the group. A ratchet tree assigns shared keys to subgroups of the overall group, so that,

for example, encrypting to all but one member of the group requires only log(N) encryptions to

subtrees, instead of the N-1 encryptions that would be needed to encrypt to each participant

individually (where N is the number of members in the group).

This remove operation allows MLS to efficiently achieve post-compromise security. In an Update

proposal or a full Commit message, an old (possibly compromised) representation of a member is

efficiently removed from the group and replaced with a freshly generated instance.

4.1. Ratchet Tree Terminology 

Trees consist of nodes. A node is a leaf if it has no children; otherwise, it is a parent. All parents in

our trees have precisely two children, a left child and a right child. A node is the root of a tree if it

has no parent, and intermediate if it has both children and a parent. The descendants of a node

are that node's children, and the descendants of its children. We say a tree contains a node if that

node is a descendant of the root of the tree, or if the node itself is the root of the tree. Nodes are 

siblings if they share the same parent.
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A subtree of a tree is the tree given by any node (the head of the subtree) and its descendants. The

size of a tree or subtree is the number of leaf nodes it contains. For a given parent node, its left

subtree is the subtree with its left child as head and its right subtree is the subtree with its right

child as head.

Every tree used in this protocol is a perfect binary tree, that is, a complete balanced binary tree

with 2d leaves all at the same depth d. This structure is unique for a given depth d.

There are multiple ways that an implementation might represent a ratchet tree in memory. A

convenient property of left-balanced binary trees (including the complete trees used here) is that

they can be represented as an array of nodes, with node relationships computed based on the

nodes' indices in the array. A more traditional representation based on linked node objects may

also be used. Appendices C and D provide some details on how to implement the tree operations

required for MLS in these representations. MLS places no requirements on implementations'

internal representations of ratchet trees. An implementation may use any tree representation

and associated algorithms, as long as they produce correct protocol messages.

4.1.1. Ratchet Tree Nodes 

Each leaf node in a ratchet tree is given an index (or leaf index), starting at 0 from the left to 2d - 1

at the right (for a tree with 2d leaves). A tree with 2d leaves has 2d+1 - 1 nodes, including parent

nodes.

Each node in a ratchet tree is either blank (containing no value) or it holds an HPKE public key

with some associated data:

A public key (for the HPKE scheme in use; see Section 5.1) 

A credential (only for leaf nodes; see Section 5.3) 

An ordered list of "unmerged" leaves (see Section 4.2) 

A hash of certain information about the node's parent, as of the last time the node was

changed (see Section 7.9). 

As described in Section 4.2, different members know different subsets of the set of private keys

corresponding to the public keys in nodes in the tree. The private key corresponding to a parent

node is known only to members at leaf nodes that are descendants of that node. The private key

corresponding to a leaf node is known only to the member at that leaf node. A leaf node is 

unmerged relative to one of its ancestor nodes if the member at the leaf node does not know the

private key corresponding to the ancestor node.

Every node, regardless of whether the node is blank or populated, has a corresponding hash that

summarizes the contents of the subtree below that node. The rules for computing these hashes

are described in Section 7.8.

• 

• 

• 

• 
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The resolution of a node is an ordered list of non-blank nodes that collectively cover all non-

blank descendants of the node. The resolution of the root contains the set of keys that are

collectively necessary to encrypt to every node in the group. The resolution of a node is

effectively a depth-first, left-first enumeration of the nearest non-blank nodes below the node:

The resolution of a non-blank node comprises the node itself, followed by its list of

unmerged leaves, if any. 

The resolution of a blank leaf node is the empty list. 

The resolution of a blank intermediate node is the result of concatenating the resolution of

its left child with the resolution of its right child, in that order. 

For example, consider the following subtree, where the _ character represents a blank node and

unmerged leaves are indicated in square brackets:

In this tree, we can see all of the above rules in play:

The resolution of node X is the list [X, B]. 

The resolution of leaf 2 or leaf 6 is the empty list []. 

The resolution of top node is the list [X, B, Y, H]. 

• 

• 

• 

Figure 10: A Tree with Blanks and Unmerged Leaves 

               ...

               /

              _

        ______|______

       /             \

      X[B]            _

    __|__           __|__

   /     \         /     \

  _       _       Y       _

 / \     / \     / \     / \

A   B   _   D   E   F   _   H

0   1   2   3   4   5   6   7

• 

• 

• 

4.1.2. Paths through a Ratchet Tree 

The direct path of a root is the empty list. The direct path of any other node is the concatenation

of that node's parent along with the parent's direct path.

The copath of a node is the node's sibling concatenated with the list of siblings of all the nodes in

its direct path, excluding the root.
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The filtered direct path of a leaf node L is the node's direct path, with any node removed whose

child on the copath of L has an empty resolution (keeping in mind that any unmerged leaves of

the copath child count toward its resolution). The removed nodes do not need their own key

pairs because encrypting to the node's key pair would be equivalent to encrypting to its non-

copath child.

For example, consider the following tree (where blank nodes are indicated with _, but also

assigned a label for reference):

In this tree, the direct paths, copaths, and filtered direct paths for the leaf nodes are as follows:

Node Direct path Copath Filtered Direct Path

A T, U, W B, V, Y T, W

B T, U, W A, V, Y T, W

E X, Y, W F, Z, U X, Y, W

F X, Y, W E, Z, U X, Y, W

G Z, Y, W H, X, U Y, W

Table 2

Figure 11: A Complete Tree with Five Members, with Labels for Blank Parent Nodes 

W = root

_=U Y

T _=V X _=Z

/ \ / \

A B _ _ E F G _=H

0 1 2 3 4 5 6 7

4.2. Views of a Ratchet Tree 

We generally assume that each participant maintains a complete and up-to-date view of the

public state of the group's ratchet tree, including the public keys for all nodes and the credentials

associated with the leaf nodes.
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No participant in an MLS group knows the private key associated with every node in the tree.

Instead, each member is assigned to a leaf of the tree, which determines the subset of private

keys it knows. The credential stored at that leaf is one provided by the member.

In particular, MLS maintains the members' views of the tree in such a way as to maintain the tree

invariant:

The private key for a node in the tree is known to a member of the group only if the

node's subtree contains that member's leaf. 

In other words, if a node is not blank, then it holds a public key. The corresponding private key is

known only to members occupying leaves below that node.

The reverse implication is not true: A member may not know the private key of an intermediate

node above them. Such a member has an unmerged leaf at the intermediate node. Encrypting to

an intermediate node requires encrypting to the node's public key, as well as the public keys of

all the unmerged leaves below it. A leaf is unmerged with regard to all of its ancestors when it is

first added, because the process of adding the leaf does not give it access to the private keys for

all of the nodes above it in the tree. Leaves are "merged" as they receive the private keys for

nodes, as described in Section 7.4.

For example, consider a four-member group (A, B, C, D) where the node above the right two

members is blank. (This is what it would look like if A created a group with B, C, and D.) Then the

public state of the tree and the views of the private keys of the tree held by each participant

would be as follows, where _ represents a blank node, ? represents an unknown private key, and

pk(X) represents the public key corresponding to the private key X:

         Public Tree

============================

            pk(ABCD)

          /          \

    pk(AB)            _

     / \             / \

pk(A)   pk(B)   pk(C)   pk(D)

 Private @ A       Private @ B       Private @ C       Private @ D

=============     =============     =============     =============

     ABCD              ABCD              ABCD              ABCD

    /   \             /   \             /   \             /   \

  AB      _         AB      _         ?       _         ?       _

 / \     / \       / \     / \       / \     / \       / \     / \

A   ?   ?   ?     ?   B   ?   ?     ?   ?   C   ?     ?   ?   ?   D
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Note how the tree invariant applies: Each member knows only their own leaf, the private key AB

is known only to A and B, and the private key ABCD is known to all four members. This also

illustrates another important point: it is possible for there to be "holes" on the path from a

member's leaf to the root in which the member knows the key both above and below a given

node, but not for that node, as in the case with D.

5. Cryptographic Objects 

5.1. Cipher Suites 

Each MLS session uses a single cipher suite that specifies the following primitives to be used in

group key computations:

HPKE parameters:

A Key Encapsulation Mechanism (KEM) 

A Key Derivation Function (KDF) 

An Authenticated Encryption with Associated Data (AEAD) encryption algorithm 

A hash algorithm 

A Message Authentication Code (MAC) algorithm 

A signature algorithm 

MLS uses HPKE for public key encryption . The DeriveKeyPair function associated to

the KEM for the cipher suite maps octet strings to HPKE key pairs. As in HPKE, MLS assumes that

an AEAD algorithm produces a single ciphertext output from AEAD encryption (aligning with 

), as opposed to a separate ciphertext and tag.

Cipher suites are represented with the CipherSuite type. The cipher suites are defined in Section

17.1.

• 

◦ 

◦ 

◦ 

• 

• 

• 

[RFC9180]

[RFC5116]

5.1.1. Public Keys 

HPKE public keys are opaque values in a format defined by the underlying protocol (see 

 for more information).

Signature public keys are likewise represented as opaque values in a format defined by the

cipher suite's signature scheme.

For cipher suites using the Edwards-curve Digital Signature Algorithm (EdDSA) signature

schemes (Ed25519 or Ed448), the public key is in the format specified in .

Section

4 of [RFC9180]

opaque HPKEPublicKey<V>;

opaque SignaturePublicKey<V>;

[RFC8032]
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For cipher suites using the Elliptic Curve Digital Signature Algorithm (ECDSA) with the NIST

curves (P-256, P-384, or P-521), the public key is represented as an encoded

UncompressedPointRepresentation struct, as defined in .[RFC8446]

5.1.2. Signing 

The signature algorithm specified in a group's cipher suite is the mandatory algorithm to be used

for signing messages within the group. It  be the same as the signature algorithm specified

in the credentials in the leaves of the tree (including the leaf node information in KeyPackages

used to add new members).

The signatures used in this document are encoded as specified in . In particular, ECDSA

signatures are DER encoded, and EdDSA signatures are defined as the concatenation of R and S,

as specified in .

To disambiguate different signatures used in MLS, each signed value is prefixed by a label as

shown below:

Where SignContent is specified as:

And its fields are set to:

The functions Signature.Sign and Signature.Verify are defined by the signature algorithm. If

MLS extensions require signatures by group members, they should reuse the SignWithLabel

construction, using a distinct label. To avoid collisions in these labels, an IANA registry is defined

in Section 17.6.

MUST

[RFC8446]

[RFC8032]

SignWithLabel(SignatureKey, Label, Content) =

    Signature.Sign(SignatureKey, SignContent)

VerifyWithLabel(VerificationKey, Label, Content, SignatureValue) =

    Signature.Verify(VerificationKey, SignContent, SignatureValue)

struct {

    opaque label<V>;

    opaque content<V>;

} SignContent;

label = "MLS 1.0 " + Label;

content = Content;

5.1.3. Public Key Encryption 

As with signing, MLS includes a label and context in encryption operations to avoid confusion

between ciphertexts produced for different purposes. Encryption and decryption including this

label and context are done as follows:
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Where EncryptContext is specified as:

And its fields are set to:

The functions SealBase and OpenBase are defined in  (with "Base" as the

MODE), using the HPKE algorithms specified by the group's cipher suite. If MLS extensions

require HPKE encryption operations, they should reuse the EncryptWithLabel construction,

using a distinct label. To avoid collisions in these labels, an IANA registry is defined in Section

17.7.

EncryptWithLabel(PublicKey, Label, Context, Plaintext) =

  SealBase(PublicKey, EncryptContext, "", Plaintext)

DecryptWithLabel(PrivateKey, Label, Context, KEMOutput, Ciphertext) =

  OpenBase(KEMOutput, PrivateKey, EncryptContext, "", Ciphertext)

struct {

  opaque label<V>;

  opaque context<V>;

} EncryptContext;

label = "MLS 1.0 " + Label;

context = Context;

Section 6.1 of [RFC9180]

5.2. Hash-Based Identifiers 

Some MLS messages refer to other MLS objects by hash. For example, Welcome messages refer to

KeyPackages for the members being welcomed, and Commits refer to Proposals they cover.

These identifiers are computed as follows:

Where RefHashInput is defined as:

opaque HashReference<V>;

HashReference KeyPackageRef;

HashReference ProposalRef;

MakeKeyPackageRef(value)

  = RefHash("MLS 1.0 KeyPackage Reference", value)

MakeProposalRef(value)

  = RefHash("MLS 1.0 Proposal Reference", value)

RefHash(label, value) = Hash(RefHashInput)
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And its fields are set to:

For a KeyPackageRef, the value input is the encoded KeyPackage, and the cipher suite specified

in the KeyPackage determines the KDF used. For a ProposalRef, the value input is the

AuthenticatedContent carrying the Proposal. In the latter two cases, the KDF is determined by the

group's cipher suite.

struct {

  opaque label<V>;

  opaque value<V>;

} RefHashInput;

label = label;

value = value;

5.3. Credentials 

Each member of a group presents a credential that provides one or more identities for the

member and associates them with the member's signing key. The identities and signing key are

verified by the Authentication Service in use for a group.

It is up to the application to decide which identifiers to use at the application level. For example,

a certificate in an X509Credential may attest to several domain names or email addresses in its

subjectAltName extension. An application may decide to present all of these to a user, or if it

knows a "desired" domain name or email address, it can check that the desired identifier is

among those attested. Using the terminology from , a credential provides "presented

identifiers", and it is up to the application to supply a "reference identifier" for the authenticated

client, if any.

[RFC6125]

// See the "MLS Credential Types" IANA registry for values

uint16 CredentialType;

struct {

    opaque cert_data<V>;

} Certificate;

struct {

    CredentialType credential_type;

    select (Credential.credential_type) {

        case basic:

            opaque identity<V>;

        case x509:

            Certificate certificates<V>;

    };

} Credential;
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A "basic" credential is a bare assertion of an identity, without any additional information. The

format of the encoded identity is defined by the application.

For an X.509 credential, each entry in the certificates field represents a single DER-encoded X.

509 certificate. The chain is ordered such that the first entry (certificates[0]) is the end-entity

certificate. The public key encoded in the subjectPublicKeyInfo of the end-entity certificate 

 be identical to the signature_key in the LeafNode containing this credential. A chain 

omit any non-leaf certificates that supported peers are known to already possess.

MUST MAY

5.3.1. Credential Validation 

The application using MLS is responsible for specifying which identifiers it finds acceptable for

each member in a group. In other words, following the model that  describes for TLS,

the application maintains a list of "reference identifiers" for the members of a group, and the

credentials provide "presented identifiers". A member of a group is authenticated by first

validating that the member's credential legitimately represents some presented identifiers, and

then ensuring that the reference identifiers for the member are authenticated by those presented

identifiers.

The parts of the system that perform these functions are collectively referred to as the

Authentication Service (AS) . A member's credential is said to be validated with the

AS when the AS verifies that the credential's presented identifiers are correctly associated with

the signature_key field in the member's LeafNode, and that those identifiers match the

reference identifiers for the member.

Whenever a new credential is introduced in the group, it  be validated with the AS. In

particular, at the following events in the protocol:

When a member receives a KeyPackage that it will use in an Add proposal to add a new

member to the group 

When a member receives a GroupInfo object that it will use to join a group, either via a

Welcome or via an external Commit 

When a member receives an Add proposal adding a member to the group 

When a member receives an Update proposal whose LeafNode has a new credential for the

member 

When a member receives a Commit with an UpdatePath whose LeafNode has a new

credential for the committer 

When an external_senders extension is added to the group 

When an existing external_senders extension is updated 

In cases where a member's credential is being replaced, such as the Update and Commit cases

above, the AS  also verify that the set of presented identifiers in the new credential is valid

as a successor to the set of presented identifiers in the old credential, according to the

application's policy.

[RFC6125]

[MLS-ARCH]

MUST

• 

• 

• 

• 

• 

• 

• 

MUST
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5.3.2. Credential Expiry and Revocation 

In some credential schemes, a valid credential can "expire" or become invalid after a certain

point in time. For example, each X.509 certificate has a notAfter field, expressing a time after

which the certificate is not valid.

Expired credentials can cause operational problems in light of the validation requirements of 

Section 5.3.1. Applications can apply some operational practices and adaptations to

Authentication Service policies to moderate these impacts.

In general, to avoid operational problems such as new joiners rejecting expired credentials in a

group, applications that use such credentials should ensure to the extent practical that all of the

credentials in use in a group are valid at all times.

If a member finds that its credential has expired (or will soon), it should issue an Update or

Commit that replaces it with a valid credential. For this reason, members  accept Update

proposals and Commits issued by members with expired credentials, if the credential in the

Update or Commit is valid.

Similarly, when a client is processing messages sent some time in the past (e.g., syncing up with a

group after being offline), the client  accept signatures from members with expired

credentials, since the credential may have been valid at the time the message was sent.

If a member finds that another member's credential has expired, they may issue a Remove that

removes that member. For example, an application could require a member preparing to issue a

Commit to check the tree for expired credentials and include Remove proposals for those

members in its Commit. In situations where the group tree is known to the DS, the DS could also

monitor the tree for expired credentials and issue external Remove proposals.

Some credential schemes also allow credentials to be revoked. Revocation is similar to expiry in

that a previously valid credential becomes invalid. As such, most of the considerations above also

apply to revoked credentials. However, applications may want to treat revoked credentials

differently, e.g., by removing members with revoked credentials while allowing members with

expired credentials time to update.

SHOULD

SHOULD

5.3.3. Uniquely Identifying Clients 

MLS implementations will presumably provide applications with a way to request protocol

operations with regard to other clients (e.g., removing clients). Such functions will need to refer

to the other clients using some identifier. MLS clients have a few types of identifiers, with

different operational properties.

Internally to the protocol, group members are uniquely identified by their leaf index. However, a

leaf index is only valid for referring to members in a given epoch. The same leaf index may

represent a different member, or no member at all, in a subsequent epoch.
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The Credentials presented by the clients in a group authenticate application-level identifiers for

the clients. However, these identifiers may not uniquely identify clients. For example, if a user

has multiple devices that are all present in an MLS group, then those devices' clients could all

present the user's application-layer identifiers.

If needed, applications may add application-specific identifiers to the extensions field of a

LeafNode object with the application_id extension.

However, applications  rely on the data in an application_id extension as if it were

authenticated by the Authentication Service, and  gracefully handle cases where the

identifier presented is not unique.

opaque application_id<V>;

MUST NOT

SHOULD

6. Message Framing 

Handshake and application messages use a common framing structure. This framing provides

encryption to ensure confidentiality within the group, as well as signing to authenticate the

sender.

In most of the protocol, messages are handled in the form of AuthenticatedContent objects. These

structures contain the content of the message itself as well as information to authenticate the

sender (see Section 6.1). The additional protections required to transmit these messages over an

untrusted channel (group membership authentication or AEAD encryption) are added by

encoding the AuthenticatedContent as a PublicMessage or PrivateMessage message, which can

then be sent as an MLSMessage. Likewise, these protections are enforced (via membership

verification or AEAD decryption) when decoding a PublicMessage or PrivateMessage into an

AuthenticatedContent object.

PrivateMessage represents a signed and encrypted message, with protections for both the

content of the message and related metadata. PublicMessage represents a message that is only

signed, and not encrypted. Applications  use PrivateMessage to encrypt application

messages and  use PrivateMessage to encode handshake messages, but they 

transmit handshake messages encoded as PublicMessage objects in cases where it is necessary

for the Delivery Service to examine such messages.

MUST

SHOULD MAY

enum {

    reserved(0),

    mls10(1),

    (65535)

} ProtocolVersion;

enum {

    reserved(0),

    application(1),

    proposal(2),

    commit(3),
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    (255)

} ContentType;

enum {

    reserved(0),

    member(1),

    external(2),

    new_member_proposal(3),

    new_member_commit(4),

    (255)

} SenderType;

struct {

    SenderType sender_type;

    select (Sender.sender_type) {

        case member:

            uint32 leaf_index;

        case external:

            uint32 sender_index;

        case new_member_commit:

        case new_member_proposal:

            struct{};

    };

} Sender;

// See the "MLS Wire Formats" IANA registry for values

uint16 WireFormat;

struct {

    opaque group_id<V>;

    uint64 epoch;

    Sender sender;

    opaque authenticated_data<V>;

    ContentType content_type;

    select (FramedContent.content_type) {

        case application:

          opaque application_data<V>;

        case proposal:

          Proposal proposal;

        case commit:

          Commit commit;

    };

} FramedContent;

struct {

    ProtocolVersion version = mls10;

    WireFormat wire_format;

    select (MLSMessage.wire_format) {

        case mls_public_message:

            PublicMessage public_message;

        case mls_private_message:

            PrivateMessage private_message;

        case mls_welcome:

            Welcome welcome;

        case mls_group_info:

            GroupInfo group_info;

        case mls_key_package:
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Messages from senders that aren't in the group are sent as PublicMessage. See Sections 12.1.8 and

12.4.3.2 for more details.

The following structure is used to fully describe the data transmitted in plaintexts or ciphertexts.

The following figure illustrates how the various structures described in this section relate to each

other, and the high-level operations used to produce and consume them:

            KeyPackage key_package;

    };

} MLSMessage;

struct {

    WireFormat wire_format;

    FramedContent content;

    FramedContentAuthData auth;

} AuthenticatedContent;
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Figure 12: Relationships among MLS Objects 

Proposal Commit Application Data

FramedContent

Asymmetric

FramedContentAuthData Sign / Verify

AuthenticatedContent

Symmetric

Protect / Unprotect

PublicMessage PrivateMessage

Welcome KeyPackage GroupInfo

MLSMessage

6.1. Content Authentication 

FramedContent is authenticated using the FramedContentAuthData structure.
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The signature is computed using SignWithLabel with label "FramedContentTBS" and with a

content that covers the message content and the wire format that will be used for this message. If

the sender's sender_type is member, the content also covers the GroupContext for the current

epoch so that signatures are specific to a given group and epoch.

The sender  use the private key corresponding to the following signature key depending on

the sender's sender_type:

member: The signature key contained in the LeafNode at the index indicated by leaf_index

in the ratchet tree. 

external: The signature key at the index indicated by sender_index in the 

external_senders group context extension (see Section 12.1.8.1). The content_type of the

message  be proposal and the proposal_type  be a value that is allowed for

external senders. 

new_member_commit: The signature key in the LeafNode in the Commit's path (see Section

12.4.3.2). The content_type of the message  be commit. 

new_member_proposal: The signature key in the LeafNode in the KeyPackage embedded in

an external Add proposal. The content_type of the message  be proposal and the 

proposal_type of the Proposal  be add. 

struct {

    ProtocolVersion version = mls10;

    WireFormat wire_format;

    FramedContent content;

    select (FramedContentTBS.content.sender.sender_type) {

        case member:

        case new_member_commit:

            GroupContext context;

        case external:

        case new_member_proposal:

            struct{};

    };

} FramedContentTBS;

opaque MAC<V>;

struct {

    /* SignWithLabel(., "FramedContentTBS", FramedContentTBS) */

    opaque signature<V>;

    select (FramedContent.content_type) {

        case commit:

            /*

              MAC(confirmation_key,

                  GroupContext.confirmed_transcript_hash)

            */

            MAC confirmation_tag;

        case application:

        case proposal:

            struct{};

    };

} FramedContentAuthData;

MUST

• 

• 

MUST MUST

• 

MUST

• 

MUST

MUST
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Recipients of an MLSMessage  verify the signature with the key depending on the 

sender_type of the sender as described above.

The confirmation tag value confirms that the members of the group have arrived at the same

state of the group. A FramedContentAuthData is said to be valid when both the signature and 

confirmation_tag fields are valid.

MUST

6.2. Encoding and Decoding a Public Message 

Messages that are authenticated but not encrypted are encoded using the PublicMessage

structure.

The membership_tag field in the PublicMessage object authenticates the sender's membership in

the group. For messages sent by members, it  be set to the following value:

When decoding a PublicMessage into an AuthenticatedContent, the application  check 

membership_tag and  check that the FramedContentAuthData is valid.

struct {

    FramedContent content;

    FramedContentAuthData auth;

    select (PublicMessage.content.sender.sender_type) {

        case member:

            MAC membership_tag;

        case external:

        case new_member_commit:

        case new_member_proposal:

            struct{};

    };

} PublicMessage;

MUST

struct {

  FramedContentTBS content_tbs;

  FramedContentAuthData auth;

} AuthenticatedContentTBM;

membership_tag = MAC(membership_key, AuthenticatedContentTBM)

MUST

MUST

6.3. Encoding and Decoding a Private Message 

Authenticated and encrypted messages are encoded using the PrivateMessage structure.
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encrypted_sender_data and ciphertext are encrypted using the AEAD function specified by

the cipher suite in use, using the SenderData and PrivateMessageContent structures as input.

struct {

    opaque group_id<V>;

    uint64 epoch;

    ContentType content_type;

    opaque authenticated_data<V>;

    opaque encrypted_sender_data<V>;

    opaque ciphertext<V>;

} PrivateMessage;

6.3.1. Content Encryption 

Content to be encrypted is encoded in a PrivateMessageContent structure.

The padding field is set by the sender, by first encoding the content (via the select) and the auth

field, and then appending the chosen number of zero bytes. A receiver identifies the padding

field in a plaintext decoded from PrivateMessage.ciphertext by first decoding the content and

the auth field; then the padding field comprises any remaining octets of plaintext. The padding

field  be filled with all zero bytes. A receiver  verify that there are no non-zero bytes in

the padding field, and if this check fails, the enclosing PrivateMessage  be rejected as

malformed. This check ensures that the padding process is deterministic, so that, for example,

padding cannot be used as a covert channel.

In the MLS key schedule, the sender creates two distinct key ratchets for handshake and

application messages for each member of the group. When encrypting a message, the sender

looks at the ratchets it derived for its own member and chooses an unused generation from

either the handshake ratchet or the application ratchet, depending on the content type of the

message. This generation of the ratchet is used to derive a provisional nonce and key.

struct {

    select (PrivateMessage.content_type) {

        case application:

          opaque application_data<V>;

        case proposal:

          Proposal proposal;

        case commit:

          Commit commit;

    };

    FramedContentAuthData auth;

    opaque padding[length_of_padding];

} PrivateMessageContent;

MUST MUST

MUST
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Before use in the encryption operation, the nonce is XORed with a fresh random value to guard

against reuse. Because the key schedule generates nonces deterministically, a client  keep

persistent state as to where in the key schedule it is; if this persistent state is lost or corrupted, a

client might reuse a generation that has already been used, causing reuse of a key/nonce pair.

To avoid this situation, the sender of a message  generate a fresh random four-byte "reuse

guard" value and XOR it with the first four bytes of the nonce from the key schedule before using

the nonce for encryption. The sender  include the reuse guard in the reuse_guard field of

the sender data object, so that the recipient of the message can use it to compute the nonce to be

used for decryption.

The Additional Authenticated Data (AAD) input to the encryption contains an object of the

following form, with the values used to identify the key and nonce:

When decoding a PrivateMessageContent, the application  check that the

FramedContentAuthData is valid.

It is up to the application to decide what authenticated_data to provide and how much padding

to add to a given message (if any). The overall size of the AAD and ciphertext  fit within the

limits established for the group's AEAD algorithm in .

MUST

MUST

MUST

+-+-+-+-+---------...---+

|   Key Schedule Nonce  |

+-+-+-+-+---------...---+

           XOR

+-+-+-+-+---------...---+

| Guard |       0       |

+-+-+-+-+---------...---+

           ===

+-+-+-+-+---------...---+

| Encrypt/Decrypt Nonce |

+-+-+-+-+---------...---+

struct {

    opaque group_id<V>;

    uint64 epoch;

    ContentType content_type;

    opaque authenticated_data<V>;

} PrivateContentAAD;

MUST

MUST

[CFRG-AEAD-LIMITS]

6.3.2. Sender Data Encryption 

The "sender data" used to look up the key for content encryption is encrypted with the cipher

suite's AEAD with a key and nonce derived from both the sender_data_secret and a sample of

the encrypted content. Before being encrypted, the sender data is encoded as an object of the

following form:
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When constructing a SenderData object from a Sender object, the sender  verify

Sender.sender_type is member and use Sender.leaf_index for SenderData.leaf_index.

The reuse_guard field contains a fresh random value used to avoid nonce reuse in the case of

state loss or corruption, as described in Section 6.3.1.

The key and nonce provided to the AEAD are computed as the KDF of the first KDF.Nh bytes of the

ciphertext generated in the previous section. If the length of the ciphertext is less than KDF.Nh,

the whole ciphertext is used. In pseudocode, the key and nonce are derived as:

The AAD for the SenderData ciphertext is the first three fields of PrivateMessage:

When parsing a SenderData struct as part of message decryption, the recipient  verify that

the leaf index indicated in the leaf_index field identifies a non-blank node.

struct {

    uint32 leaf_index;

    uint32 generation;

    opaque reuse_guard[4];

} SenderData;

MUST

ciphertext_sample = ciphertext[0..KDF.Nh-1]

sender_data_key = ExpandWithLabel(sender_data_secret, "key",

                      ciphertext_sample, AEAD.Nk)

sender_data_nonce = ExpandWithLabel(sender_data_secret, "nonce",

                      ciphertext_sample, AEAD.Nn)

struct {

    opaque group_id<V>;

    uint64 epoch;

    ContentType content_type;

} SenderDataAAD;

MUST

7. Ratchet Tree Operations 

The ratchet tree for an epoch describes the membership of a group in that epoch, providing

public key encryption (HPKE) keys that can be used to encrypt to subsets of the group as well as

information to authenticate the members. In order to reflect changes to the membership of the

group from one epoch to the next, corresponding changes are made to the ratchet tree. In this

section, we describe the content of the tree and the required operations.
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7.1. Parent Node Contents 

As discussed in Section 4.1.1, the nodes of a ratchet tree contain several types of data describing

individual members (for leaf nodes) or subgroups of the group (for parent nodes). Parent nodes

are simpler:

The encryption_key field contains an HPKE public key whose private key is held only by the

members at the leaves among its descendants. The parent_hash field contains a hash of this

node's parent node, as described in Section 7.9. The unmerged_leaves field lists the leaves under

this parent node that are unmerged, according to their indices among all the leaves in the tree.

The entries in the unmerged_leaves vector  be sorted in increasing order.

struct {

    HPKEPublicKey encryption_key;

    opaque parent_hash<V>;

    uint32 unmerged_leaves<V>;

} ParentNode;

MUST

7.2. Leaf Node Contents 

A leaf node in the tree describes all the details of an individual client's appearance in the group,

signed by that client. It is also used in client KeyPackage objects to store the information that will

be needed to add a client to a group.

enum {

    reserved(0),

    key_package(1),

    update(2),

    commit(3),

    (255)

} LeafNodeSource;

struct {

    ProtocolVersion versions<V>;

    CipherSuite cipher_suites<V>;

    ExtensionType extensions<V>;

    ProposalType proposals<V>;

    CredentialType credentials<V>;

} Capabilities;

struct {

    uint64 not_before;

    uint64 not_after;

} Lifetime;

// See the "MLS Extension Types" IANA registry for values

uint16 ExtensionType;

struct {

    ExtensionType extension_type;
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    opaque extension_data<V>;

} Extension;

struct {

    HPKEPublicKey encryption_key;

    SignaturePublicKey signature_key;

    Credential credential;

    Capabilities capabilities;

    LeafNodeSource leaf_node_source;

    select (LeafNode.leaf_node_source) {

        case key_package:

            Lifetime lifetime;

        case update:

            struct{};

        case commit:

            opaque parent_hash<V>;

    };

    Extension extensions<V>;

    /* SignWithLabel(., "LeafNodeTBS", LeafNodeTBS) */

    opaque signature<V>;

} LeafNode;

struct {

    HPKEPublicKey encryption_key;

    SignaturePublicKey signature_key;

    Credential credential;

    Capabilities capabilities;

    LeafNodeSource leaf_node_source;

    select (LeafNodeTBS.leaf_node_source) {

        case key_package:

            Lifetime lifetime;

        case update:

            struct{};

        case commit:

            opaque parent_hash<V>;

    };

    Extension extensions<V>;

    select (LeafNodeTBS.leaf_node_source) {

        case key_package:

            struct{};

        case update:

            opaque group_id<V>;

            uint32 leaf_index;

        case commit:

            opaque group_id<V>;

            uint32 leaf_index;
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The encryption_key field contains an HPKE public key whose private key is held only by the

member occupying this leaf (or in the case of a LeafNode in a KeyPackage object, the issuer of the

KeyPackage). The signature_key field contains the member's public signing key. The 

credential field contains information authenticating both the member's identity and the

provided signing key, as described in Section 5.3.

The capabilities field indicates the protocol features that the client supports, including

protocol versions, cipher suites, credential types, non-default proposal types, and non-default

extension types. The following proposal and extension types are considered "default" and 

 be listed:

Proposal types:

0x0001 - add 

0x0002 - update 

0x0003 - remove 

0x0004 - psk 

0x0005 - reinit 

0x0006 - external_init 

0x0007 - group_context_extensions 

Extension types:

0x0001 - application_id 

0x0002 - ratchet_tree 

0x0003 - required_capabilities 

0x0004 - external_pub 

0x0005 - external_senders 

There are no default values for the other fields of a capabilities object. The client  list all

values for the respective parameters that it supports.

The types of any non-default extensions that appear in the extensions field of a LeafNode 

be included in the extensions field of the capabilities field, and the credential type used in

the LeafNode  be included in the credentials field of the capabilities field.

As discussed in Section 13, unknown values in capabilities  be ignored, and the creator

of a capabilities field  include some random GREASE values to help ensure that other

clients correctly ignore unknown values.

The leaf_node_source field indicates how this LeafNode came to be added to the tree. This

signal tells other members of the group whether the leaf node is required to have a lifetime or 

parent_hash, and whether the group_id is added as context to the signature. These fields are

    };

} LeafNodeTBS;

MUST

NOT

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

◦ 

◦ 

MUST

MUST

MUST

MUST

SHOULD
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included selectively because the client creating a LeafNode is not always able to compute all of

them. For example, a KeyPackage is created before the client knows which group it will be used

with, so its signature can't bind to a group_id.

In the case where the leaf was added to the tree based on a pre-published KeyPackage, the 

lifetime field represents the times between which clients will consider a LeafNode valid. These

times are represented as absolute times, measured in seconds since the Unix epoch

(1970-01-01T00:00:00Z). Applications  define a maximum total lifetime that is acceptable for

a LeafNode, and reject any LeafNode where the total lifetime is longer than this duration. In

order to avoid disagreements about whether a LeafNode has a valid lifetime, the clients in a

group  maintain time synchronization (e.g., using the Network Time Protocol ).

In the case where the leaf node was inserted into the tree via a Commit message, the 

parent_hash field contains the parent hash for this leaf node (see Section 7.9).

The LeafNodeTBS structure covers the fields above the signature in the LeafNode. In addition,

when the leaf node was created in the context of a group (the update and commit cases), the

group ID of the group is added as context to the signature.

LeafNode objects stored in the group's ratchet tree are updated according to the evolution of the

tree. Each modification of LeafNode content  be reflected by a change in its signature. This

allows other members to verify the validity of the LeafNode at any time, particularly in the case

of a newcomer joining the group.

MUST

SHOULD [RFC5905]

MUST

7.3. Leaf Node Validation 

The validity of a LeafNode needs to be verified at the following stages:

When a LeafNode is downloaded in a KeyPackage, before it is used to add the client to the

group 

When a LeafNode is received by a group member in an Add, Update, or Commit message 

When a client validates a ratchet tree, e.g., when joining a group or after processing a

Commit 

The client verifies the validity of a LeafNode using the following steps:

Verify that the credential in the LeafNode is valid, as described in Section 5.3.1. 

Verify that the signature on the LeafNode is valid using signature_key. 

Verify that the LeafNode is compatible with the group's parameters. If the GroupContext has

a required_capabilities extension, then the required extensions, proposals, and

credential types  be listed in the LeafNode's capabilities field. 

Verify that the credential type is supported by all members of the group, as specified by the 

capabilities field of each member's LeafNode, and that the capabilities field of this

LeafNode indicates support for all the credential types currently in use by other members. 

• 

• 

• 

• 

• 

• 

MUST

• 
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Verify the lifetime field:

If the LeafNode appears in a message being sent by the client, e.g., a Proposal or a Commit,

then the client  verify that the current time is within the range of the lifetime field. 

If instead the LeafNode appears in a message being received by the client, e.g., a Proposal,

a Commit, or a ratchet tree of the group the client is joining, it is  that the

client verifies that the current time is within the range of the lifetime field. (This check is

not mandatory because the LeafNode might have expired in the time between when the

message was sent and when it was received.) 

Verify that the extensions in the LeafNode are supported by checking that the ID for each

extension in the extensions field is listed in the capabilities.extensions field of the

LeafNode. 

Verify the leaf_node_source field:

If the LeafNode appears in a KeyPackage, verify that leaf_node_source is set to 

key_package. 

If the LeafNode appears in an Update proposal, verify that leaf_node_source is set to 

update and that encryption_key represents a different public key than the 

encryption_key in the leaf node being replaced by the Update proposal. 

If the LeafNode appears in the leaf_node value of the UpdatePath in a Commit, verify that 

leaf_node_source is set to commit. 

Verify that the following fields are unique among the members of the group:

signature_key 

encryption_key 

• 

◦ 

MUST

◦ 

RECOMMENDED

• 

• 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

7.4. Ratchet Tree Evolution 

Whenever a member initiates an epoch change (i.e., commits; see Section 12.4), they may need to

refresh the key pairs of their leaf and of the nodes on their leaf's direct path in order to maintain

forward secrecy and post-compromise security.

The member initiating the epoch change generates the fresh key pairs using the following

procedure. The procedure is designed in a way that allows group members to efficiently

communicate the fresh secret keys to other group members, as described in Section 7.6.

A member updates the nodes along its direct path as follows:

Blank all the nodes on the direct path from the leaf to the root. 

Generate a fresh HPKE key pair for the leaf. 

Generate a sequence of path secrets, one for each node on the leaf's filtered direct path, as

follows. In this setting, path_secret[0] refers to the first parent node in the filtered direct

path, path_secret[1] to the second parent node, and so on. 

• 

• 

• 
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Compute the sequence of HPKE key pairs (node_priv,node_pub), one for each node on the

leaf's direct path, as follows. 

The node secret is derived as a temporary intermediate secret so that each secret is only used

with one algorithm: The path secret is used as an input to DeriveSecret, and the node secret is

used as an input to DeriveKeyPair.

For example, suppose there is a group with four members, with C an unmerged leaf at Z:

If member B subsequently generates an UpdatePath based on a secret "leaf_secret", then it would

generate the following sequence of path secrets:

path_secret[0] is sampled at random

path_secret[n] = DeriveSecret(path_secret[n-1], "path")

• 

node_secret[n] = DeriveSecret(path_secret[n], "node")

node_priv[n], node_pub[n] = KEM.DeriveKeyPair(node_secret[n])

Figure 13: A Full Tree with One Unmerged Leaf 

Y

X Z[C]

/ \ / \

A B C D

0 1 2 3
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After applying the UpdatePath, the tree will have the following structure:

Figure 14: Derivation of Ratchet Tree Keys along a Direct Path 

path_secret[1] node_secret[1] node_priv[1], node_pub[1]

path_secret[0] node_secret[0] node_priv[0], node_pub[0]

leaf_secret leaf_node_secret leaf_priv, leaf_pub

leaf_node

Figure 15: Placement of Keys in a Ratchet Tree 

node_priv[1] Y'

node_priv[0] X' Z[C]

/ \ / \

A B C D

leaf_priv

0 1 2 3

7.5. Synchronizing Views of the Tree 

After generating fresh key material and applying it to update their local tree state as described in

Section 7.4, the generator broadcasts this update to other members of the group in a Commit

message, who apply it to keep their local views of the tree in sync with the sender's. More

specifically, when a member commits a change to the tree (e.g., to add or remove a member), it

transmits an UpdatePath containing a set of public keys and encrypted path secrets for

intermediate nodes in the filtered direct path of its leaf. The other members of the group use

these values to update their view of the tree, aligning their copy of the tree to the sender's.
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An UpdatePath contains the following information for each node in the filtered direct path of the

sender's leaf, including the root:

The public key for the node 

One or more encrypted copies of the path secret corresponding to the node 

The path secret value for a given node is encrypted to the subtree rooted at the parent's non-

updated child, i.e., the child on the copath of the sender's leaf node. There is one encryption of

the path secret to each public key in the resolution of the non-updated child.

A member of the group updates their direct path by computing new values for their leaf node and

the nodes along their filtered direct path as follows:

Blank all nodes along the direct path of the sender's leaf. 

Compute updated path secrets and public keys for the nodes on the sender's filtered direct

path.

Generate a sequence of path secrets of the same length as the filtered direct path, as

defined in Section 7.4. 

For each node in the filtered direct path, replace the node's public key with the 

node_pub[n] value derived from the corresponding path secret path_secret[n]. 

Compute the new parent hashes for the nodes along the filtered direct path and the sender's

leaf node. 

Update the leaf node for the sender.

Set the leaf_node_source to commit. 

Set the encryption_key to the public key of a freshly sampled key pair. 

Set the parent hash to the parent hash for the leaf. 

Re-sign the leaf node with its new contents. 

Since the new leaf node effectively updates an existing leaf node in the group, it  adhere to

the same restrictions as LeafNodes used in Update proposals (aside from leaf_node_source).

The application  specify other changes to the leaf node, e.g., providing a new signature key,

updated capabilities, or different extensions.

The member then encrypts path secrets to the group. For each node in the member's filtered

direct path, the member takes the following steps:

Compute the resolution of the node's child that is on the copath of the sender (the child that

is not in the direct path of the sender). Any new member (from an Add proposal) added in

the same Commit  be excluded from this resolution. 

For each node in the resolution, encrypt the path secret for the direct path node using the

public key of the resolution node, as defined in Section 7.6. 

• 

• 

1. 

2. 

◦ 

◦ 

3. 

4. 

◦ 

◦ 

◦ 

◦ 

MUST

MAY

1. 

MUST

2. 
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The recipient of an UpdatePath performs the corresponding steps. First, the recipient merges

UpdatePath into the tree:

Blank all nodes on the direct path of the sender's leaf. 

For all nodes on the filtered direct path of the sender's leaf,

Set the public key to the public key in the UpdatePath. 

Set the list of unmerged leaves to the empty list. 

Compute parent hashes for the nodes in the sender's filtered direct path, and verify that the 

parent_hash field of the leaf node matches the parent hash for the first node in its filtered

direct path.

Note that these hashes are computed from root to leaf, so that each hash incorporates all

the non-blank nodes above it. The root node always has a zero-length hash for its parent

hash. 

Second, the recipient decrypts the path secrets:

Identify a node in the filtered direct path for which the recipient is in the subtree of the non-

updated child. 

Identify a node in the resolution of the copath node for which the recipient has a private key.

Decrypt the path secret for the parent of the copath node using the private key from the

resolution node. 

Derive path secrets for ancestors of that node in the sender's filtered direct path using the

algorithm described above. 

Derive the node secrets and node key pairs from the path secrets. 

Verify that the derived public keys are the same as the corresponding public keys sent in the

UpdatePath. 

Store the derived private keys in the corresponding ratchet tree nodes. 

For example, in order to communicate the example update described in Section 7.4, the member

at node B would transmit the following values:

Public Key Ciphertext(s)

node_pub[1] E(pk(Z), path_secret[1]), E(pk(C), path_secret[1])

node_pub[0] E(pk(A), path_secret[0]) 

Table 3

In this table, the value node_pub[i] represents the public key derived from node_secret[i], pk(X)

represents the current public key of node X, and E(K, S) represents the public key encryption of

the path secret S to the public key K (using HPKE).

1. 

2. 

◦ 

◦ 

3. 

◦ 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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A recipient at node A would decrypt E(pk(A), path_secret\[0\]) to obtain 

path_secret\[0\], then use it to derive path_secret[1] and the resulting node secrets and key

pairs. Thus, A would have the private keys to nodes X' and Y', in accordance with the tree

invariant.

Similarly, a recipient at node D would decrypt E(pk(Z), path_secret[1]) to obtain 

path_secret[1], then use it to derive the node secret and key pair for the node Y'. As required to

maintain the tree invariant, node D does not receive the private key for the node X', since X' is

not an ancestor of D.

After processing the update, each recipient  delete outdated key material, specifically:

The path secrets and node secrets used to derive each updated node key pair. 

Each outdated node key pair that was replaced by the update. 

MUST

• 

• 

7.6. Update Paths 

As described in Section 12.4, each Commit message may optionally contain an UpdatePath, with a

new LeafNode and set of parent nodes for the sender's filtered direct path. For each parent node,

the UpdatePath contains a new public key and encrypted path secret. The parent nodes are kept

in the same order as the filtered direct path.

For each UpdatePathNode, the resolution of the corresponding copath node  exclude all

new leaf nodes added as part of the current Commit. The length of the encrypted_path_secret

vector  be equal to the length of the resolution of the copath node (excluding new leaf

nodes), with each ciphertext being the encryption to the respective resolution node.

struct {

    opaque kem_output<V>;

    opaque ciphertext<V>;

} HPKECiphertext;

struct {

    HPKEPublicKey encryption_key;

    HPKECiphertext encrypted_path_secret<V>;

} UpdatePathNode;

struct {

    LeafNode leaf_node;

    UpdatePathNode nodes<V>;

} UpdatePath;

MUST

MUST
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The HPKECiphertext values are encrypted and decrypted as follows:

Here node_public_key is the public key of the node for which the path secret is encrypted, 

group_context is the provisional GroupContext object for the group, and the EncryptWithLabel

function is as defined in Section 5.1.3.

(kem_output, ciphertext) =

  EncryptWithLabel(node_public_key, "UpdatePathNode",

                   group_context, path_secret)

path_secret =

  DecryptWithLabel(node_private_key, "UpdatePathNode",

                   group_context, kem_output, ciphertext)

7.7. Adding and Removing Leaves 

In addition to the path-based updates to the tree described above, it is also necessary to add and

remove leaves of the tree in order to reflect changes to the membership of the group (see

Sections 12.1.1 and 12.1.3). Since the tree is always full, adding or removing leaves corresponds to

increasing or decreasing the depth of the tree, resulting in the number of leaves being doubled or

halved. These operations are also known as extending and truncating the tree.

Leaves are always added and removed at the right edge of the tree. When the size of the tree

needs to be increased, a new blank root node is added, whose left subtree is the existing tree and

right subtree is a new all-blank subtree. This operation is typically done when adding a member

to the group.

When the right subtree of the tree no longer has any non-blank nodes, it can be safely removed.

The root of the tree and the right subtree are discarded (whether or not the root node is blank).

The left child of the root becomes the new root node, and the left subtree becomes the new tree.

This operation is typically done after removing a member from the group.

Figure 16: Extending the Tree to Make Room for a Third Member 

                  _ <-- new blank root                    _

                __|__                                   __|__

               /     \                                 /     \

  X    ===>   X       _ <-- new blank subtree ===>    X       _

 / \         / \     / \                             / \     / \

A   B       A   B   _   _                           A   B   C   _

                                                            ^

                                                            |

                                               new member --+
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Concrete algorithms for these operations on array-based and link-based trees are provided in

Appendices C and D. The concrete algorithms are non-normative. An implementation may use

any algorithm that produces the correct tree in its internal representation.

Figure 17: Cleaning Up after Removing Member C 

               Y                  Y

             __|__              __|__

            /     \            /     \

           X       _   ===>   X       _   ==>   X <-- new root

          / \     / \        / \     / \       / \

         A   B   C   _      A   B   _   _     A   B

                 ^

                 |

removed member --+

7.8. Tree Hashes 

MLS hashes the contents of the tree in two ways to authenticate different properties of the tree. 

Tree hashes are defined in this section, and parent hashes are defined in Section 7.9.

Each node in a ratchet tree has a tree hash that summarizes the subtree below that node. The

tree hash of the root is used in the GroupContext to confirm that the group agrees on the whole

tree. Tree hashes are computed recursively from the leaves up to the root.

The tree hash of an individual node is the hash of the node's TreeHashInput object, which may

contain either a LeafNodeHashInput or a ParentNodeHashInput depending on the type of node.

LeafNodeHashInput objects contain the leaf_index and the LeafNode (if any).

ParentNodeHashInput objects contain the ParentNode (if any) and the tree hash of the node's left

and right children. For both parent and leaf nodes, the optional node value  be absent if the

node is blank and present if the node contains a value.

Figure 18: Composition of the Tree Hash 

P th(P)

th(L) th(R)

MUST
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The tree hash of an entire tree corresponds to the tree hash of the root node, which is computed

recursively by starting at the leaf nodes and building up.

enum {

    reserved(0),

    leaf(1),

    parent(2),

    (255)

} NodeType;

struct {

  NodeType node_type;

  select (TreeHashInput.node_type) {

    case leaf:   LeafNodeHashInput leaf_node;

    case parent: ParentNodeHashInput parent_node;

  };

} TreeHashInput;

struct {

    uint32 leaf_index;

    optional<LeafNode> leaf_node;

} LeafNodeHashInput;

struct {

    optional<ParentNode> parent_node;

    opaque left_hash<V>;

    opaque right_hash<V>;

} ParentNodeHashInput;

7.9. Parent Hashes 

While tree hashes summarize the state of a tree at point in time, parent hashes capture

information about how keys in the tree were populated.

When a client sends a Commit to change a group, it can include an UpdatePath to assign new

keys to the nodes along its filtered direct path. When a client computes an UpdatePath (as

defined in Section 7.5), it computes and signs a parent hash that summarizes the state of the tree

after the UpdatePath has been applied. These summaries are constructed in a chain from the

root to the member's leaf so that the part of the chain closer to the root can be overwritten as

nodes set in one UpdatePath are reset by a later UpdatePath.

RFC 9420 MLS July 2023

Barnes, et al. Standards Track Page 52



As a result, the signature over the parent hash in each member's leaf effectively signs the subtree

of the tree that hasn't been changed since that leaf was last changed in an UpdatePath. A new

member joining the group uses these parent hashes to verify that the parent nodes in the tree

were set by members of the group, not chosen by an external attacker. For an example of how

this works, see Appendix B.

Consider a ratchet tree with a non-blank parent node P and children D and S (for "parent",

"direct path", and "sibling"), with D and P in the direct path of a leaf node L (for "leaf"):

The parent hash of P changes whenever an UpdatePath object is applied to the ratchet tree along

a path from a leaf L traversing node D (and hence also P). The new "Parent hash of P (with copath

child S)" is obtained by hashing P's ParentHashInput struct.

Figure 19: Inputs to a Parent Hash 

ph(Q)

P.public_key ph(P)

N.parent_hash th(S)

Figure 20: Nodes Involved in a Parent Hash Computation 

         ...

         /

        P

      __|__

     /     \

    D       S

   / \     / \

 ... ... ... ...

 /

L

struct {

    HPKEPublicKey encryption_key;

    opaque parent_hash<V>;

    opaque original_sibling_tree_hash<V>;

} ParentHashInput;
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The field encryption_key contains the HPKE public key of P. If P is the root, then the 

parent_hash field is set to a zero-length octet string. Otherwise, parent_hash is the parent hash

of the next node after P on the filtered direct path of the leaf L. This way, P's parent hash fixes the

new HPKE public key of each non-blank node on the path from P to the root. Note that the path

from P to the root may contain some blank nodes that are not fixed by P's parent hash. However,

for each node that has an HPKE key, this key is fixed by P's parent hash.

Finally, original_sibling_tree_hash is the tree hash of S in the ratchet tree modified as

follows: For each leaf L in P.unmerged_leaves, blank L and remove it from the 

unmerged_leaves sets of all parent nodes.

Observe that original_sibling_tree_hash does not change between updates of P. This

property is crucial for the correctness of the protocol.

Note that original_sibling_tree_hash is the tree hash of S, not the parent hash. The 

parent_hash field in ParentHashInput captures information about the nodes above P. the 

original_sibling_tree_hash captures information about the subtree under S that is not being

updated (and thus the subtree to which a path secret for P would be encrypted according to 

Section 7.5).

For example, in the following tree:

With P = W and S = Y, original_sibling_tree_hash is the tree hash of the following tree:

Because W.unmerged_leaves includes F, F is blanked and removed from Y.unmerged_leaves.

Note that no recomputation is needed if the tree hash of S is unchanged since the last time P was

updated. This is the case for computing or processing a Commit whose UpdatePath traverses P,

since the Commit itself resets P. (In other words, it is only necessary to recompute the original

Figure 21: A Tree Illustrating Parent Hash Computations 

              W [F]

        ______|_____

       /             \

      U               Y [F]

    __|__           __|__

   /     \         /     \

  T       _       _       _

 / \     / \     / \     / \

A   B   C   D   E   F   G   _

      Y

    __|__

   /     \

  _       _

 / \     / \

E   _   G   _
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sibling tree hash when validating a group's tree on joining.) More generally, if none of the entries

in P.unmerged_leaves are in the subtree under S (and thus no leaves were blanked), then the

original tree hash at S is the tree hash of S in the current tree.

If it is necessary to recompute the original tree hash of a node, the efficiency of recomputation

can be improved by caching intermediate tree hashes, to avoid recomputing over the subtree

when the subtree is included in multiple parent hashes. A subtree hash can be reused as long as

the intersection of the parent's unmerged leaves with the subtree is the same as in the earlier

computation.

7.9.1. Using Parent Hashes 

In ParentNode objects and LeafNode objects with leaf_node_source set to commit, the value of

the parent_hash field is the parent hash of the next non-blank parent node above the node in

question (the next node in the filtered direct path). Using the node labels in Figure 20, the 

parent_hash field of D is equal to the parent hash of P with copath child S. This is the case even

when the node D is a leaf node.

The parent_hash field of a LeafNode is signed by the member. The signature of such a LeafNode

thus attests to which keys the group member introduced into the ratchet tree and to whom the

corresponding secret keys were sent, in addition to the other contents of the LeafNode. This

prevents malicious insiders from constructing artificial ratchet trees with a node D whose HPKE

secret key is known to the insider, yet where the insider isn't assigned a leaf in the subtree rooted

at D. Indeed, such a ratchet tree would violate the tree invariant.

7.9.2. Verifying Parent Hashes 

Parent hashes are verified at two points in the protocol: When joining a group and when

processing a Commit.

The parent hash in a node D is valid with respect to a parent node P if the following criteria hold.

Here C and S are the children of P (for "child" and "sibling"), with C being the child that is on the

direct path of D (possibly D itself) and S being the other child:

D is a descendant of P in the tree. 

The parent_hash field of D is equal to the parent hash of P with copath child S. 

D is in the resolution of C, and the intersection of P's unmerged_leaves with the subtree

under C is equal to the resolution of C with D removed. 

These checks verify that D and P were updated at the same time (in the same UpdatePath), and

that they were neighbors in the UpdatePath because the nodes in between them would have

omitted from the filtered direct path.

A parent node P is "parent-hash valid" if it can be chained back to a leaf node in this way. That is,

if there is leaf node L and a sequence of parent nodes P_1, ..., P_N such that P_N = P and each step

in the chain is authenticated by a parent hash, then L's parent hash is valid with respect to P_1,

P_1's parent hash is valid with respect to P_2, and so on.

• 

• 

• 
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When joining a group, the new member  authenticate that each non-blank parent node P is

parent-hash valid. This can be done "bottom up" by building chains up from leaves and verifying

that all non-blank parent nodes are covered by exactly one such chain, or "top down" by

verifying that there is exactly one descendant of each non-blank parent node for which the

parent node is parent-hash valid.

When processing a Commit message that includes an UpdatePath, clients  recompute the

expected value of parent_hash for the committer's new leaf and verify that it matches the 

parent_hash value in the supplied leaf_node. After being merged into the tree, the nodes in the

UpdatePath form a parent-hash chain from the committer's leaf to the root.

MUST

MUST

8. Key Schedule 

Group keys are derived using the Extract and Expand functions from the KDF for the group's

cipher suite, as well as the functions defined below:

Where KDFLabel is specified as:

And its fields are set to:

The value KDF.Nh is the size of an output from KDF.Extract, in bytes. In the below diagram:

KDF.Extract takes its salt argument from the top and its Input Keying Material (IKM)

argument from the left. 

DeriveSecret takes its Secret argument from the incoming arrow. 

0 represents an all-zero byte string of length KDF.Nh. 

ExpandWithLabel(Secret, Label, Context, Length) =

    KDF.Expand(Secret, KDFLabel, Length)

DeriveSecret(Secret, Label) =

    ExpandWithLabel(Secret, Label, "", KDF.Nh)

struct {

    uint16 length;

    opaque label<V>;

    opaque context<V>;

} KDFLabel;

length = Length;

label = "MLS 1.0 " + Label;

context = Context;

• 

• 

• 

RFC 9420 MLS July 2023

Barnes, et al. Standards Track Page 56



When processing a handshake message, a client combines the following information to derive

new epoch secrets:

The init secret from the previous epoch 

The commit secret for the current epoch 

The GroupContext object for current epoch 

Given these inputs, the derivation of secrets for an epoch proceeds as shown in the following

diagram:

• 

• 

• 
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A number of values are derived from the epoch secret for different purposes:

Figure 22: The MLS Key Schedule 

init_secret_[n-1]

commit_secret KDF.Extract

ExpandWithLabel(., "joiner", GroupContext_[n], KDF.Nh)

joiner_secret

psk_secret (or 0) KDF.Extract

DeriveSecret(., "welcome")

= welcome_secret

ExpandWithLabel(., "epoch", GroupContext_[n], KDF.Nh)

epoch_secret

DeriveSecret(., <label>)

= <secret>

DeriveSecret(., "init")

init_secret_[n]

Label Secret Purpose

"sender data" sender_data_secret Deriving keys to encrypt sender data
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The external_secret is used to derive an HPKE key pair whose private key is held by the entire

group:

The public key external_pub can be published as part of the GroupInfo struct in order to allow

non-members to join the group using an external Commit.

Label Secret Purpose

"encryption" encryption_secret Deriving message encryption keys (via the

secret tree)

"exporter" exporter_secret Deriving exported secrets

"external" external_secret Deriving the external init key

"confirm" confirmation_key Computing the confirmation MAC for an epoch

"membership" membership_key Computing the membership MAC for a

PublicMessage

"resumption" resumption_psk Proving membership in this epoch (via a PSK

injected later)

"authentication" epoch_authenticator Confirming that two clients have the same view

of the group

Table 4: Epoch-Derived Secrets 

external_priv, external_pub = KEM.DeriveKeyPair(external_secret)

8.1. Group Context 

Each member of the group maintains a GroupContext object that summarizes the state of the

group:

The fields in this state have the following semantics:

The cipher_suite is the cipher suite used by the group. 

struct {

    ProtocolVersion version = mls10;

    CipherSuite cipher_suite;

    opaque group_id<V>;

    uint64 epoch;

    opaque tree_hash<V>;

    opaque confirmed_transcript_hash<V>;

    Extension extensions<V>;

} GroupContext;

• 
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The group_id field is an application-defined identifier for the group. 

The epoch field represents the current version of the group. 

The tree_hash field contains a commitment to the contents of the group's ratchet tree and

the credentials for the members of the group, as described in Section 7.8. 

The confirmed_transcript_hash field contains a running hash over the messages that led

to this state. 

The extensions field contains the details of any protocol extensions that apply to the group. 

When a new member is added to the group, an existing member of the group provides the new

member with a Welcome message. The Welcome message provides the information the new

member needs to initialize its GroupContext.

Different changes to the group will have different effects on the group state. These effects are

described in their respective subsections of Section 12.1. The following general rules apply:

The group_id field is constant. 

The epoch field increments by one for each Commit message that is processed. 

The tree_hash is updated to represent the current tree and credentials. 

The confirmed_transcript_hash field is updated with the data for an AuthenticatedContent

encoding a Commit message, as described below. 

The extensions field changes when a GroupContextExtensions proposal is committed. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

8.2. Transcript Hashes 

The transcript hashes computed in MLS represent a running hash over all Proposal and Commit

messages that have ever been sent in a group. Commit messages are included directly. Proposal

messages are indirectly included via the Commit that applied them. Messages of both types are

included by hashing the AuthenticatedContent object in which they were sent.

The transcript hash comprises two individual hashes:

A confirmed_transcript_hash that represents a transcript over the whole history of

Commit messages, up to and including the signature of the most recent Commit. 

An interim_transcript_hash that covers the confirmed transcript hash plus the 

confirmation_tag of the most recent Commit. 

New members compute the interim transcript hash using the confirmation_tag field of the

GroupInfo struct, while existing members can compute it directly.

Each Commit message updates these hashes by way of its enclosing AuthenticatedContent. The

AuthenticatedContent struct is split into ConfirmedTranscriptHashInput and

InterimTranscriptHashInput. The former is used to update the confirmed transcript hash and the

latter is used to update the interim transcript hash.

• 

• 
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In this notation, ConfirmedTranscriptHashInput_[epoch] and 

InterimTranscriptHashInput_[epoch] are based on the Commit that initiated the epoch with

epoch number epoch. (Note that the epoch field in this Commit will be set to 

epoch - 1`, since it is sent within the previous epoch.)

The transcript hash ConfirmedTranscriptHashInput_[epoch] is used as the 

confirmed_transcript_hash input to the confirmation_tag field for this Commit. Each

Commit thus confirms the whole transcript of Commits up to that point, except for the latest

Commit's confirmation tag.

struct {

    WireFormat wire_format;

    FramedContent content; /* with content_type == commit */

    opaque signature<V>;

} ConfirmedTranscriptHashInput;

struct {

    MAC confirmation_tag;

} InterimTranscriptHashInput;

confirmed_transcript_hash_[0] = ""; /* zero-length octet string */

interim_transcript_hash_[0] = ""; /* zero-length octet string */

confirmed_transcript_hash_[epoch] =

    Hash(interim_transcript_hash_[epoch - 1] ||

        ConfirmedTranscriptHashInput_[epoch]);

interim_transcript_hash_[epoch] =

    Hash(confirmed_transcript_hash_[epoch] ||

        InterimTranscriptHashInput_[epoch]);
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Figure 23: Evolution of the Transcript Hashes through Two Epoch Changes 

...

interim_[N-1]

Ratchet Tree wire_format

Key Schedule content

epoch = N-1

commit

signature

confirmation_key_[N] confirmation_tag confirmed_[N]

interim_[N]

Ratchet Tree wire_format

Key Schedule content

epoch = N

commit

signature

confirmation_key_[N+1] confirmation_tag confirmed_[N+1]

interim_[N+1]

...
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8.3. External Initialization 

In addition to initializing a new epoch via KDF invocations as described above, an MLS group

can also initialize a new epoch via an asymmetric interaction using the external key pair for the

previous epoch. This is done when a new member is joining via an external commit.

In this process, the joiner sends a new init_secret value to the group using the HPKE export

method. The joiner then uses that init_secret with information provided in the GroupInfo and

an external Commit to initialize their copy of the key schedule for the new epoch.

Members of the group receive the kem_output in an ExternalInit proposal and perform the

corresponding calculation to retrieve the init_secret value.

kem_output, context = SetupBaseS(external_pub, "")

init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

context = SetupBaseR(kem_output, external_priv, "")

init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

8.4. Pre-Shared Keys 

Groups that already have an out-of-band mechanism to generate shared group secrets can inject

them into the MLS key schedule to incorporate this external entropy in the computation of MLS

group secrets.

Injecting an external PSK can improve security in the case where having a full run of Updates

across members is too expensive, or if the external group key establishment mechanism provides

stronger security against classical or quantum adversaries.

Note that, as a PSK may have a different lifetime than an Update, it does not necessarily provide

the same forward secrecy or post-compromise security guarantees as a Commit message. Unlike

the key pairs populated in the tree by an Update or Commit, which are always freshly generated,

PSKs may be pre-distributed and stored. This creates the risk that a PSK may be compromised in

the process of distribution and storage. The security that the group gets from injecting a PSK thus

depends on both the entropy of the PSK and the risk of compromise. These factors are outside of

the scope of this document, but they should be considered by application designers relying on

PSKs.

Each PSK in MLS has a type that designates how it was provisioned. External PSKs are provided

by the application, while resumption PSKs are derived from the MLS key schedule and used in

cases where it is necessary to authenticate a member's participation in a prior epoch.

The injection of one or more PSKs into the key schedule is signaled in two ways: Existing

members are informed via PreSharedKey proposals covered by a Commit, and new members

added in the Commit are informed by the GroupSecrets object in the Welcome message
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corresponding to the Commit. To ensure that existing and new members compute the same PSK

input to the key schedule, the Commit and GroupSecrets objects  indicate the same set of

PSKs, in the same order.

Each time a client injects a PSK into a group, the psk_nonce of its PreSharedKeyID  be set to

a fresh random value of length KDF.Nh, where KDF is the KDF for the cipher suite of the group

into which the PSK is being injected. This ensures that even when a PSK is used multiple times,

the value used as an input into the key schedule is different each time.

Upon receiving a Commit with a PreSharedKey proposal or a GroupSecrets object with the psks

field set, the receiving client includes them in the key schedule in the order listed in the Commit,

or in the psks field, respectively. For resumption PSKs, the PSK is defined as the resumption_psk

of the group and epoch specified in the PreSharedKeyID object. Specifically, psk_secret is

computed as follows:

MUST

enum {

  reserved(0),

  external(1),

  resumption(2),

  (255)

} PSKType;

enum {

  reserved(0),

  application(1),

  reinit(2),

  branch(3),

  (255)

} ResumptionPSKUsage;

struct {

  PSKType psktype;

  select (PreSharedKeyID.psktype) {

    case external:

      opaque psk_id<V>;

    case resumption:

      ResumptionPSKUsage usage;

      opaque psk_group_id<V>;

      uint64 psk_epoch;

  };

  opaque psk_nonce<V>;

} PreSharedKeyID;

MUST

struct {

    PreSharedKeyID id;

    uint16 index;

    uint16 count;

} PSKLabel;
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Here 0 represents the all-zero vector of length KDF.Nh. The index field in PSKLabel corresponds

to the index of the PSK in the psk array, while the count field contains the total number of PSKs.

In other words, the PSKs are chained together with KDF.Extract invocations (labeled "Extract" for

brevity in the diagram), as follows:

In particular, if there are no PreSharedKey proposals in a given Commit, then the resulting 

psk_secret is psk_secret_[0], the all-zero vector.

psk_extracted_[i] = KDF.Extract(0, psk_[i])

psk_input_[i] = ExpandWithLabel(psk_extracted_[i], "derived psk",

                  PSKLabel, KDF.Nh)

psk_secret_[0] = 0

psk_secret_[i] = KDF.Extract(psk_input_[i-1], psk_secret_[i-1])

psk_secret     = psk_secret_[n]

Figure 24: Computation of a PSK Secret from a Set of PSKs 

0 0 = psk_secret_[0]

| |

psk_[0] Extract ExpandWithLabel Extract = psk_secret_[1]

0

|

psk_[1] Extract ExpandWithLabel Extract = psk_secret_[2]

|

0 . .

|

psk_[n-1] Extract ExpandWithLabel Extract = psk_secret_[n]

8.5. Exporters 

The main MLS key schedule provides an exporter_secret that can be used by an application to

derive new secrets for use outside of MLS.

MLS-Exporter(Label, Context, Length) =

       ExpandWithLabel(DeriveSecret(exporter_secret, Label),

                         "exported", Hash(Context), Length)
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Applications  provide a unique label to MLS-Exporter that identifies the secret's

intended purpose. This is to help prevent the same secret from being generated and used in two

different places. To help avoid the same label being used in different applications, an IANA

registry for these labels has been defined in Section 17.8.

The exported values are bound to the group epoch from which the exporter_secret is derived,

and hence reflect a particular state of the group.

It is  for the application generating exported values to refresh those values after a

Commit is processed.

SHOULD

RECOMMENDED

8.6. Resumption PSK 

The main MLS key schedule provides a resumption_psk that is used as a PSK to inject entropy

from one epoch into another. This functionality is used in the reinitialization and branching

processes described in Sections 11.2 and 11.3, but it may be used by applications for other

purposes.

Some uses of resumption PSKs might call for the use of PSKs from historical epochs. The

application  specify an upper limit on the number of past epochs for which the 

resumption_psk may be stored.

SHOULD

8.7. Epoch Authenticators 

The main MLS key schedule provides a per-epoch epoch_authenticator. If one member of the

group is being impersonated by an active attacker, the epoch_authenticator computed by their

client will differ from those computed by the other group members.

This property can be used to construct defenses against impersonation attacks that are effective

even if members' signature keys are compromised. As a trivial example, if the users of the clients

in an MLS group were to meet in person and reliably confirm that their epoch authenticator

values were equal (using some suitable user interface), then each user would be assured that the

others were not being impersonated in the current epoch. As soon as the epoch changed, though,

they would need to redo this confirmation. The state of the group would have changed, possibly

introducing an attacker.

More generally, in order for the members of an MLS group to obtain concrete authentication

protections using the epoch_authenticator, they will need to use it in some secondary protocol

(such as the face-to-face protocol above). The details of that protocol will then determine the

specific authentication protections provided to the MLS group.

9. Secret Tree 

For the generation of encryption keys and nonces, the key schedule begins with the 

encryption_secret at the root and derives a tree of secrets with the same structure as the

group's ratchet tree. Each leaf in the secret tree is associated with the same group member as the

corresponding leaf in the ratchet tree.
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If N is a parent node in the secret tree, then the secrets of the children of N are defined as follows

(where left(N) and right(N) denote the children of N):

The secret in the leaf of the secret tree is used to initiate two symmetric hash ratchets, from

which a sequence of single-use keys and nonces are derived, as described in Section 9.1. The root

of each ratchet is computed as:

Figure 25: Derivation of Secrets from Parent to Children within a Secret Tree 

tree_node_[N]_secret

ExpandWithLabel(. "tree", "left", KDF.Nh)

= tree_node_[left(N)]_secret

ExpandWithLabel(., "tree", "right", KDF.Nh)

= tree_node_[right(N)]_secret

Figure 26: Initialization of the Hash Ratchets from the Leaves of a Secret Tree 

tree_node_[N]_secret

ExpandWithLabel(., "handshake", "", KDF.Nh)

= handshake_ratchet_secret_[N]_[0]

ExpandWithLabel(., "application", "", KDF.Nh)

= application_ratchet_secret_[N]_[0]

9.1. Encryption Keys 

As described in Section 6, MLS encrypts three different types of information:

Metadata (sender information) 

Handshake messages (Proposal and Commit) 

Application messages 

The sender information used to look up the key for content encryption is encrypted with an

AEAD where the key and nonce are derived from both sender_data_secret and a sample of the

encrypted message content.

For handshake and application messages, a sequence of keys is derived via a "sender ratchet".

Each sender has their own sender ratchet, and each step along the ratchet is called a

"generation".

• 

• 

• 
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The following figure shows a secret tree for a four-member group, with the handshake and

application ratchets that member D will use for sending and the first two application keys and

nonces.

A sender ratchet starts from a per-sender base secret derived from a Secret Tree, as described in 

Section 9. The base secret initiates a symmetric hash ratchet, which generates a sequence of keys

and nonces. The sender uses the j-th key/nonce pair in the sequence to encrypt (using the AEAD)

the j-th message they send during that epoch. Each key/nonce pair  be used to encrypt

more than one message.

Keys, nonces, and the secrets in ratchets are derived using DeriveTreeSecret. The context in a

given call consists of the current position in the ratchet.

Where Generation is encoded as a big endian uint32.

Figure 27: Secret Tree for a Four-Member Group 

G

E F

/ \ / \

A B C D

/ \

HR0 AR0 K0

N0

AR1 K1

N1

AR2

MUST NOT

DeriveTreeSecret(Secret, Label, Generation, Length) =

    ExpandWithLabel(Secret, Label, Generation, Length)
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Here AEAD.Nn and AEAD.Nk denote the lengths in bytes of the nonce and key for the AEAD

scheme defined by the cipher suite.

ratchet_secret_[N]_[j]

DeriveTreeSecret(., "nonce", j, AEAD.Nn)

= ratchet_nonce_[N]_[j]

DeriveTreeSecret(., "key", j, AEAD.Nk)

= ratchet_key_[N]_[j]

DeriveTreeSecret(., "secret", j, KDF.Nh)

= ratchet_secret_[N]_[j+1]

9.2. Deletion Schedule 

It is important to delete all security-sensitive values as soon as they are consumed. A sensitive

value S is said to be consumed if:

S was used to encrypt or (successfully) decrypt a message, or 

a key, nonce, or secret derived from S has been consumed. (This goes for values derived via

DeriveSecret as well as ExpandWithLabel.) 

Here S may be the init_secret, commit_secret, epoch_secret, or encryption_secret as well

as any secret in a secret tree or one of the ratchets.

As soon as a group member consumes a value, they  immediately delete (all representations

of) that value. This is crucial to ensuring forward secrecy for past messages. Members  keep

unconsumed values around for some reasonable amount of time to handle out-of-order message

delivery.

For example, suppose a group member encrypts or (successfully) decrypts an application

message using the j-th key and nonce in the ratchet of leaf node L in some epoch n. Then, for that

member, at least the following values have been consumed and  be deleted:

the commit_secret, joiner_secret, epoch_secret, and encryption_secret of that epoch n

as well as the init_secret of the previous epoch n-1, 

all node secrets in the secret tree on the path from the root to the leaf with node L, 

the first j secrets in the application data ratchet of node L, and 

application_ratchet_nonce_[L]_[j] and application_ratchet_key_[L]_[j]. 

• 

• 

MUST

MAY

MUST

• 

• 

• 

• 
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Concretely, consider the secret tree shown in Figure 27. Client A, B, or C would generate the

illustrated values on receiving a message from D with generation equal to 1, having not received

a message with generation 0 (e.g., due to out-of-order delivery). In such a case, the following

values would be consumed:

The key K1 and nonce N1 used to decrypt the message 

The application ratchet secrets AR1 and AR0 

The tree secrets D, F, and G (recall that G is the encryption_secret for the epoch) 

The epoch_secret, commit_secret, psk_secret, and joiner_secret for the current epoch 

Other values may be retained (not consumed):

K0 and N0 for decryption of an out-of-order message with generation 0 

AR2 for derivation of further message decryption keys and nonces 

HR0 for protection of handshake messages from D 

E and C for deriving secrets used by senders A, B, and C 

• 

• 

• 

• 

• 

• 

• 

• 

10. Key Packages 

In order to facilitate the asynchronous addition of clients to a group, clients can pre-publish

KeyPackage objects that provide some public information about a user. A KeyPackage object

specifies:

a protocol version and cipher suite that the client supports, 

a public key that others can use to encrypt a Welcome message to this client (an "init key"),

and 

the content of the leaf node that should be added to the tree to represent this client. 

KeyPackages are intended to be used only once and  be reused except in the case of

a "last resort" KeyPackage (see Section 16.8). Clients  generate and publish multiple

KeyPackages to support multiple cipher suites.

The value for init_key  be a public key for the asymmetric encryption scheme defined by 

cipher_suite, and it  be unique among the set of KeyPackages created by this client.

Likewise, the leaf_node field  be valid for the cipher suite, including both the 

encryption_key and signature_key fields. The whole structure is signed using the client's

signature key. A KeyPackage object with an invalid signature field  be considered

malformed.

The signature is computed by the function SignWithLabel with a label "KeyPackageTBS" and a 

Content input comprising all of the fields except for the signature field.

1. 

2. 

3. 

SHOULD NOT

MAY

MUST

MUST

MUST

MUST
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If a client receives a KeyPackage carried within an MLSMessage object, then it  verify that

the version field of the KeyPackage has the same value as the version field of the MLSMessage.

The version field in the KeyPackage provides an explicit signal of the intended version to the

other members of group when they receive the KeyPackage in an Add proposal.

The field leaf_node.capabilities indicates what protocol versions, cipher suites, credential

types, and non-default proposal/extension types are supported by the client. (As discussed in 

Section 7.2, some proposal and extension types defined in this document are considered "default"

and thus are not listed.) This information allows MLS session establishment to be safe from

downgrade attacks on the parameters described (as discussed in Section 11), while still only

advertising one version and one cipher suite per KeyPackage.

The field leaf_node.leaf_node_source of the LeafNode in a KeyPackage  be set to 

key_package.

Extensions included in the extensions or leaf_node.extensions fields  be included in the

leaf_node.capabilities field. As discussed in Section 13, unknown extensions in 

KeyPackage.extensions  be ignored, and the creator of a KeyPackage object 

include some random GREASE extensions to help ensure that other clients correctly ignore

unknown extensions.

struct {

    ProtocolVersion version;

    CipherSuite cipher_suite;

    HPKEPublicKey init_key;

    LeafNode leaf_node;

    Extension extensions<V>;

    /* SignWithLabel(., "KeyPackageTBS", KeyPackageTBS) */

    opaque signature<V>;

} KeyPackage;

struct {

    ProtocolVersion version;

    CipherSuite cipher_suite;

    HPKEPublicKey init_key;

    LeafNode leaf_node;

    Extension extensions<V>;

} KeyPackageTBS;

MUST

MUST

MUST

MUST SHOULD

10.1. KeyPackage Validation 

The validity of a KeyPackage needs to be verified at a few stages:

When a KeyPackage is downloaded by a group member, before it is used to add the client to

the group 

When a KeyPackage is received by a group member in an Add message 

• 

• 
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The client verifies the validity of a KeyPackage using the following steps:

Verify that the cipher suite and protocol version of the KeyPackage match those in the

GroupContext. 

Verify that the leaf_node of the KeyPackage is valid for a KeyPackage according to Section

7.3. 

Verify that the signature on the KeyPackage is valid using the public key in 

leaf_node.credential. 

Verify that the value of leaf_node.encryption_key is different from the value of the 

init_key field. 

• 

• 

• 

• 

11. Group Creation 

A group is always created with a single member, the "creator". Other members are then added to

the group using the usual Add/Commit mechanism.

The creator of a group is responsible for setting the group ID, cipher suite, and initial extensions

for the group. If the creator intends to add other members at the time of creation, then it 

fetch KeyPackages for the members to be added, and select a cipher suite and extensions

according to the capabilities of the members. To protect against downgrade attacks, the creator 

 use the capabilities information in these KeyPackages to verify that the chosen version

and cipher suite is the best option supported by all members.

Group IDs  be constructed in such a way that there is an overwhelmingly low probability

of honest group creators generating the same group ID, even without assistance from the

Delivery Service. This can be done, for example, by making the group ID a freshly generated

random value of size KDF.Nh. The Delivery Service  attempt to ensure that group IDs are

globally unique by rejecting the creation of new groups with a previously used ID.

To initialize a group, the creator of the group  take the following steps:

Initialize a one-member group with the following initial values:

Ratchet tree: A tree with a single node, a leaf node containing an HPKE public key and

credential for the creator 

Group ID: A value set by the creator 

Epoch: 0 

Tree hash: The root hash of the above ratchet tree 

Confirmed transcript hash: The zero-length octet string 

Epoch secret: A fresh random value of size KDF.Nh 

Extensions: Any values of the creator's choosing 

Calculate the interim transcript hash:

Derive the confirmation_key for the epoch as described in Section 8. 

SHOULD

MUST

SHOULD

MAY

MUST

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

• 

◦ 
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Compute a confirmation_tag over the empty confirmed_transcript_hash using the 

confirmation_key as described in Section 6.1. 

Compute the updated interim_transcript_hash from the confirmed_transcript_hash

and the confirmation_tag as described in Section 8.2. 

At this point, the creator's state represents a one-member group with a fully initialized key

schedule, transcript hashes, etc. Proposals and Commits can be generated for this group state just

like any other state of the group, such as Add proposals and Commits to add other members to

the group. A GroupInfo object for this group state can also be published to facilitate external

joins.

Members other than the creator join either by being sent a Welcome message (as described in 

Section 12.4.3.1) or by sending an external Commit (see Section 12.4.3.2).

In principle, the above process could be streamlined by having the creator directly create a tree

and choose a random value for first epoch's epoch secret. We follow the steps above because it

removes unnecessary choices, by which, for example, bad randomness could be introduced. The

only choices the creator makes here are its own KeyPackage and the leaf secret from which the

Commit is built.

◦ 

◦ 

11.1. Required Capabilities 

The configuration of a group imposes certain requirements on clients in the group. At a

minimum, all members of the group need to support the cipher suite and protocol version in use.

Additional requirements can be imposed by including a required_capabilities extension in

the GroupContext.

This extension lists the extensions, proposals, and credential types that must be supported by all

members of the group. The "default" proposal and extension types defined in this document are

assumed to be implemented by all clients, and need not be listed in RequiredCapabilities in order

to be safely used. Note that this is not true for credential types.

For new members, support for required capabilities is enforced by existing members during the

application of Add commits. Existing members should of course be in compliance already. In

order to ensure this continues to be the case even as the group's extensions are updated, a

GroupContextExtensions proposal is deemed invalid if it contains a required_capabilities

extension that requires non-default capabilities not supported by all current members.

struct {

    ExtensionType extension_types<V>;

    ProposalType proposal_types<V>;

    CredentialType credential_types<V>;

} RequiredCapabilities;
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11.2. Reinitialization 

A group may be reinitialized by creating a new group with the same membership and different

parameters, and linking it to the old group via a resumption PSK. The members of a group

reinitialize it using the following steps:

A member of the old group sends a ReInit proposal (see Section 12.1.5). 

A member of the old group sends a Commit covering the ReInit proposal. 

A member of the old group creates an initial Commit that sets up a new group that matches

the ReInit and sends a Welcome message:

The version, cipher_suite, group_id, and extensions fields of the GroupContext object

in the Welcome message  be the same as the corresponding fields in the ReInit

proposal. The epoch in the Welcome message  be 1. 

The Welcome message  specify a PreSharedKeyID of type resumption with usage 

reinit, where the group_id field matches the old group and the epoch field indicates the

epoch after the Commit covering the ReInit. 

Note that these three steps may be done by the same group member or different members. For

example, if a group member sends a Commit with an inline ReInit proposal (steps 1 and 2) but

then goes offline, another group member may recreate the group instead. This flexibility avoids

situations where a group gets stuck between steps 2 and 3.

Resumption PSKs with usage reinit  be used in other contexts. A PreSharedKey

proposal with type resumption and usage reinit  be considered invalid.

1. 

2. 

3. 

◦ 

MUST

MUST

◦ MUST

MUST NOT

MUST

11.3. Subgroup Branching 

A new group can be formed from a subset of an existing group's members, using the same

parameters as the old group.

A member can create a subgroup by performing the following steps:

Fetch a new KeyPackage for each group member that should be included in the subgroup. 

Create an initial Commit message that sets up the new group and contains a PreSharedKey

proposal of type resumption with usage branch. To avoid key reuse, the psk_nonce included

in the PreSharedKeyID object  be a randomly sampled nonce of length KDF.Nh. 

Send the corresponding Welcome message to the subgroup members. 

A client receiving a Welcome message including a PreSharedKey of type resumption with usage 

branch  verify that the new group reflects a subgroup branched from the referenced group

by checking that:

The version and cipher_suite values in the Welcome message are the same as those used

by the old group. 

The epoch in the Welcome message  be 1. 

1. 

2. 

MUST

3. 

MUST

• 

• MUST
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Each LeafNode in a new subgroup  match some LeafNode in the original group. In this

context, a pair of LeafNodes is said to "match" if the identifiers presented by their respective

credentials are considered equivalent by the application. 

Resumption PSKs with usage branch  be used in other contexts. A PreSharedKey

proposal with type resumption and usage branch  be considered invalid.

• MUST

MUST NOT

MUST

12. Group Evolution 

Over the lifetime of a group, its membership can change, and existing members might want to

change their keys in order to achieve post-compromise security. In MLS, each such change is

accomplished by a two-step process:

A proposal to make the change is broadcast to the group in a Proposal message. 

A member of the group or a new member broadcasts a Commit message that causes one or

more proposed changes to enter into effect. 

In cases where the Proposal and Commit are sent by the same member, these two steps can be

combined by sending the proposals in the commit.

The group thus evolves from one cryptographic state to another each time a Commit message is

sent and processed. These states are referred to as "epochs" and are uniquely identified among

states of the group by eight-octet epoch values. When a new group is initialized, its initial state

epoch is 0x0000000000000000. Each time a state transition occurs, the epoch number is

incremented by one.

1. 

2. 

12.1. Proposals 

Proposals are included in a FramedContent by way of a Proposal structure that indicates their

type:

// See the "MLS Proposal Types" IANA registry for values

uint16 ProposalType;

struct {

    ProposalType proposal_type;

    select (Proposal.proposal_type) {

        case add:                      Add;

        case update:                   Update;

        case remove:                   Remove;

        case psk:                      PreSharedKey;

        case reinit:                   ReInit;

        case external_init:            ExternalInit;

        case group_context_extensions: GroupContextExtensions;

    };

} Proposal;
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On receiving a FramedContent containing a Proposal, a client  verify the signature inside

FramedContentAuthData and that the epoch field of the enclosing FramedContent is equal to the 

epoch field of the current GroupContext object. If the verification is successful, then the Proposal

should be cached in such a way that it can be retrieved by hash (as a ProposalOrRef object) in a

later Commit message.

MUST

12.1.1. Add 

An Add proposal requests that a client with a specified KeyPackage be added to the group.

An Add proposal is invalid if the KeyPackage is invalid according to Section 10.1.

An Add is applied after being included in a Commit message. The position of the Add in the list of

proposals determines the leaf node where the new member will be added. For the first Add in

the Commit, the corresponding new member will be placed in the leftmost empty leaf in the tree,

for the second Add, the next empty leaf to the right, etc. If no empty leaf exists, the tree is

extended to the right.

Identify the leaf L for the new member: if there are empty leaves in the tree, L is the leftmost

empty leaf. Otherwise, the tree is extended to the right as described in Section 7.7, and L is

assigned the leftmost new blank leaf. 

For each non-blank intermediate node along the path from the leaf L to the root, add L's leaf

index to the unmerged_leaves list for the node. 

Set the leaf node L to a new node containing the LeafNode object carried in the leaf_node

field of the KeyPackage in the Add. 

struct {

    KeyPackage key_package;

} Add;

• 

• 

• 

12.1.2. Update 

An Update proposal is a similar mechanism to Add with the distinction that it replaces the

sender's LeafNode in the tree instead of adding a new leaf to the tree.

An Update proposal is invalid if the LeafNode is invalid for an Update proposal according to 

Section 7.3.

A member of the group applies an Update message by taking the following steps:

Replace the sender's LeafNode with the one contained in the Update proposal. 

Blank the intermediate nodes along the path from the sender's leaf to the root. 

struct {

    LeafNode leaf_node;

} Update;

• 

• 
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12.1.3. Remove 

A Remove proposal requests that the member with the leaf index removed be removed from the

group.

A Remove proposal is invalid if the removed field does not identify a non-blank leaf node.

A member of the group applies a Remove message by taking the following steps:

Identify the leaf node matching removed. Let L be this leaf node. 

Replace the leaf node L with a blank node. 

Blank the intermediate nodes along the path from L to the root. 

Truncate the tree by removing the right subtree until there is at least one non-blank leaf

node in the right subtree. If the rightmost non-blank leaf has index L, then this will result in

the tree having 2d leaves, where d is the smallest value such that 2d > L. 

struct {

    uint32 removed;

} Remove;

• 

• 

• 

• 

12.1.4. PreSharedKey 

A PreSharedKey proposal can be used to request that a pre-shared key be injected into the key

schedule in the process of advancing the epoch.

A PreSharedKey proposal is invalid if any of the following is true:

The PreSharedKey proposal is not being processed as part of a reinitialization of the group

(see Section 11.2), and the PreSharedKeyID has psktype set to resumption and usage set to 

reinit. 

The PreSharedKey proposal is not being processed as part of a subgroup branching

operation (see Section 11.3), and the PreSharedKeyID has psktype set to resumption and 

usage set to branch. 

The psk_nonce is not of length KDF.Nh. 

The psk_nonce  be randomly sampled. When processing a Commit message that includes

one or more PreSharedKey proposals, group members derive psk_secret as described in Section

8.4, where the order of the PSKs corresponds to the order of the PreSharedKey proposals in the

Commit.

struct {

    PreSharedKeyID psk;

} PreSharedKey;

• 

• 

• 

MUST
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12.1.5. ReInit 

A ReInit proposal represents a request to reinitialize the group with different parameters, for

example, to increase the version number or to change the cipher suite. The reinitialization is

done by creating a completely new group and shutting down the old one.

A ReInit proposal is invalid if the version field is less than the version for the current group.

A member of the group applies a ReInit proposal by waiting for the committer to send the

Welcome message that matches the ReInit, according to the criteria in Section 11.2.

struct {

    opaque group_id<V>;

    ProtocolVersion version;

    CipherSuite cipher_suite;

    Extension extensions<V>;

} ReInit;

12.1.6. ExternalInit 

An ExternalInit proposal is used by new members that want to join a group by using an external

commit. This proposal can only be used in that context.

A member of the group applies an ExternalInit message by initializing the next epoch using an

init secret computed as described in Section 8.3. The kem_output field contains the required KEM

output.

struct {

  opaque kem_output<V>;

} ExternalInit;

12.1.7. GroupContextExtensions 

A GroupContextExtensions proposal is used to update the list of extensions in the GroupContext

for the group.

A GroupContextExtensions proposal is invalid if it includes a required_capabilities extension

and some members of the group do not support some of the required capabilities (including

those added in the same Commit, and excluding those removed).

struct {

  Extension extensions<V>;

} GroupContextExtensions;
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A member of the group applies a GroupContextExtensions proposal with the following steps:

Remove all of the existing extensions from the GroupContext object for the group and

replace them with the list of extensions in the proposal. (This is a wholesale replacement, not

a merge. An extension is only carried over if the sender of the proposal includes it in the new

list.) 

Note that once the GroupContext is updated, its inclusion in the confirmation_tag by way of the

key schedule will confirm that all members of the group agree on the extensions in use.

• 

12.1.8. External Proposals 

Proposals can be constructed and sent to the group by a party that is outside the group in two

cases. One case, indicated by the external SenderType, allows an entity outside the group to

submit proposals to the group. For example, an automated service might propose removing a

member of a group who has been inactive for a long time, or propose adding a newly hired staff

member to a group representing a real-world team. An external sender might send a ReInit

proposal to enforce a changed policy regarding MLS versions or cipher suites.

The external SenderType requires that signers are pre-provisioned to the clients within a group

and can only be used if the external_senders extension is present in the group's GroupContext.

The other case, indicated by the new_member_proposal SenderType, is useful when existing

members of the group can independently verify that an Add proposal sent by the new joiner

itself (not an existing member) is authorized. External proposals that are not authorized are

considered invalid.

An external proposal  be sent as a PublicMessage object, since the sender will not have the

keys necessary to construct a PrivateMessage object.

Proposals of some types cannot be sent by an external sender. Among the proposal types

defined in this document, only the following types may be sent by an external sender:

add 

remove 

psk 

reinit 

group_context_extensions 

Messages from external senders containing proposal types other than the above  be

rejected as malformed. New proposal types defined in the future  define whether they may

be sent by external senders. The "Ext" column in the "MLS Proposal Types" registry (Section

17.4) reflects this property.

MUST

• 

• 

• 

• 

• 

MUST

MUST

12.1.8.1. External Senders Extension 

The external_senders extension is a group context extension that contains the credentials and

signature keys of senders that are permitted to send external proposals to the group.
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struct {

  SignaturePublicKey signature_key;

  Credential credential;

} ExternalSender;

ExternalSender external_senders<V>;

12.2. Proposal List Validation 

A group member creating a Commit and a group member processing a Commit  verify that

the list of committed proposals is valid using one of the following procedures, depending on

whether the Commit is external or not. If the list of proposals is invalid, then the Commit

message  be rejected as invalid.

For a regular, i.e., not external, Commit, the list is invalid if any of the following occurs:

It contains an individual proposal that is invalid as specified in Section 12.1. 

It contains an Update proposal generated by the committer. 

It contains a Remove proposal that removes the committer. 

It contains multiple Update and/or Remove proposals that apply to the same leaf. If the

committer has received multiple such proposals they  prefer any Remove received,

or the most recent Update if there are no Removes. 

It contains multiple Add proposals that contain KeyPackages that represent the same client

according to the application (for example, identical signature keys). 

It contains an Add proposal with a KeyPackage that represents a client already in the group

according to the application, unless there is a Remove proposal in the list removing the

matching client from the group. 

It contains multiple PreSharedKey proposals that reference the same PreSharedKeyID. 

It contains multiple GroupContextExtensions proposals. 

It contains a ReInit proposal together with any other proposal. If the committer has received

other proposals during the epoch, they  prefer them over the ReInit proposal,

allowing the ReInit to be resent and applied in a subsequent epoch. 

It contains an ExternalInit proposal. 

It contains a Proposal with a non-default proposal type that is not supported by some

members of the group that will process the Commit (i.e., members being added or removed

by the Commit do not need to support the proposal type). 

After processing the Commit the ratchet tree is invalid, in particular, if it contains any leaf

node that is invalid according to Section 7.3. 

An application may extend the above procedure by additional rules, for example, requiring

application-level permissions to add members, or rules concerning non-default proposal types.

MUST

MUST

• 

• 

• 

• 

SHOULD

• 

• 

• 

• 

• 

SHOULD

• 

• 

• 
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For an external Commit, the list is valid if it contains only the following proposals (not

necessarily in this order):

Exactly one ExternalInit 

At most one Remove proposal, with which the joiner removes an old version of themselves.

If a Remove proposal is present, then the LeafNode in the path field of the external Commit 

 meet the same criteria as would the LeafNode in an Update for the removed leaf (see 

Section 12.1.2). In particular, the credential in the LeafNode  present a set of

identifiers that is acceptable to the application for the removed participant. 

Zero or more PreSharedKey proposals 

No other proposals 

Proposal types defined in the future may make updates to the above validation logic to

incorporate considerations related to proposals of the new type.

• 

• 

MUST

MUST

• 

• 

12.3. Applying a Proposal List 

The sections above defining each proposal type describe how each individual proposal is applied.

When creating or processing a Commit, a client applies a list of proposals to the ratchet tree and

GroupContext. The client  apply the proposals in the list in the following order:

If there is a GroupContextExtensions proposal, replace the extensions field of the

GroupContext for the group with the contents of the proposal. The new extensions  be

used when evaluating other proposals in this list. For example, if a GroupContextExtensions

proposal adds a required_capabilities extension, then any Add proposals need to indicate

support for those capabilities. 

Apply any Update proposals to the ratchet tree, in any order. 

Apply any Remove proposals to the ratchet tree, in any order. 

Apply any Add proposals to the ratchet tree, in the order they appear in the list. 

Look up the PSK secrets for any PreSharedKey proposals, in the order they appear in the list.

These secrets are then used to advance the key schedule later in Commit processing. 

If there is an ExternalInit proposal, use it to derive the init_secret for use later in Commit

processing. 

If there is a ReInit proposal, note its parameters for application later in Commit processing. 

Proposal types defined in the future  specify how the above steps are to be adjusted to

accommodate the application of proposals of the new type.

MUST

• 

MUST

• 

• 

• 

• 

• 

• 

MUST

12.4. Commit 

A Commit message initiates a new epoch for the group, based on a collection of Proposals. It

instructs group members to update their representation of the state of the group by applying the

proposals and advancing the key schedule.
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Each proposal covered by the Commit is included by a ProposalOrRef value, which identifies the

proposal to be applied by value or by reference. Commits that refer to new Proposals from the

committer can be included by value. Commits for previously sent proposals from anyone

(including the committer) can be sent by reference. Proposals sent by reference are specified by

including the hash of the AuthenticatedContent object in which the proposal was sent (see 

Section 5.2).

A group member that has observed one or more valid proposals within an epoch  send a

Commit message before sending application data. This ensures, for example, that any members

whose removal was proposed during the epoch are actually removed before any application data

is transmitted.

A sender and a receiver of a Commit  verify that the committed list of proposals is valid as

specified in Section 12.2. A list is invalid if, for example, it includes an Update and a Remove for

the same member, or an Add when the sender does not have the application-level permission to

add new users.

The sender of a Commit  include all proposals that it has received during the current

epoch that are valid according to the rules for their proposal types and according to application

policy, as long as this results in a valid proposal list.

Due to the asynchronous nature of proposals, receivers of a Commit  enforce that all

valid proposals sent within the current epoch are referenced by the next Commit. In the event

that a valid proposal is omitted from the next Commit, and that proposal is still valid in the

current epoch, the sender of the proposal  resend it after updating it to reflect the current

epoch.

enum {

  reserved(0),

  proposal(1),

  reference(2),

  (255)

} ProposalOrRefType;

struct {

  ProposalOrRefType type;

  select (ProposalOrRef.type) {

    case proposal:  Proposal proposal;

    case reference: ProposalRef reference;

  };

} ProposalOrRef;

struct {

    ProposalOrRef proposals<V>;

    optional<UpdatePath> path;

} Commit;

MUST

MUST

SHOULD

SHOULD NOT

MAY
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A member of the group  send a Commit that references no proposals at all, which would thus

have an empty proposals vector. Such a Commit resets the sender's leaf and the nodes along its

direct path, and provides forward secrecy and post-compromise security with regard to the

sender of the Commit. An Update proposal can be regarded as a "lazy" version of this operation,

where only the leaf changes and intermediate nodes are blanked out.

By default, the path field of a Commit  be populated. The path field  be omitted if (a) it

covers at least one proposal and (b) none of the proposals covered by the Commit are of "path

required" types. A proposal type requires a path if it cannot change the group membership in a

way that requires the forward secrecy and post-compromise security guarantees that an

UpdatePath provides. The only proposal types defined in this document that do not require a

path are:

add 

psk 

reinit 

New proposal types  state whether they require a path. If any instance of a proposal type

requires a path, then the proposal type requires a path. This attribute of a proposal type is

reflected in the "Path Required" field of the "MLS Proposal Types" registry defined in Section 17.4.

Update and Remove proposals are the clearest examples of proposals that require a path. An

UpdatePath is required to evict the removed member or the old appearance of the updated

member.

In pseudocode, the logic for validating the path field of a Commit is as follows:

To summarize, a Commit can have three different configurations, with different uses:

An "empty" Commit that references no proposals, which updates the committer's

contribution to the group and provides PCS with regard to the committer. 

A "partial" Commit that references proposals that do not require a path, and where the path

is empty. Such a Commit doesn't provide PCS with regard to the committer. 

MAY

MUST MAY

• 

• 

• 

MUST

pathRequiredTypes = [

    update,

    remove,

    external_init,

    group_context_extensions

]

pathRequired = false

for proposal in commit.proposals:

    pathRequired = pathRequired ||

                   (proposal.msg_type in pathRequiredTypes)

if len(commit.proposals) == 0 || pathRequired:

    assert(commit.path != null)

1. 

2. 
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A "full" Commit that references proposals of any type, which provides FS with regard to any

removed members and PCS for the committer and any updated members. 

3. 

12.4.1. Creating a Commit 

When creating or processing a Commit, a client updates the ratchet tree and GroupContext for

the group. These values advance from an "old" state reflecting the current epoch to a "new" state

reflecting the new epoch initiated by the Commit. When the Commit includes an UpdatePath, a

"provisional" group context is constructed that reflects changes due to the proposals and

UpdatePath, but with the old confirmed transcript hash.

A member of the group creates a Commit message and the corresponding Welcome message at

the same time, by taking the following steps:

Verify that the list of proposals to be committed is valid as specified in Section 12.2. 

Construct an initial Commit object with the proposals field populated from Proposals

received during the current epoch, and with the path field empty. 

Create the new ratchet tree and GroupContext by applying the list of proposals to the old

ratchet tree and GroupContext, as defined in Section 12.3. 

Decide whether to populate the path field: If the path field is required based on the

proposals that are in the Commit (see above), then it  be populated. Otherwise, the

sender  omit the path field at its discretion. 

If populating the path field:

If this is an external Commit, assign the sender the leftmost blank leaf node in the new

ratchet tree. If there are no blank leaf nodes in the new ratchet tree, expand the tree to the

right as defined in Section 7.7 and assign the leftmost new blank leaf to the sender. 

Update the sender's direct path in the ratchet tree as described in Section 7.5. Define 

commit_secret as the value path_secret[n+1] derived from the last path secret value

(path_secret[n]) derived for the UpdatePath. 

Construct a provisional GroupContext object containing the following values:

group_id: Same as the old GroupContext 

epoch: The epoch number for the new epoch 

tree_hash: The tree hash of the new ratchet tree 

confirmed_transcript_hash: Same as the old GroupContext 

extensions: The new GroupContext extensions (possibly updated by a

GroupContextExtensions proposal) 

Encrypt the path secrets resulting from the tree update to the group as described in 

Section 7.5, using the provisional group context as the context for HPKE encryption. 

Create an UpdatePath containing the sender's new leaf node and the new public keys and

encrypted path secrets along the sender's filtered direct path. Assign this UpdatePath to the

path field in the Commit. 

• 

• 

• 

• 

MUST

MAY

• 

◦ 

◦ 

◦ 

▪ 

▪ 

▪ 

▪ 

▪ 

◦ 

◦ 
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If not populating the path field: Set the path field in the Commit to the null optional. Define 

commit_secret as the all-zero vector of length KDF.Nh (the same length as a path_secret

value would be). 

Derive the psk_secret as specified in Section 8.4, where the order of PSKs in the derivation

corresponds to the order of PreSharedKey proposals in the proposals vector. 

Construct a FramedContent object containing the Commit object. Sign the FramedContent

using the old GroupContext as context.

Use the FramedContent to update the confirmed transcript hash and update the new

GroupContext. 

Use the init_secret from the previous epoch, the commit_secret and psk_secret

defined in the previous steps, and the new GroupContext to compute the new 

joiner_secret, welcome_secret, epoch_secret, and derived secrets for the new epoch. 

Use the confirmation_key for the new epoch to compute the confirmation_tag value. 

Calculate the interim transcript hash using the new confirmed transcript hash and the 

confirmation_tag from the FramedContentAuthData. 

Protect the AuthenticatedContent object using keys from the old epoch:

If encoding as PublicMessage, compute the membership_tag value using the 

membership_key. 

If encoding as a PrivateMessage, encrypt the message using the sender_data_secret and

the next (key, nonce) pair from the sender's handshake ratchet. 

Construct a GroupInfo reflecting the new state:

Set the group_id, epoch, tree, confirmed_transcript_hash, interim_transcript_hash,

and group_context_extensions fields to reflect the new state. 

Set the confirmation_tag field to the value of the corresponding field in the

FramedContentAuthData object. 

Add any other extensions as defined by the application. 

Optionally derive an external key pair as described in Section 8. (required for external

Commits, see Section 12.4.3.2). 

Sign the GroupInfo using the member's private signing key. 

Encrypt the GroupInfo using the key and nonce derived from the joiner_secret. for the

new epoch (see Section 12.4.3.1). 

For each new member in the group:

Identify the lowest common ancestor in the tree of the new member's leaf node and the

member sending the Commit. 

If the path field was populated above: Compute the path secret corresponding to the

common ancestor node. 

Compute an EncryptedGroupSecrets object that encapsulates the init_secret for the

current epoch and the path secret (if present). 

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

◦ 
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Construct one or more Welcome messages from the encrypted GroupInfo object, the

encrypted key packages, and any PSKs for which a proposal was included in the Commit. The

order of the psks  be the same as the order of PreSharedKey proposals in the 

proposals vector. As discussed in Section 12.4.3.1, the committer is free to choose how many

Welcome messages to construct. However, the set of Welcome messages produced in this

step  cover every new member added in the Commit. 

If a ReInit proposal was part of the Commit, the committer  create a new group with the

parameters specified in the ReInit proposal, and with the same members as the original

group. The Welcome message  include a PreSharedKeyID with the following

parameters:

psktype: resumption 

usage: reinit 

group_id: The group ID for the current group 

epoch: The epoch that the group will be in after this Commit 

• 

MUST

MUST

• MUST

MUST

◦ 

◦ 

◦ 

◦ 

12.4.2. Processing a Commit 

A member of the group applies a Commit message by taking the following steps:

Verify that the epoch field of the enclosing FramedContent is equal to the epoch field of the

current GroupContext object. 

Unprotect the Commit using the keys from the current epoch:

If the message is encoded as PublicMessage, verify the membership MAC using the 

membership_key. 

If the message is encoded as PrivateMessage, decrypt the message using the 

sender_data_secret and the (key, nonce) pair from the step on the sender's hash ratchet

indicated by the generation field. 

Verify the signature on the FramedContent message as described in Section 6.1. 

Verify that the proposals vector is valid according to the rules in Section 12.2. 

Verify that all PreSharedKey proposals in the proposals vector are available. 

Create the new ratchet tree and GroupContext by applying the list of proposals to the old

ratchet tree and GroupContext, as defined in Section 12.3. 

Verify that the path value is populated if the proposals vector contains any Update or

Remove proposals, or if it's empty. Otherwise, the path value  be omitted. 

If the path value is populated, validate it and apply it to the tree:

If this is an external Commit, assign the sender the leftmost blank leaf node in the new

ratchet tree. If there are no blank leaf nodes in the new ratchet tree, add a blank leaf to the

right side of the new ratchet tree and assign it to the sender. 

Validate the LeafNode as specified in Section 7.3. The leaf_node_source field  be set

to commit. 

Verify that the encryption_key value in the LeafNode is different from the committer's

current leaf node. 

• 

• 

◦ 

◦ 

• 

• 

• 

• 

• 

MAY

• 

◦ 

◦ MUST

◦ 
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Verify that none of the public keys in the UpdatePath appear in any node of the new

ratchet tree. 

Merge the UpdatePath into the new ratchet tree, as described in Section 7.5. 

Construct a provisional GroupContext object containing the following values:

group_id: Same as the old GroupContext 

epoch: The epoch number for the new epoch 

tree_hash: The tree hash of the new ratchet tree 

confirmed_transcript_hash: Same as the old GroupContext 

extensions: The new GroupContext extensions (possibly updated by a

GroupContextExtensions proposal) 

Decrypt the path secrets for UpdatePath as described in Section 7.5, using the provisional

GroupContext as the context for HPKE decryption. 

Define commit_secret as the value path_secret[n+1] derived from the last path secret

value (path_secret[n]) derived for the UpdatePath. 

If the path value is not populated, define commit_secret as the all-zero vector of length 

KDF.Nh (the same length as a path_secret value would be). 

Update the confirmed and interim transcript hashes using the new Commit, and generate the

new GroupContext. 

Derive the psk_secret as specified in Section 8.4, where the order of PSKs in the derivation

corresponds to the order of PreSharedKey proposals in the proposals vector. 

Use the init_secret from the previous epoch, the commit_secret and psk_secret defined

in the previous steps, and the new GroupContext to compute the new joiner_secret, 

welcome_secret, epoch_secret, and derived secrets for the new epoch. 

Use the confirmation_key for the new epoch to compute the confirmation tag for this

message, as described below, and verify that it is the same as the confirmation_tag field in

the FramedContentAuthData object. 

If the above checks are successful, consider the new GroupContext object as the current state

of the group. 

If the Commit included a ReInit proposal, the client  use the group to send

messages anymore. Instead, it  wait for a Welcome message from the committer

meeting the requirements of Section 11.2. 

Note that clients need to be prepared to receive a valid Commit message that removes them from

the group. In this case, the client cannot send any more messages in the group and 

promptly delete its group state and secret tree. (A client might keep the secret tree for a short

time to decrypt late messages in the previous epoch.)

◦ 

◦ 

◦ 

▪ 

▪ 

▪ 

▪ 

▪ 

◦ 

◦ 

• 

• 

• 

• 

• 

• 

• MUST NOT

MUST

SHOULD

12.4.3. Adding Members to the Group 

New members can join the group in two ways: by being added by a group member or by adding

themselves through an external Commit. In both cases, the new members need information to

bootstrap their local group state.
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The group_context field represents the current state of the group. The extensions field allows

the sender to provide additional data that might be useful to new joiners. The confirmation_tag

represents the confirmation tag from the Commit that initiated the current epoch, or for epoch 0,

the confirmation tag computed in the creation of the group (see Section 11). (In either case, the

creator of a GroupInfo may recompute the confirmation tag as MAC(confirmation_key,

confirmed_transcript_hash).)

As discussed in Section 13, unknown extensions in GroupInfo.extensions  be ignored, and

the creator of a GroupInfo object  include some random GREASE extensions to help

ensure that other clients correctly ignore unknown extensions. Extensions in 

GroupInfo.group_context.extensions, however,  be supported by the new joiner.

New members  verify that group_id is unique among the groups they are currently

participating in.

New members also  verify the signature using the public key taken from the leaf node of

the ratchet tree with leaf index signer. The signature covers the following structure, comprising

all the fields in the GroupInfo above signature:

struct {

    GroupContext group_context;

    Extension extensions<V>;

    MAC confirmation_tag;

    uint32 signer;

    /* SignWithLabel(., "GroupInfoTBS", GroupInfoTBS) */

    opaque signature<V>;

} GroupInfo;

MUST

SHOULD

MUST

MUST

MUST

struct {

    GroupContext group_context;

    Extension extensions<V>;

    MAC confirmation_tag;

    uint32 signer;

} GroupInfoTBS;

12.4.3.1. Joining via Welcome Message 

The sender of a Commit message is responsible for sending a Welcome message to each new

member added via Add proposals. The format of the Welcome message allows a single Welcome

message to be encrypted for multiple new members. It is up to the committer to decide how

many Welcome messages to create for a given Commit. The committer could create one Welcome

that is encrypted for all new members, a different Welcome for each new member, or Welcome

messages for batches of new members (according to some batching scheme that works well for

the application). The processes for creating and processing the Welcome are the same in all

cases, aside from the set of new members for whom a given Welcome is encrypted.
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The Welcome message provides the new members with the current state of the group after the

application of the Commit message. The new members will not be able to decrypt or verify the

Commit message, but they will have the secrets they need to participate in the epoch initiated by

the Commit message.

In order to allow the same Welcome message to be sent to multiple new members, information

describing the group is encrypted with a symmetric key and nonce derived from the 

joiner_secret for the new epoch. The joiner_secret is then encrypted to each new member

using HPKE. In the same encrypted package, the committer transmits the path secret for the

lowest (closest to the leaf) node that is contained in the direct paths of both the committer and

the new member. This allows the new member to compute private keys for nodes in its direct

path that are being reset by the corresponding Commit.

If the sender of the Welcome message wants the receiving member to include a PSK in the

derivation of the epoch_secret, they can populate the psks field indicating which PSK to use.

The client processing a Welcome message will need to have a copy of the group's ratchet tree.

The tree can be provided in the Welcome message, in an extension of type ratchet_tree. If it is

sent otherwise (e.g., provided by a caching service on the Delivery Service), then the client 

download the tree before processing the Welcome.

On receiving a Welcome message, a client processes it using the following steps:

Identify an entry in the secrets array where the new_member value corresponds to one of

this client's KeyPackages, using the hash indicated by the cipher_suite field. If no such field

exists, or if the cipher suite indicated in the KeyPackage does not match the one in the

Welcome message, return an error. 

struct {

  opaque path_secret<V>;

} PathSecret;

struct {

  opaque joiner_secret<V>;

  optional<PathSecret> path_secret;

  PreSharedKeyID psks<V>;

} GroupSecrets;

struct {

  KeyPackageRef new_member;

  HPKECiphertext encrypted_group_secrets;

} EncryptedGroupSecrets;

struct {

  CipherSuite cipher_suite;

  EncryptedGroupSecrets secrets<V>;

  opaque encrypted_group_info<V>;

} Welcome;

MUST

• 
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Decrypt the encrypted_group_secrets value with the algorithms indicated by the cipher

suite and the private key init_key_priv corresponding to init_key in the referenced

KeyPackage. 

If a PreSharedKeyID is part of the GroupSecrets and the client is not in possession of the

corresponding PSK, return an error. Additionally, if a PreSharedKeyID has type resumption

with usage reinit or branch, verify that it is the only such PSK. 

From the joiner_secret in the decrypted GroupSecrets object and the PSKs specified in the

GroupSecrets, derive the welcome_secret and then the welcome_key and welcome_nonce.

Use the key and nonce to decrypt the encrypted_group_info field. 

Verify the signature on the GroupInfo object. The signature input comprises all of the fields

in the GroupInfo object except the signature field. The public key is taken from the LeafNode

of the ratchet tree with leaf index signer. If the node is blank or if signature verification

fails, return an error. 

Verify that the group_id is unique among the groups that the client is currently participating

in. 

Verify that the cipher_suite in the GroupInfo matches the cipher_suite in the

KeyPackage. 

Verify the integrity of the ratchet tree.

Verify that the tree hash of the ratchet tree matches the tree_hash field in GroupInfo. 

For each non-empty parent node, verify that it is "parent-hash valid", as described in 

Section 7.9.2. 

For each non-empty leaf node, validate the LeafNode as described in Section 7.3. 

For each non-empty parent node and each entry in the node's unmerged_leaves field:

Verify that the entry represents a non-blank leaf node that is a descendant of the parent

node. 

Verify that every non-blank intermediate node between the leaf node and the parent

node also has an entry for the leaf node in its unmerged_leaves. 

Verify that the encryption key in the parent node does not appear in any other node of

the tree. 

• 

encrypted_group_secrets =

  EncryptWithLabel(init_key, "Welcome",

                   encrypted_group_info, group_secrets)

group_secrets =

  DecryptWithLabel(init_key_priv, "Welcome",

                   encrypted_group_info, kem_output, ciphertext)

• 

• 

welcome_nonce = ExpandWithLabel(welcome_secret, "nonce", "", AEAD.Nn)

welcome_key = ExpandWithLabel(welcome_secret, "key", "", AEAD.Nk)

• 

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

▪ 

▪ 

▪ 
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Identify a leaf whose LeafNode is identical to the one in the KeyPackage. If no such field

exists, return an error. Let my_leaf represent this leaf in the tree. 

Construct a new group state using the information in the GroupInfo object.

Initialize the GroupContext for the group from the group_context field from the

GroupInfo object. 

Update the leaf my_leaf with the private key corresponding to the public key in the node,

where my_leaf is the new member's leaf node in the ratchet tree, as defined above. 

If the path_secret value is set in the GroupSecrets object: Identify the lowest common

ancestor of the leaf node my_leaf and of the node of the member with leaf index 

GroupInfo.signer. Set the private key for this node to the private key derived from the 

path_secret. 

For each parent of the common ancestor, up to the root of the tree, derive a new path

secret, and set the private key for the node to the private key derived from the path secret.

The private key  be the private key that corresponds to the public key in the node. 

Use the joiner_secret from the GroupSecrets object to generate the epoch secret and other

derived secrets for the current epoch. 

Set the confirmed transcript hash in the new state to the value of the 

confirmed_transcript_hash in the GroupInfo. 

Verify the confirmation tag in the GroupInfo using the derived confirmation key and the 

confirmed_transcript_hash from the GroupInfo. 

Use the confirmed transcript hash and confirmation tag to compute the interim transcript

hash in the new state. 

If a PreSharedKeyID was used that has type resumption with usage reinit or branch, verify

that the epoch field in the GroupInfo is equal to 1.

For usage reinit, verify that the last Commit to the referenced group contains a ReInit

proposal and that the group_id, version, cipher_suite, and group_context.extensions

fields of the GroupInfo match the ReInit proposal. Additionally, verify that all the members

of the old group are also members of the new group, according to the application. 

For usage branch, verify that the version and cipher_suite of the new group match

those of the old group, and that the members of the new group compose a subset of the

members of the old group, according to the application. 

• 

• 

◦ 

◦ 

◦ 

◦ 

MUST

• 

• 

• 

• 

• 

◦ 

◦ 

12.4.3.2. Joining via External Commits 

External Commits are a mechanism for new members (external parties that want to become

members of the group) to add themselves to a group, without requiring that an existing member

has to come online to issue a Commit that references an Add proposal.

Whether existing members of the group will accept or reject an external Commit follows the

same rules that are applied to other handshake messages.
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New members can create and issue an external Commit if they have access to the following

information for the group's current epoch:

group ID 

epoch ID 

cipher suite 

public tree hash 

confirmed transcript hash 

confirmation tag of the most recent Commit 

group extensions 

external public key 

In other words, to join a group via an external Commit, a new member needs a GroupInfo with

an external_pub extension present in its extensions field.

Thus, a member of the group can enable new clients to join by making a GroupInfo object

available to them. Note that because a GroupInfo object is specific to an epoch, it will need to be

updated as the group advances. In particular, each GroupInfo object can be used for one external

join, since that external join will cause the epoch to change.

Note that the tree_hash field is used the same way as in the Welcome message. The full tree can

be included via the ratchet_tree extension (see Section 12.4.3.3).

The information in a GroupInfo is not generally public information, but applications can choose

to make it available to new members in order to allow External Commits.

In principle, external Commits work like regular Commits. However, their content has to meet a

specific set of requirements:

External Commits  contain a path field (and is therefore a "full" Commit). The joiner is

added at the leftmost free leaf node (just as if they were added with an Add proposal), and

the path is calculated relative to that leaf node. 

The Commit  include any proposals by reference, since an external joiner cannot

determine the validity of proposals sent within the group. 

External Commits  be signed by the new member. In particular, the signature on the

enclosing AuthenticatedContent  verify using the public key for the credential in the 

leaf_node of the path field. 

When processing a Commit, both existing and new members  use the external init

secret as described in Section 8.3. 

The sender type for the AuthenticatedContent encapsulating the external Commit  be 

new_member_commit. 

• 

• 

• 

• 

• 

• 

• 

• 

struct {

    HPKEPublicKey external_pub;

} ExternalPub;

• MUST

• MUST NOT

• MUST

MUST

• MUST

• MUST
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External Commits come in two "flavors" -- a "join" Commit that adds the sender to the group or a

"resync" Commit that replaces a member's prior appearance with a new one.

Note that the "resync" operation allows an attacker that has compromised a member's signature

private key to introduce themselves into the group and remove the prior, legitimate member in a

single Commit. Without resync, this can still be done, but it requires two operations: the external

Commit to join and a second Commit to remove the old appearance. Applications for whom this

distinction is salient can choose to disallow external commits that contain a Remove, or to allow

such resync commits only if they contain a "reinit" PSK proposal that demonstrates the joining

member's presence in a prior epoch of the group. With the latter approach, the attacker would

need to compromise the PSK as well as the signing key, but the application will need to ensure

that continuing, non-resynchronizing members have the required PSK.

12.4.3.3. Ratchet Tree Extension 

By default, a GroupInfo message only provides the joiner with a hash of the group's ratchet tree.

In order to process or generate handshake messages, the joiner will need to get a copy of the

ratchet tree from some other source. (For example, the DS might provide a cached copy.) The

inclusion of the tree hash in the GroupInfo message means that the source of the ratchet tree

need not be trusted to maintain the integrity of the tree.

In cases where the application does not wish to provide such an external source, the whole

public state of the ratchet tree can be provided in an extension of type ratchet_tree, containing

a ratchet_tree object of the following form:

Each entry in the ratchet_tree vector provides the value for a node in the tree, or the null

optional for a blank node.

The nodes are listed in the order specified by a left-to-right in-order traversal of the ratchet tree.

Each node is listed between its left subtree and its right subtree. (This is the same ordering as

specified for the array-based trees outlined in Appendix C.)

If the tree has 2d leaves, then it has 2d+1 - 1 nodes. The ratchet_tree vector logically has this

number of entries, but the sender  include blank nodes after the last non-blank node.

The receiver  check that the last node in ratchet_tree is non-blank, and then extend the

tree to the right until it has a length of the form 2d+1 - 1, adding the minimum number of blank

values possible. (Obviously, this may be done "virtually", by synthesizing blank nodes when

required, as opposed to actually changing the structure in memory.)

struct {

    NodeType node_type;

    select (Node.node_type) {

        case leaf:   LeafNode leaf_node;

        case parent: ParentNode parent_node;

    };

} Node;

optional<Node> ratchet_tree<V>;

MUST NOT

MUST
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The leaves of the tree are stored in even-numbered entries in the array (the leaf with index L in

array position 2*L). The root node of the tree is at position 2d - 1 of the array. Intermediate parent

nodes can be identified by performing the same calculation to the subarrays to the left and right

of the root, following something like the following algorithm:

(Note that this is the same ordering of nodes as in the array-based tree representation described

in Appendix C. The algorithms in that section may be used to simplify decoding this extension

into other representations.)

For example, the following tree with six non-blank leaves would be represented as an array of

eleven elements, [A, W, B, X, C, _, D, Y, E, Z, F]. The above decoding procedure would

identify the subtree roots as follows (using R to represent a subtree root):

# Assuming a class Node that has left and right members

def subtree_root(nodes):

    # If there is only one node in the array, return it

    if len(nodes) == 1:

        return Node(nodes[0])

    # Otherwise, the length of the array MUST be odd

    if len(nodes) % 2 == 0:

        raise Exception("Malformed node array {}", len(nodes))

    # Identify the root of the subtree

    d = 0

    while (2**(d+1)) < len(nodes):

       d += 1

    R = 2**d - 1

    root = Node(nodes[R])

    root.left = subtree_root(nodes[:R])

    root.right = subtree_root(nodes[(R+1):])

    return root
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The presence of a ratchet_tree extension in a GroupInfo message does not result in any

changes to the GroupContext extensions for the group. The ratchet tree provided is simply stored

by the client and used for MLS operations.

If this extension is not provided in a Welcome message, then the client will need to fetch the

ratchet tree over some other channel before it can generate or process Commit messages.

Applications should ensure that this out-of-band channel is provided with security protections

equivalent to the protections that are afforded to Proposal and Commit messages. For example,

an application that encrypts Proposal and Commit messages might distribute ratchet trees

encrypted using a key exchanged over the MLS channel.

Regardless of how the client obtains the tree, the client  verify that the root hash of the

ratchet tree matches the tree_hash of the GroupContext before using the tree for MLS

operations.

Figure 28: Left-to-Right In-Order Traversal of a Six-Member Tree 
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13. Extensibility 

The base MLS protocol can be extended in a few ways. New cipher suites can be added to enable

the use of new cryptographic algorithms. New types of proposals can be used to perform new

actions within an epoch. Extension fields can be used to add additional information to the

protocol. In this section, we discuss some constraints on these extensibility mechanisms that are

necessary to ensure broad interoperability.

RFC 9420 MLS July 2023

Barnes, et al. Standards Track Page 95



13.1. Additional Cipher Suites 

As discussed in Section 5.1, MLS allows the participants in a group to negotiate the cryptographic

algorithms used within the group. This extensibility is important for maintaining the security of

the protocol over time . It also creates a risk of interoperability failure due to clients

not supporting a common cipher suite.

The cipher suite registry defined in Section 17.1 attempts to strike a balance on this point. On the

one hand, the base policy for the registry is Specification Required, a fairly low bar designed to

avoid the need for standards work in cases where different ciphers are needed for niche

applications. On the other hand, there is a higher bar (Standards Action) for ciphers to set the

Recommended field in the registry. This higher bar is there in part to ensure that the

interoperability implications of new cipher suites are considered.

MLS cipher suites are defined independent of MLS versions, so that in principle, the same cipher

suite can be used across versions. Standards work defining new versions of MLS should consider

whether it is desirable for the new version to be compatible with existing cipher suites, or

whether the new version should rule out some cipher suites. For example, a new version could

follow the example of HTTP/2, which restricted the set of allowed TLS ciphers (see 

).

[RFC7696]

Section 9.2.2 of

[RFC9113]

13.2. Proposals 

Commit messages do not have an extension field because the set of proposals is extensible. As

discussed in Section 12.4, Proposals with a non-default proposal type  be included in a

commit unless the proposal type is supported by all the members of the group that will process

the Commit.

MUST NOT

13.3. Credential Extensibility 

In order to ensure that MLS provides meaningful authentication, it is important that each

member is able to authenticate some identity information for each other member. Identity

information is encoded in Credentials, so this property is provided by ensuring that members use

compatible credential types.

The only types of credential that may be used in a group are those that all members of the group

support, as specified by the capabilities field of each LeafNode in the ratchet tree. An

application can introduce new credential types by choosing an unallocated identifier from the

registry in Section 17.5 and indicating support for the credential type in published LeafNodes,

whether in Update proposals to existing groups or KeyPackages that are added to new groups.

Once all members in a group indicate support for the credential type, members can start using

LeafNodes with the new credential. Application may enforce that certain credential types always

remain supported by adding a required_capabilities extension to the group's GroupContext,

which would prevent any member from being added to the group that doesn't support them.
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In future extensions to MLS, it may be useful to allow a member to present more than one

credential. For example, such credentials might present different attributes attested by different

authorities. To be consistent with the general principle stated at the beginning of this section,

such an extension would need to ensure that each member can authenticate some identity for

each other member. For each pair of members (Alice, Bob), Alice would need to present at least

one credential of a type that Bob supports.

13.4. Extensions 

This protocol includes a mechanism for negotiating extension parameters similar to the one in

TLS . In TLS, extension negotiation is one-to-one: The client offers extensions in its

ClientHello message, and the server expresses its choices for the session with extensions in its

ServerHello and EncryptedExtensions messages. In MLS, extensions appear in the following

places:

In KeyPackages, to describe additional information related to the client 

In LeafNodes, to describe additional information about the client or its participation in the

group (once in the ratchet tree) 

In the GroupInfo, to tell new members of a group what parameters are being used by the

group, and to provide any additional details required to join the group 

In the GroupContext object, to ensure that all members of the group have the same view of

the parameters in use 

In other words, an application can use GroupContext extensions to ensure that all members of

the group agree on a set of parameters. Clients indicate their support for parameters in the 

capabilities field of their LeafNode. New members of a group are informed of the group's

GroupContext extensions via the extensions field in the group_context field of the GroupInfo

object. The extensions field in a GroupInfo object (outside of the group_context field) can be

used to provide additional parameters to new joiners that are used to join the group.

This extension mechanism is designed to allow for the secure and forward-compatible

negotiation of extensions. For this to work, implementations  correctly handle extensible

fields:

A client that posts a KeyPackage  support all parameters advertised in it. Otherwise,

another client might fail to interoperate by selecting one of those parameters. 

A client processing a KeyPackage object  ignore all unrecognized values in the 

capabilities field of the LeafNode and all unknown extensions in the extensions and 

leaf_node.extensions fields. Otherwise, it could fail to interoperate with newer clients. 

A client processing a GroupInfo object  ignore all unrecognized extensions in the 

extensions field. 

Any field containing a list of extensions  have more than one extension of any

given type. 

A client adding a new member to a group  verify that the LeafNode for the new

member is compatible with the group's extensions. The capabilities field  indicate

support for each extension in the GroupContext. 

[RFC8446]

• 

• 

• 

• 

MUST

• MUST

• MUST

• MUST

• MUST NOT

• MUST

MUST
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A client joining a group  verify that it supports every extension in the GroupContext for

the group. Otherwise, it  treat the enclosing GroupInfo message as invalid and not join

the group. 

Note that the latter two requirements mean that all MLS GroupContext extensions are

mandatory, in the sense that an extension in use by the group  be supported by all members

of the group.

The parameters of a group may be changed by sending a GroupContextExtensions proposal to

enable additional extensions (Section 12.1.7), or by reinitializing the group (Section 11.2).

• MUST

MUST

MUST

13.5. GREASE 

As described in Section 13.4, clients are required to ignore unknown values for certain

parameters. To help ensure that other clients implement this behavior, a client can follow the

"Generate Random Extensions And Sustain Extensibility" or GREASE approach described in 

. In the context of MLS, this means that a client generating a KeyPackage, LeafNode, or

GroupInfo object includes random values in certain fields which would be ignored by a correctly

implemented client processing the message. A client that incorrectly rejects unknown code

points will fail to process such a message, providing a signal to its implementer that the client

needs to be fixed.

When generating the following fields, an MLS client  include a random selection of

values chosen from these GREASE values:

LeafNode.capabilities.cipher_suites 

LeafNode.capabilities.extensions 

LeafNode.capabilities.proposals 

LeafNode.capabilities.credentials 

LeafNode.extensions 

KeyPackage.extensions 

GroupInfo.extensions 

For the KeyPackage and GroupInfo extensions, the extension_data for GREASE extensions 

have any contents selected by the sender, since they will be ignored by a correctly implemented

receiver. For example, a sender might populate these extensions with a randomly sized amount

of random data.

Note that any GREASE values added to LeafNode.extensions need to be reflected in 

LeafNode.capabilities.extensions, since the LeafNode validation process described in 

Section 7.3 requires that these two fields be consistent.

GREASE values  be sent in the following fields, because an unsupported value in one

these fields (including a GREASE value) will cause the enclosing message to be rejected:

Proposal.proposal_type 

Credential.credential_type 

[RFC8701]

SHOULD

• 

• 

• 

• 

• 

• 

• 

MAY

MUST NOT

• 

• 
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GroupContext.extensions 

GroupContextExtensions.extensions 

Values reserved for GREASE have been registered in the various registries in Section 17. This

prevents conflict between GREASE and real future values. The following values are reserved in

each registry: 0x0A0A, 0x1A1A, 0x2A2A, 0x3A3A, 0x4A4A, 0x5A5A, 0x6A6A, 0x7A7A, 0x8A8A, 0x9A9A, 

0xAAAA, 0xBABA, 0xCACA, 0xDADA, and 0xEAEA. (The value 0xFAFA falls within the private use

range.) These values  only appear in the fields listed above, and not, for example, in the 

proposal_type field of a Proposal. Clients  implement any special processing rules for

how to handle these values when receiving them, since this negates their utility for detecting

extensibility failures.

GREASE values  be handled using normal logic for processing unsupported values. When

comparing lists of capabilities to identify mutually supported capabilities, clients  represent

their own capabilities with a list containing only the capabilities actually supported, without any

GREASE values. In other words, lists including GREASE values are only sent to other clients;

representations of a client's own capabilities  contain GREASE values.

• 

• 

MUST

MUST NOT

MUST

MUST

MUST NOT

14. Sequencing of State Changes 

Each Commit message is premised on a given starting state, indicated by the epoch field of the

enclosing FramedContent. If the changes implied by a Commit message are made starting from a

different state, the results will be incorrect.

This need for sequencing is not a problem as long as each time a group member sends a Commit

message, it is based on the most current state of the group. In practice, however, there is a risk

that two members will generate Commit messages simultaneously based on the same state.

Applications  have an established way to resolve conflicting Commit messages for the same

epoch. They can do this either by preventing conflicting messages from occurring in the first

place, or by developing rules for deciding which Commit out of several sent in an epoch will be

canonical. The approach chosen  minimize the amount of time that forked or previous

group states are kept in memory, and promptly delete them once they're no longer necessary to

ensure forward secrecy.

The generation of Commit messages  modify a client's state, since the client doesn't

know at that time whether the changes implied by the Commit message will conflict with another

Commit or not. Similarly, the Welcome message corresponding to a Commit  be

delivered to a new joiner until it's clear that the Commit has been accepted.

Regardless of how messages are kept in sequence, there is a risk that in a sufficiently busy group,

a given member may never be able to send a Commit message because they always lose to other

members. The degree to which this is a practical problem will depend on the dynamics of the

application.

MUST

MUST

MUST NOT

MUST NOT
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15. Application Messages 

The primary purpose of handshake messages is to provide an authenticated group key exchange

to clients. In order to protect application messages sent among the members of a group, the 

encryption_secret provided by the key schedule is used to derive a sequence of nonces and

keys for message encryption. Every epoch moves the key schedule forward, which triggers the

creation of a new secret tree, as described in Section 9, along with a new set of symmetric

ratchets of nonces and keys for each member.

Each client maintains their own local copy of the key schedule for each epoch during which they

are a group member. They derive new keys, nonces, and secrets as needed while deleting old

ones as soon as they have been used.

The group identifier and epoch allow a recipient to know which group secrets should be used

and from which epoch_secret to start computing other secrets. The sender identifier and

content type are used to identify which symmetric ratchet to use from the secret tree. The 

generation counter determines how far into the ratchet to iterate in order to produce the

required nonce and key for encryption or decryption.

15.1. Padding 

Application messages  be padded to provide some resistance against traffic analysis

techniques over encrypted traffic  . While MLS might deliver the same payload

less frequently across a lot of ciphertexts than traditional web servers, it might still provide the

attacker enough information to mount an attack. If Alice asks Bob "When are we going to the

movie?", then the answer "Wednesday" could be leaked to an adversary solely by the ciphertext

length.

The length of the padding field in PrivateMessageContent can be chosen by the sender at the

time of message encryption. Senders may use padding to reduce the ability of attackers outside

the group to infer the size of the encrypted content. Note, however, that the transports used to

carry MLS messages may have maximum message sizes, so padding schemes  avoid

increasing message size beyond any such limits that exist in a given deployment scenario.

MAY

[CLINIC] [HCJ16]

SHOULD

15.2. Restrictions 

During each epoch, senders  encrypt more data than permitted by the security bounds

of the AEAD scheme used .

Note that each change to the group through a handshake message will also set a new 

encryption_secret. Hence this change  be applied before encrypting any new application

message. This is required both to ensure that any users removed from the group can no longer

receive messages and to (potentially) recover confidentiality and authenticity for future

messages despite a past state compromise.

MUST NOT

[CFRG-AEAD-LIMITS]

MUST
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15.3. Delayed and Reordered Application Messages 

Since each application message contains the group identifier, the epoch, and a generation

counter, a client can receive messages out of order. When messages are received out of order, the

client moves the sender ratchet forward to match the received generation counter. Any unused

nonce and key pairs from the ratchet are potentially stored so that they can be used to decrypt

the messages that were delayed or reordered.

Applications  define a policy on how long to keep unused nonce and key pairs for a

sender, and the maximum number to keep. This is in addition to ensuring that these secrets are

deleted according to the deletion schedule defined in Section 9.2. Applications  also

define a policy limiting the maximum number of steps that clients will move the ratchet forward

in response to a new message. Messages received with a generation counter that is too much

higher than the last message received would then be rejected. This avoids causing a denial-of-

service attack by requiring the recipient to perform an excessive number of key derivations. For

example, a malicious group member could send a message with generation = 0xffffffff at

the beginning of a new epoch, forcing recipients to perform billions of key derivations unless

they apply limits of the type discussed above.

SHOULD

SHOULD

16. Security Considerations 

The security goals of MLS are described in . We describe here how the protocol

achieves its goals at a high level, though a complete security analysis is outside of the scope of

this document. The Security Considerations section of  provides some citations to

detailed security analyses.

[MLS-ARCH]

[MLS-ARCH]

16.1. Transport Security 

Because MLS messages are protected at the message level, the confidentiality and integrity of the

group state do not depend on those messages being protected in transit. However, an attacker

who can observe those messages in transit will be able to learn about the group state, including

potentially the group membership (see Section 16.4.3 below). Such an attacker might also be able

to mount denial-of-service attacks on the group or exclude new members by selectively

removing messages in transit. In order to prevent this form of attack, it is  that all

MLS messages be carried over a secure transport such as TLS  or QUIC .

RECOMMENDED

[RFC8446] [RFC9000]

16.2. Confidentiality of Group Secrets 

Group secrets are partly derived from the output of a ratchet tree. Ratchet trees work by

assigning each member of the group to a leaf in the tree and maintaining the following property:

the private key of a node in the tree is known only to members of the group that are assigned a

leaf in the node's subtree. This is called the tree invariant, and it makes it possible to encrypt to

all group members except one, with a number of ciphertexts that is logarithmic in the number of

group members.
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The ability to efficiently encrypt to all members except one allows members to be securely

removed from a group. It also allows a member to rotate their key pair such that the old private

key can no longer be used to decrypt new messages.

16.3. Confidentiality of Sender Data 

The PrivateMessage framing encrypts "sender data" that identifies which group member sent an

encrypted message, as described in Section 6.3.2. As with the QUIC header protection scheme 

, this scheme is a variant of the HN1 construction analyzed in . A

sample of the ciphertext is combined with a sender_data_secret to derive a key and nonce that

are used for AEAD encryption of the sender data.

The only differences between this construction and HN1 as described in  are that it (1) uses

authenticated encryption instead of unauthenticated encryption and (2) protects information

used to derive a nonce instead of the nonce itself.

Since the sender_data_secret is distinct from the content encryption key, it follows that the

sender data encryption scheme achieves AE2 security as defined in , and therefore

guarantees the confidentiality of the sender data.

Use of the same sender_data_secret and ciphertext sample more than once risks compromising

sender data protection by reusing an AEAD (key, nonce) pair. For example, in many AEAD

schemes, reusing a key and nonce reveals the exclusive OR of the two plaintexts. Assuming the

ciphertext output of the AEAD algorithm is indistinguishable from random data (i.e., the AEAD is

AE1-secure in the phrasing of ), the odds of two ciphertext samples being identical is

roughly 2-L/2, i.e., the birthday bound.

The AEAD algorithms for cipher suites defined in this document all provide this property. The

size of the sample depends on the cipher suite's hash function, but in all cases, the probability of

collision is no more than 2-128. Any future cipher suite  use an AE1-secure AEAD algorithm.

[RFC9001], Section 5.4 [NAN]

(key, nonce) = PRF(sender_data_secret, sample)

encrypted_sender_data =

  AEAD.Seal(key, nonce, sender_data_aad, sender_data)

[NAN]

[NAN]

[NAN]

MUST

16.4. Confidentiality of Group Metadata 

MLS does not provide confidentiality protection to some messages and fields within messages:

KeyPackage messages 

GroupInfo messages 

The unencrypted portion of a Welcome message 

Any Proposal or Commit messages sent as PublicMessage messages 

The unencrypted header fields in PrivateMessage messages 

The lengths of encrypted Welcome and PrivateMessage messages 

• 

• 

• 

• 

• 

• 
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The only mechanism MLS provides for confidentially distributing a group's ratchet tree to new

members is to send it in a Welcome message as a ratchet_tree extension. If an application

distributes the tree in some other way, its security will depend on that application mechanism.

A party observing these fields might be able to infer certain properties of the group:

Group ID 

Current epoch and frequency of epoch changes 

Frequency of messages within an epoch 

Group extensions 

Group membership 

The amount of metadata exposed to parties outside the group, and thus the ability of these

parties to infer the group's properties, depends on several aspects of the DS design, such as:

How KeyPackages are distributed 

How the ratchet tree is distributed 

How prospective external joiners get a GroupInfo object for the group 

Whether Proposal and Commit messages are sent as PublicMessage or PrivateMessage 

In the remainder of this section, we note the ways that the above properties of the group are

reflected in unprotected group messages, as a guide to understanding how they might be

exposed or protected in a given application.

• 

• 

• 

• 

• 

• 

• 

• 

• 

16.4.1. GroupID, Epoch, and Message Frequency 

MLS provides no mechanism to protect the group ID and epoch of a message from the DS, so the

group ID and the frequency of messages and epoch changes are not protected against inspection

by the DS. However, any modifications to these will cause decryption failure.

16.4.2. Group Extensions 

A group's extensions are first set by the group's creator and then updated by

GroupContextExtensions proposals. A GroupContextExtensions proposal sent as a PublicMessage

leaks the group's extensions.

A new member learns the group's extensions via a GroupInfo object. When the new member

joins via a Welcome message, the Welcome message's encryption protects the GroupInfo

message. When the new member joins via an external join, they must be provided with a

GroupInfo object. Protection of this GroupInfo object is up to the application -- if it is transmitted

over a channel that is not confidential to the group and the new joiner, then it will leak the

group's extensions.
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16.4.3. Group Membership 

The group's membership is represented directly by its ratchet tree, since each member's

LeafNode contains members' cryptographic keys, a credential that contains information about

the member's identity, and possibly other identifiers. Applications that expose the group's ratchet

tree outside the group also leak the group's membership.

Changes to the group's membership are made by means of Add and Remove proposals. If these

proposals are sent as PublicMessage, then information will be leaked about the corresponding

changes to the group's membership. A party that sees all of these changes can reconstruct the

group membership.

Welcome messages contain a hash of each KeyPackage for which the Welcome message is

encrypted. If a party has access to a pool of KeyPackages and observes a Welcome message, then

they can identify the KeyPackage representing the new member. If the party can also associate

the Welcome with a group, then the party can infer that the identified new member was added to

that group.

Note that these information leaks reveal the group's membership only to the degree that

membership is revealed by the contents of a member's LeafNode in the ratchet tree. In some

cases, this may be quite direct, e.g., due to credentials attesting to identifiers such as email

addresses. An application could construct a member's leaf node to be less identifying, e.g., by

using a pseudonymous credential and frequently rotating encryption and signature keys.

16.5. Authentication 

The first form of authentication we provide is that group members can verify a message

originated from one of the members of the group. For encrypted messages, this is guaranteed

because messages are encrypted with an AEAD under a key derived from the group secrets. For

plaintext messages, this is guaranteed by the use of a membership_tag, which constitutes a MAC

over the message, under a key derived from the group secrets.

The second form of authentication is that group members can verify a message originated from a

particular member of the group. This is guaranteed by a digital signature on each message from

the sender's signature key.

The signature keys held by group members are critical to the security of MLS against active

attacks. If a member's signature key is compromised, then an attacker can create LeafNodes and

KeyPackages impersonating the member; depending on the application, this can then allow the

attacker to join the group with the compromised member's identity. For example, if a group has

enabled external parties to join via external commits, then an attacker that has compromised a

member's signature key could use an external Commit to insert themselves into the group -- even

using a "resync"-style external Commit to replace the compromised member in the group.

Applications can mitigate the risks of signature key compromise using pre-shared keys. If a

group requires joiners to know a PSK in addition to authenticating with a credential, then in

order to mount an impersonation attack, the attacker would need to compromise the relevant
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PSK as well as the victim's signature key. The cost of this mitigation is that the application needs

some external arrangement that ensures that the legitimate members of the group have the

required PSKs.

16.6. Forward Secrecy and Post-Compromise Security 

Forward secrecy and post-compromise security are important security notions for long-lived

MLS groups. Forward secrecy means that messages sent at a certain point in time are secure in

the face of later compromise of a group member. Post-compromise security means that messages

are secure even if a group member was compromised at some point in the past.

Post-compromise security is provided between epochs by members regularly updating their leaf

key in the ratchet tree. Updating their leaf key prevents group secrets from continuing to be

encrypted to public keys whose private keys had previously been compromised. Note that

sending an Update proposal does not achieve PCS until another member includes it in a Commit.

Members can achieve immediate PCS by sending their own Commit and populating the path

field, as described in Section 12.4. To be clear, in all these cases, the PCS guarantees come into

effect when the members of the group process the relevant Commit, not when the sender creates

it.

Forward secrecy between epochs is provided by deleting private keys from past versions of the

ratchet tree, as this prevents old group secrets from being re-derived. Forward secrecy within an

epoch is provided by deleting message encryption keys once they've been used to encrypt or

decrypt a message. Note that group secrets and message encryption keys are shared by the

group. There is thus a risk to forward secrecy as long as any member has not deleted these keys.

This is a particular risk if a member is offline for a long period of time. Applications 

have mechanisms for evicting group members that are offline for too long (i.e., have not changed

their key within some period).

New groups are also at risk of using previously compromised keys (as with post-compromise

security) if a member is added to a new group via an old KeyPackage whose corresponding

private key has been compromised. This risk can be mitigated by having clients regularly

Figure 29: Forward Secrecy and Post-Compromise Security 

Compromise

Time

Forward Secrecy Post-Compromise

Security

SHOULD
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generate new KeyPackages and upload them to the Delivery Service. This way, the key material

used to add a member to a new group is more likely to be fresh and less likely to be

compromised.

16.7. Uniqueness of Ratchet Tree Key Pairs 

The encryption and signature keys stored in the encryption_key and signature_key fields of

ratchet tree nodes  be distinct from one another. If two members' leaf nodes have the same

signature key, for example, then the data origin authentication properties afforded by signatures

within the group are degraded.

Uniqueness of keys in leaf nodes is assured by explicitly checking each leaf node as it is added to

the tree, whether in an Add proposal, in an Update proposal, or in the path field of a Commit.

Details can be found in Sections 7.3, 12.2, and 12.4.2. Uniqueness of encryption keys in parent

nodes is assured by checking that the keys in an UpdatePath are not found elsewhere in the tree

(see Section 12.4.2).

MUST

16.8. KeyPackage Reuse 

KeyPackages are intended to be used only once. That is, once a KeyPackage has been used to

introduce the corresponding client to a group, it  be deleted from the KeyPackage

publication system. Reuse of KeyPackages can lead to replay attacks.

An application  allow for reuse of a "last resort" KeyPackage in order to prevent denial-of-

service attacks. Since a KeyPackage is needed to add a client to a new group, an attacker could

prevent a client from being added to new groups by exhausting all available KeyPackages. To

prevent such a denial-of-service attack, the KeyPackage publication system  rate-limit

KeyPackage requests, especially if not authenticated.

SHOULD

MAY

SHOULD

16.9. Delivery Service Compromise 

MLS is designed to protect the confidentiality and integrity of the group data even in the face of a

compromised DS. However, a compromised DS can still mount some attacks. While it cannot

forge messages, it can selectively delay or remove them. In some cases, this can be observed by

detecting gaps in the per-sender generation counter, though it may not always be possible to

distinguish an attack from message loss. In addition, the DS can permanently block messages to

and from a group member. This will not always be detectable by other members. If an

application uses the DS to resolve conflicts between simultaneous Commits (see Section 14), it is

also possible for the DS to influence which Commit is applied, even to the point of preventing a

member from ever having its Commits applied.

When put together, these abilities potentially allow a DS to collude with an attacker who has

compromised a member's state to defeat PCS by suppressing the valid Update and Commit

messages from the member that would lock out the attacker and update the member's leaf to a

new, uncompromised state. Aside from the SenderData.generation value, MLS leaves loss

detection up to the application.
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16.10. Authentication Service Compromise 

Authentication Service compromise is much more serious than compromise of the Delivery

Service. A compromised AS can assert a binding for a signature key and identity pair of its

choice, thus allowing impersonation of a given user. This ability is sufficient to allow the AS to

join new groups as if it were that user. Depending on the application architecture, it may also be

sufficient to allow the compromised AS to join the group as an existing user, for instance, as if it

were a new device associated with the same user. If the application uses a transparency

mechanism such as CONIKS  or Key Transparency , then it may be possible for end

users to detect this kind of misbehavior by the AS. It is also possible to construct schemes in

which the various clients owned by a user vouch for each other, e.g., by signing each others' keys.

[CONIKS] [KT]

16.11. Additional Policy Enforcement 

The DS and AS may also apply additional policies to MLS operations to obtain additional security

properties. For example, MLS enables any participant to add or remove members of a group; a

DS could enforce a policy that only certain members are allowed to perform these operations.

MLS authenticates all members of a group; a DS could help ensure that only clients with certain

types of credentials are admitted. MLS provides no inherent protection against denial of service;

a DS could also enforce rate limits in order to mitigate these risks.

16.12. Group Fragmentation by Malicious Insiders 

It is possible for a malicious member of a group to "fragment" the group by crafting an invalid

UpdatePath. Recall that an UpdatePath encrypts a sequence of path secrets to different subtrees

of the group's ratchet trees. These path secrets should be derived in a sequence as described in 

Section 7.4, but the UpdatePath syntax allows the sender to encrypt arbitrary, unrelated secrets.

The syntax also does not guarantee that the encrypted path secret for a given node corresponds

to the public key provided for that node.

Both of these types of corruption will cause processing of a Commit to fail for some members of

the group. If the public key for a node does not match the path secret, then the members that

decrypt that path secret will reject the Commit based on this mismatch. If the path secret

sequence is incorrect at some point, then members that can decrypt nodes before that point will

compute a different public key for the mismatched node than the one in the UpdatePath, which

also causes the Commit to fail. Applications  provide mechanisms for failed commits to

be reported, so that group members who were not able to recognize the error themselves can

reinitialize the group if necessary.

Even with such an error reporting mechanism in place, however, it is still possible for members

to get locked out of the group by a malformed Commit. Since malformed Commits can only be

recognized by certain members of the group, in an asynchronous application, it may be the case

that all members that could detect a fault in a Commit are offline. In such a case, the Commit will

be accepted by the group, and the resulting state will possibly be used as the basis for further

SHOULD
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Commits. When the affected members come back online, they will reject the first Commit, and

thus be unable to catch up with the group. These members will need to either add themselves

back with an external Commit or reinitialize the group from scratch.

Applications can address this risk by requiring certain members of the group to acknowledge

successful processing of a Commit before the group regards the Commit as accepted. The

minimum set of acknowledgements necessary to verify that a Commit is well-formed comprises

an acknowledgement from one member per node in the UpdatePath, that is, one member from

each subtree rooted in the copath node corresponding to the node in the UpdatePath. MLS does

not provide a built-in mechanism for such acknowledgements, but they can be added at the

application layer.

17. IANA Considerations 

IANA has created the following registries:

MLS Cipher Suites (Section 17.1) 

MLS Wire Formats (Section 17.2) 

MLS Extension Types (Section 17.3) 

MLS Proposal Types (Section 17.4) 

MLS Credential Types (Section 17.5) 

MLS Signature Labels (Section 17.6) 

MLS Public Key Encryption Labels (Section 17.7) 

MLS Exporter Labels (Section 17.8) 

All of these registries are under the "Messaging Layer Security" group registry heading, and

assignments are made via the Specification Required policy . See Section 17.9 for

additional information about the MLS Designated Experts (DEs).

• 

• 

• 

• 

• 

• 

• 

• 

[RFC8126]

17.1. MLS Cipher Suites 

A cipher suite is a combination of a protocol version and the set of cryptographic algorithms that

should be used.

Cipher suite names follow the naming convention:

Where VALUE is represented as a 16-bit integer:

CipherSuite MLS_LVL_KEM_AEAD_HASH_SIG = VALUE;

uint16 CipherSuite;
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Component Contents

LVL The security level (in bits)

KEM The KEM algorithm used for HPKE in ratchet tree operations

AEAD The AEAD algorithm used for HPKE and message protection

HASH The hash algorithm used for HPKE and the MLS transcript hash

SIG The signature algorithm used for message authentication

Table 5

The columns in the registry are as follows:

Value: The numeric value of the cipher suite 

Name: The name of the cipher suite 

Recommended: Whether support for this cipher suite is recommended by the IETF. Valid

values are "Y", "N", and "D", as described below. The default value of the "Recommended"

column is "N". Setting the Recommended item to "Y" or "D", or changing an item whose

current value is "Y" or "D", requires Standards Action .

Y: Indicates that the IETF has consensus that the item is . This only means

that the associated mechanism is fit for the purpose for which it was defined. Careful

reading of the documentation for the mechanism is necessary to understand the

applicability of that mechanism. The IETF could recommend mechanisms that have

limited applicability, but it will provide applicability statements that describe any

limitations of the mechanism or necessary constraints on its use. 

N: Indicates that the item has not been evaluated by the IETF and that the IETF has made

no statement about the suitability of the associated mechanism. This does not necessarily

mean that the mechanism is flawed, only that no consensus exists. The IETF might have

consensus to leave an item marked as "N" on the basis of it having limited applicability or

usage constraints. 

D: Indicates that the item is discouraged and  or  be used. This

marking could be used to identify mechanisms that might result in problems if they are

used, such as a weak cryptographic algorithm or a mechanism that might cause

interoperability problems in deployment. 

Reference: The document where this cipher suite is defined 

Initial contents:

Value Name R Ref

0x0000 RESERVED - RFC

9420

• 

• 

• 

[RFC8126]

◦ RECOMMENDED

◦ 

◦ SHOULD NOT MUST NOT

• 
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Value Name R Ref

0x0001 MLS_128_DHKEMX25519_AES128GCM_SHA256_Ed25519 Y RFC

9420

0x0002 MLS_128_DHKEMP256_AES128GCM_SHA256_P256 Y RFC

9420

0x0003 MLS_128_DHKEMX25519_CHACHA20POLY1305_SHA256_Ed25519 Y RFC

9420

0x0004 MLS_256_DHKEMX448_AES256GCM_SHA512_Ed448 Y RFC

9420

0x0005 MLS_256_DHKEMP521_AES256GCM_SHA512_P521 Y RFC

9420

0x0006 MLS_256_DHKEMX448_CHACHA20POLY1305_SHA512_Ed448 Y RFC

9420

0x0007 MLS_256_DHKEMP384_AES256GCM_SHA384_P384 Y RFC

9420

0x0A0A GREASE Y RFC

9420

0x1A1A GREASE Y RFC

9420

0x2A2A GREASE Y RFC

9420

0x3A3A GREASE Y RFC

9420

0x4A4A GREASE Y RFC

9420

0x5A5A GREASE Y RFC

9420

0x6A6A GREASE Y RFC

9420

0x7A7A GREASE Y RFC

9420
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Value Name R Ref

0x8A8A GREASE Y RFC

9420

0x9A9A GREASE Y RFC

9420

0xAAAA GREASE Y RFC

9420

0xBABA GREASE Y RFC

9420

0xCACA GREASE Y RFC

9420

0xDADA GREASE Y RFC

9420

0xEAEA GREASE Y RFC

9420

0xF000 -

0xFFFF

Reserved for Private Use - RFC

9420

Table 6: MLS Extension Types Registry 

All of the non-GREASE cipher suites use HMAC  as their MAC function, with different

hashes per cipher suite. The mapping of cipher suites to HPKE primitives , HMAC hash

functions, and TLS signature schemes  is as follows:

Value KEM KDF AEAD Hash Signature

0x0001 0x0020 0x0001 0x0001 SHA256 ed25519

0x0002 0x0010 0x0001 0x0001 SHA256 ecdsa_secp256r1_sha256

0x0003 0x0020 0x0001 0x0003 SHA256 ed25519

0x0004 0x0021 0x0003 0x0002 SHA512 ed448

0x0005 0x0012 0x0003 0x0002 SHA512 ecdsa_secp521r1_sha512

0x0006 0x0021 0x0003 0x0003 SHA512 ed448

0x0007 0x0011 0x0002 0x0002 SHA384 ecdsa_secp384r1_sha384

Table 7

[RFC2104]

[RFC9180]

[RFC8446]
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The hash used for the MLS transcript hash is the one referenced in the cipher suite name. In the

cipher suites defined above, "SHA256", "SHA384", and "SHA512" refer, respectively, to the

SHA-256, SHA-384, and SHA-512 functions defined in .

In addition to the general requirements of Section 13.1, future cipher suites  meet the

requirements of Section 16.3.

It is advisable to keep the number of cipher suites low to increase the likelihood that clients can

interoperate in a federated environment. The cipher suites therefore include only modern, yet

well-established algorithms. Depending on their requirements, clients can choose between two

security levels (roughly 128-bit and 256-bit). Within the security levels, clients can choose

between faster X25519/X448 curves and curves compliant with FIPS 140-2 for Diffie-Hellman key

negotiations. Clients may also choose ChaCha20Poly1305 or AES-GCM, e.g., for performance

reasons. Since ChaCha20Poly1305 is not listed by FIPS 140-2, it is not paired with curves

compliant with FIPS 140-2. The security level of symmetric encryption algorithms and hash

functions is paired with the security level of the curves.

The mandatory-to-implement cipher suite for MLS 1.0 is 

MLS_128_DHKEMX25519_AES128GCM_SHA256_Ed25519, which uses Curve25519 for key exchange,

AES-128-GCM for HPKE, HKDF over SHA2-256, and Ed25519 for signatures. MLS clients 

implement this cipher suite.

[SHS]

MUST

MUST

17.2. MLS Wire Formats 

The "MLS Wire Formats" registry lists identifiers for the types of messages that can be sent in

MLS. The wire format field is two bytes wide, so the valid wire format values are in the range

0x0000 to 0xFFFF.

Template:

Value: The numeric value of the wire format 

Name: The name of the wire format 

Recommended: Same as in Section 17.1 

Reference: The document where this wire format is defined 

Initial contents:

Value Name R Ref

0x0000 RESERVED - RFC 9420

0x0001 mls_public_message Y RFC 9420

0x0002 mls_private_message Y RFC 9420

0x0003 mls_welcome Y RFC 9420

• 

• 

• 

• 
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Value Name R Ref

0x0004 mls_group_info Y RFC 9420

0x0005 mls_key_package Y RFC 9420

0xF000 - 0xFFFF Reserved for Private Use - RFC 9420

Table 8: MLS Wire Formats Registry 

17.3. MLS Extension Types 

The "MLS Extension Types" registry lists identifiers for extensions to the MLS protocol. The

extension type field is two bytes wide, so valid extension type values are in the range 0x0000 to

0xFFFF.

Template:

Value: The numeric value of the extension type 

Name: The name of the extension type 

Message(s): The messages in which the extension may appear, drawn from the following list:

KP: KeyPackage objects 

LN: LeafNode objects 

GC: GroupContext objects 

GI: GroupInfo objects 

Recommended: Same as in Section 17.1 

Reference: The document where this extension is defined 

Initial contents:

Value Name Message(s) R Ref

0x0000 RESERVED N/A - RFC 9420

0x0001 application_id LN Y RFC 9420

0x0002 ratchet_tree GI Y RFC 9420

0x0003 required_capabilities GC Y RFC 9420

0x0004 external_pub GI Y RFC 9420

0x0005 external_senders GC Y RFC 9420

0x0A0A GREASE KP, GI, LN Y RFC 9420

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

• 

• 
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Value Name Message(s) R Ref

0x1A1A GREASE KP, GI, LN Y RFC 9420

0x2A2A GREASE KP, GI, LN Y RFC 9420

0x3A3A GREASE KP, GI, LN Y RFC 9420

0x4A4A GREASE KP, GI, LN Y RFC 9420

0x5A5A GREASE KP, GI, LN Y RFC 9420

0x6A6A GREASE KP, GI, LN Y RFC 9420

0x7A7A GREASE KP, GI, LN Y RFC 9420

0x8A8A GREASE KP, GI, LN Y RFC 9420

0x9A9A GREASE KP, GI, LN Y RFC 9420

0xAAAA GREASE KP, GI, LN Y RFC 9420

0xBABA GREASE KP, GI, LN Y RFC 9420

0xCACA GREASE KP, GI, LN Y RFC 9420

0xDADA GREASE KP, GI, LN Y RFC 9420

0xEAEA GREASE KP, GI, LN Y RFC 9420

0xF000 - 0xFFFF Reserved for Private Use N/A - RFC 9420

Table 9: MLS Extension Types Registry 

17.4. MLS Proposal Types 

The "MLS Proposal Types" registry lists identifiers for types of proposals that can be made for

changes to an MLS group. The extension type field is two bytes wide, so valid extension type

values are in the range 0x0000 to 0xFFFF.

Template:

Value: The numeric value of the proposal type 

Name: The name of the proposal type 

Recommended: Same as in Section 17.1 

External: Whether a proposal of this type may be sent by an external sender (see Section

12.1.8) 

Path Required: Whether a Commit covering a proposal of this type is required to have its 

path field populated (see Section 12.4) 

• 

• 

• 

• 

• 
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Reference: The document where this extension is defined 

Initial contents:

Value Name R Ext Path Ref

0x0000 RESERVED - - - RFC 9420

0x0001 add Y Y N RFC 9420

0x0002 update Y N Y RFC 9420

0x0003 remove Y Y Y RFC 9420

0x0004 psk Y Y N RFC 9420

0x0005 reinit Y Y N RFC 9420

0x0006 external_init Y N Y RFC 9420

0x0007 group_context_extensions Y Y Y RFC 9420

0x0A0A GREASE Y - - RFC 9420

0x1A1A GREASE Y - - RFC 9420

0x2A2A GREASE Y - - RFC 9420

0x3A3A GREASE Y - - RFC 9420

0x4A4A GREASE Y - - RFC 9420

0x5A5A GREASE Y - - RFC 9420

0x6A6A GREASE Y - - RFC 9420

0x7A7A GREASE Y - - RFC 9420

0x8A8A GREASE Y - - RFC 9420

0x9A9A GREASE Y - - RFC 9420

0xAAAA GREASE Y - - RFC 9420

0xBABA GREASE Y - - RFC 9420

0xCACA GREASE Y - - RFC 9420

0xDADA GREASE Y - - RFC 9420

• 

RFC 9420 MLS July 2023

Barnes, et al. Standards Track Page 115



Value Name R Ext Path Ref

0xEAEA GREASE Y - - RFC 9420

0xF000 - 0xFFFF Reserved for Private Use - - - RFC 9420

Table 10: MLS Proposal Types Registry 

17.5. MLS Credential Types 

The "MLS Credential Types" registry lists identifiers for types of credentials that can be used for

authentication in the MLS protocol. The credential type field is two bytes wide, so valid

credential type values are in the range 0x0000 to 0xFFFF.

Template:

Value: The numeric value of the credential type 

Name: The name of the credential type 

Recommended: Same as in Section 17.1 

Reference: The document where this credential is defined 

Initial contents:

Value Name R Ref

0x0000 RESERVED - RFC 9420

0x0001 basic Y RFC 9420

0x0002 x509 Y RFC 9420

0x0A0A GREASE Y RFC 9420

0x1A1A GREASE Y RFC 9420

0x2A2A GREASE Y RFC 9420

0x3A3A GREASE Y RFC 9420

0x4A4A GREASE Y RFC 9420

0x5A5A GREASE Y RFC 9420

0x6A6A GREASE Y RFC 9420

0x7A7A GREASE Y RFC 9420

0x8A8A GREASE Y RFC 9420

• 

• 

• 

• 
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Value Name R Ref

0x9A9A GREASE Y RFC 9420

0xAAAA GREASE Y RFC 9420

0xBABA GREASE Y RFC 9420

0xCACA GREASE Y RFC 9420

0xDADA GREASE Y RFC 9420

0xEAEA GREASE Y RFC 9420

0xF000 - 0xFFFF Reserved for Private Use - RFC 9420

Table 11: MLS Credential Types Registry 

17.6. MLS Signature Labels 

The SignWithLabel function defined in Section 5.1.2 avoids the risk of confusion between

signatures in different contexts. Each context is assigned a distinct label that is incorporated into

the signature. The "MLS Signature Labels" registry records the labels defined in this document

and allows additional labels to be registered in case extensions add other types of signatures

using the same signature keys used elsewhere in MLS.

Template:

Label: The string to be used as the Label parameter to SignWithLabel 

Recommended: Same as in Section 17.1 

Reference: The document where this label is defined 

Initial contents:

Label R Ref

"FramedContentTBS" Y RFC 9420

"LeafNodeTBS" Y RFC 9420

"KeyPackageTBS" Y RFC 9420

"GroupInfoTBS" Y RFC 9420

Table 12: MLS Signature Labels Registry 

• 

• 

• 
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17.7. MLS Public Key Encryption Labels 

The EncryptWithLabel function defined in Section 5.1.3 avoids the risk of confusion between

ciphertexts produced for different purposes in different contexts. Each context is assigned a

distinct label that is incorporated into the signature. The "MLS Public Key Encryption Labels"

registry records the labels defined in this document and allows additional labels to be registered

in case extensions add other types of public key encryption using the same HPKE keys used

elsewhere in MLS.

Template:

Label: The string to be used as the Label parameter to EncryptWithLabel 

Recommended: Same as in Section 17.1 

Reference: The document where this label is defined 

Initial contents:

Label R Ref

"UpdatePathNode" Y RFC 9420

"Welcome" Y RFC 9420

Table 13: MLS Public Key Encryption

Labels Registry 

• 

• 

• 

17.8. MLS Exporter Labels 

The exporter function defined in Section 8.5 allows applications to derive key material from the

MLS key schedule. Like the TLS exporter , the MLS exporter uses a label to distinguish

between different applications' use of the exporter. The "MLS Exporter Labels" registry allows

applications to register their usage to avoid collisions.

Template:

Label: The string to be used as the Label parameter to MLS-Exporter 

Recommended: Same as in Section 17.1 

Reference: The document where this label is defined 

The registry has no initial contents, since it is intended to be used by applications, not the core

protocol. The table below is intended only to show the column layout of the registry.

Label Recommended Reference

(N/A) (N/A) (N/A)

Table 14: MLS Exporter Labels Registry 

[RFC8446]

• 

• 

• 
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17.9. MLS Designated Expert Pool 

Specification Required  registry requests are registered after a three-week review

period on the MLS Designated Expert (DE) mailing list  on the

advice of one or more of the MLS DEs. However, to allow for the allocation of values prior to

publication, the MLS DEs may approve registration once they are satisfied that such a

specification will be published.

Registration requests sent to the MLS DEs' mailing list for review  use an appropriate

subject (e.g., "Request to register value in MLS Bar registry").

Within the review period, the MLS DEs will either approve or deny the registration request,

communicating this decision to the MLS DEs' mailing list and IANA. Denials  include an

explanation and, if applicable, suggestions as to how to make the request successful. Registration

requests that are undetermined for a period longer than 21 days can be brought to the IESG's

attention for resolution using the  mailing list.

Criteria that  be applied by the MLS DEs includes determining whether the proposed

registration duplicates existing functionality, whether it is likely to be of general applicability or

useful only for a single application, and whether the registration description is clear. For

example, for cipher suite registrations, the MLS DEs will apply the advisory found in Section 17.1.

IANA  only accept registry updates from the MLS DEs and  direct all requests for

registration to the MLS DEs' mailing list.

It is suggested that multiple MLS DEs who are able to represent the perspectives of different

applications using this specification be appointed, in order to enable a broadly informed review

of registration decisions. In cases where a registration decision could be perceived as creating a

conflict of interest for a particular MLS DE, that MLS DE  defer to the judgment of the

other MLS DEs.

[RFC8126]

<mailto:mls-reg-review@ietf.org>

SHOULD

SHOULD

<mailto:iesg@ietf.org>

SHOULD

MUST SHOULD

SHOULD

Type name:

Subtype name:

Required parameters:

Optional parameters: version

17.10. The "message/mls" Media Type 

This document registers the "message/mls" media type in the "message" registry in order to allow

other protocols (e.g., HTTP ) to convey MLS messages.

message 

mls 

none 

 

[RFC9113]
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[RFC2119]
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Appendix A. Protocol Origins of Example Trees 

Protocol operations in MLS give rise to specific forms of ratchet tree, typically affecting a whole

direct path at once. In this section, we describe the protocol operations that could have given rise

to the various example trees in this document.

To construct the tree in Figure 11:

A creates a group with B, ..., G 

F sends an empty Commit, setting X, Y, and W 

G removes C and D, blanking V, U, and setting Y and W 

B sends an empty Commit, setting T and W 

To construct the tree in Figure 10:

A creates a group with B, ..., H, as well as some members outside this subtree 

F sends an empty Commit, setting Y and its ancestors 

D removes B and C, with the following effects:

Blank the direct paths of B and C 

Set X, the top node, and any further nodes in the direct path of D 

Someone outside this subtree removes G, blanking the direct path of G 

A adds a new member at B with a partial Commit, adding B as unmerged at X 

To construct the tree in Figure 13:

A creates a group with B, C, and D 

B sends a full Commit, setting X and Y 

D removes C, setting Z and Y 

B adds a new member at C with a full Commit

The Add proposal adds C as unmerged at Z and Y 

The path in the Commit resets X and Y, clearing Y's unmerged leaves 

To construct the tree in Figure 21:

A creates a group with B, ..., G 

A removes F in a full Commit, setting T, U, and W 

E sends an empty Commit, setting Y and W 

A adds a new member at F in a partial Commit, adding F as unmerged at Y and W 

• 

• 

• 

• 

• 

• 

• 

◦ 

◦ 

• 

• 

• 

• 

• 

• 

◦ 

◦ 

• 

• 

• 

• 
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Appendix B. Evolution of Parent Hashes 

To better understand how parent hashes are maintained, let's look in detail at how they evolve in

a small group. Consider the following sequence of operations:

A initializes a new group 

A adds B to the group with a full Commit 

B adds C and D to the group with a full Commit 

C sends an empty Commit 

Then the parent hashes associated to the nodes will be updated as follows (where we use the

shorthand ph for parent hash, th for tree hash, and osth for original sibling tree hash):

A adds B: set X

A.parent_hash = ph(X) = H(X, ph="", osth=th(B)) 

B adds C, D: set B', X', and Y

X'.parent_hash = ph(Y) = H(Y, ph="", osth=th(Z)), where th(Z) covers (C, _, D) 

B'.parent_hash = ph(X') = H(X', ph=X'.parent_hash, osth=th(A)) 

C sends empty Commit: set C', Z', Y'

Z'.parent_hash = ph(Y') = H(Y', ph="", osth=th(X')), where th(X') covers (A,

X', B') 

C'.parent_hash = ph(Z') = H(Z', ph=Z'.parent_hash, osth=th(D)) 

When a new member joins, they will receive a tree that has the following parent hash values and

compute the indicated parent hash validity relationships:

Node Parent Hash Value Valid?

A H(X, ph="", osth=th(B)) No, B changed

1. 

2. 

3. 

4. 

Figure 30: Building a Four-Member Tree to Illustrate Parent Hashes 

Y Y'

X X' _=Z X' Z'

/ \ / \ / \ / \

A A B A B C D A B C D
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◦ 
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Node Parent Hash Value Valid?

B' H(X', ph=X'.parent_hash, osth=th(A)) Yes

C' H(Z', ph=Z'.parent_hash, osth=th(D)) Yes

D (none, never sent an UpdatePath) N/A

X' H(Y, ph="", osth=th(Z)) No, Y and Z changed

Z' H(Y', ph="", osth=th(X')) Yes

Table 15

In other words, the joiner will find the following path-hash links in the tree:

Since these chains collectively cover all non-blank parent nodes in the tree, the tree is parent-

hash valid.

Note that this tree, though valid, contains invalid parent-hash links. If a client were checking

parent hashes top-down from Y', for example, they would find that X' has an invalid parent hash

relative to Y', but that Z' has a valid parent hash. Likewise, if the client were checking bottom-up,

they would find that the chain from B' ends in an invalid link from X' to Y'. These invalid links

are the natural result of multiple clients having committed.

Note also the way the tree hash and the parent hash interact. The parent hash of node C' includes

the tree hash of node D. The parent hash of node Z' includes the tree hash of X', which covers

nodes A and B' (including the parent hash of B'). Although the tree hash and the parent hash

depend on each other, the dependency relationships are structured so that there is never a

circular dependency.

In the particular case where a new member first receives the tree for a group (e.g., in a ratchet

tree GroupInfo extension Section 12.4.3.3), the parent hashes will be expressed in the tree

representation, but the tree hash need not be. Instead, the new member will recompute the tree

hashes for all the nodes in the tree, verifying that this matches the tree hash in the GroupInfo

Figure 31: Parent-hash links connect all non-empty parent nodes to leaves 

Y'

X' Z'

\ /

A B' C' D
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object. If the tree is valid, then the subtree hashes computed in this way will align with the inputs

needed for parent hash validation (except where recomputation is needed to account for

unmerged leaves).

Appendix C. Array-Based Trees 

One benefit of using complete balanced trees is that they admit a simple flat array

representation. In this representation, leaf nodes are even-numbered nodes, with the n-th leaf at 

2*n. Intermediate nodes are held in odd-numbered nodes. For example, the tree with 8 leaves

has the following structure:

This allows us to compute relationships between tree nodes simply by manipulating indices,

rather than having to maintain complicated structures in memory. The basic rule is that the high-

order bits of parent and child nodes indices have the following relation (where x is an arbitrary

bit string):

Since node relationships are implicit, the algorithms for adding and removing nodes at the right

edge of the tree are quite simple. If there are N nodes in the array:

Add: Append N + 1 blank values to the end of the array. 

Remove: Truncate the array to its first (N-1) / 2 entries. 

The following python code demonstrates the tree computations necessary to use an array-based

tree for MLS.

Figure 32: An Eight-Member Tree Represented as an Array 

X

X X

X X X X

X X X X X X X X

Node: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Leaf: 0 1 2 3 4 5 6 7

parent=01x => left=00x, right=10x

• 

• 
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# The exponent of the largest power of 2 less than x. Equivalent to:

#   int(math.floor(math.log(x, 2)))

def log2(x):

    if x == 0:

        return 0

    k = 0

    while (x >> k) > 0:

        k += 1

    return k-1

# The level of a node in the tree. Leaves are level 0, their parents

# are level 1, etc. If a node's children are at different levels,

# then its level is the max level of its children plus one.

def level(x):

    if x & 0x01 == 0:

        return 0

    k = 0

    while ((x >> k) & 0x01) == 1:

        k += 1

    return k

# The number of nodes needed to represent a tree with n leaves.

def node_width(n):

    if n == 0:

        return 0

    else:

        return 2*(n - 1) + 1

# The index of the root node of a tree with n leaves.

def root(n):

    w = node_width(n)

    return (1 << log2(w)) - 1

# The left child of an intermediate node.

def left(x):

    k = level(x)

    if k == 0:

        raise Exception('leaf node has no children')

    return x ^ (0x01 << (k - 1))

# The right child of an intermediate node.

def right(x):

    k = level(x)

    if k == 0:

        raise Exception('leaf node has no children')

    return x ^ (0x03 << (k - 1))

# The parent of a node.

def parent(x, n):

    if x == root(n):

        raise Exception('root node has no parent')

    k = level(x)
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    b = (x >> (k + 1)) & 0x01

    return (x | (1 << k)) ^ (b << (k + 1))

# The other child of the node's parent.

def sibling(x, n):

    p = parent(x, n)

    if x < p:

        return right(p)

    else:

        return left(p)

# The direct path of a node, ordered from leaf to root.

def direct_path(x, n):

    r = root(n)

    if x == r:

        return []

    d = []

    while x != r:

        x = parent(x, n)

        d.append(x)

    return d

# The copath of a node, ordered from leaf to root.

def copath(x, n):

    if x == root(n):

        return []

    d = direct_path(x, n)

    d.insert(0, x)

    d.pop()

    return [sibling(y, n) for y in d]

# The common ancestor of two nodes is the lowest node that is in the

# direct paths of both leaves.

def common_ancestor_semantic(x, y, n):

    dx = set([x]) | set(direct_path(x, n))

    dy = set([y]) | set(direct_path(y, n))

    dxy = dx & dy

    if len(dxy) == 0:

        raise Exception('failed to find common ancestor')

    return min(dxy, key=level)

# The common ancestor of two nodes is the lowest node that is in the

# direct paths of both leaves.

def common_ancestor_direct(x, y, _):

    # Handle cases where one is an ancestor of the other

    lx, ly = level(x)+1, level(y)+1

    if (lx <= ly) and (x>>ly == y>>ly):

      return y

    elif (ly <= lx) and (x>>lx == y>>lx):

      return x

    # Handle other cases

    xn, yn = x, y

    k = 0

    while xn != yn:
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       xn, yn = xn >> 1, yn >> 1

       k += 1

    return (xn << k) + (1 << (k-1)) - 1

Appendix D. Link-Based Trees 

An implementation may choose to store ratchet trees in a "link-based" representation, where

each node stores references to its parents and/or children (as opposed to the array-based

representation suggested above, where these relationships are computed from relationships

between nodes' indices in the array). Such an implementation needs to update these links to

maintain the balanced structure of the tree as the tree is extended to add new members or

truncated when members are removed.

The following code snippet shows how these algorithms could be implemented in Python.
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class Node:

    def __init__(self, value, left=None, right=None):

        self.value = value    # Value of the node

        self.left = left      # Left child node

        self.right = right    # Right child node

    @staticmethod

    def blank_subtree(depth):

        if depth == 1:

            return Node(None)

        L = Node.blank_subtree(depth-1)

        R = Node.blank_subtree(depth-1)

        return Node(None, left=L, right=R)

    def empty(self):

        L_empty = (self.left == None) or self.left.empty()

        R_empty = (self.right == None) or self.right.empty()

        return (self.value == None) and L_empty and R_empty

class Tree:

    def __init__(self):

        self.depth = 0    # Depth of the tree

        self.root = None  # Root node of the tree, initially empty

    # Add a blank subtree to the right

    def extend(self):

        if self.depth == 0:

            self.depth = 1

            self.root = Node(None)

        L = self.root

        R = Node.blank_subtree(self.depth)

        self.root = Node(None, left=L, right=R)

        self.depth += 1

    # Truncate the right subtree

    def truncate(self):

        if self.root == None:

            return

        if not self.root.right.empty():

            raise Exception("Cannot truncate non-blank subtree")

        self.depth -= 1

        self.root = self.root.left
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       Introduction
       A group of users who want to send each other encrypted messages needs
a way to derive shared symmetric encryption keys. For two parties,
this problem has been studied thoroughly, with the Double Ratchet
emerging as a common solution    .
Channels implementing the Double Ratchet enjoy fine-grained forward secrecy
as well as post-compromise security, but are nonetheless efficient
enough for heavy use over low-bandwidth networks.
       For a group of size greater than two, a common strategy is to
distribute symmetric "sender keys" over existing 1:1
secure channels, and then for each member to send messages to the
group encrypted with their own sender key. On the one hand, using sender keys
improves efficiency relative to pairwise transmission of individual messages, and
it provides forward secrecy (with the addition of a hash ratchet).
On the other hand, it is difficult to achieve post-compromise security with
sender keys, requiring a number of key update messages that scales as the square
of the group size.
An adversary who learns a sender key can often indefinitely and
passively eavesdrop on that member's messages.  Generating and
distributing a new sender key provides a form of post-compromise
security with regard to that sender.  However, it requires
computation and communications resources that scale linearly with
the size of the group.
       In this document, we describe a protocol based on tree structures
that enables asynchronous group keying with forward secrecy and
post-compromise security.  Based on earlier work on "asynchronous
ratcheting trees"  , the protocol presented here uses an
asynchronous key-encapsulation mechanism for tree structures.
This mechanism allows the members of the group to derive and update
shared keys with costs that scale as the log of the group size.
    
     
       Terminology
       The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT",
" SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED", " MAY", and
" OPTIONAL" in this document are to be interpreted as described in
BCP 14     when, and only when, they appear in all
      capitals, as shown here.
       
         Client:
         An agent that uses this protocol to establish shared cryptographic
state with other clients.  A client is defined by the
cryptographic keys it holds.
         Group:
         A group represents a logical collection of clients that share a common
secret value at any given time.  Its state is represented as a linear
sequence of epochs in which each epoch depends on its predecessor.
         Epoch:
         A state of a group in which a specific set of authenticated clients hold
shared cryptographic state.
         Member:
         A client that is included in the shared state of a group and hence
has access to the group's secrets.
         Key Package:
         A signed object describing a client's identity and capabilities, including
a hybrid public key encryption (HPKE)   public key that
can be used to encrypt to that client. Other clients can use a client's
KeyPackage to introduce the client to a new group.
         Group Context:
         An object that summarizes the shared, public state of the group. The group
context is typically distributed in a signed GroupInfo message, which is provided
to new members to help them join a group.
         Signature Key:
         A signing key pair used to authenticate the sender of a message.
         Proposal:
         A message that proposes a change to the group, e.g., adding or removing a
member.
         Commit:
         A message that implements the changes to the group proposed in a set of
Proposals.
         PublicMessage:
         An MLS protocol message that is signed by its sender and authenticated as
coming from a member of the group in a particular epoch, but not encrypted.
         PrivateMessage:
         An MLS protocol message that is signed by its sender, authenticated as
coming from a member of the group in a particular epoch, and encrypted so
that it is confidential to the members of the group in that epoch.
         Handshake Message:
         A PublicMessage or PrivateMessage carrying an MLS Proposal or Commit
object, as opposed to application data.
         Application Message:
         A PrivateMessage carrying application data.
      
       Terminology specific to tree computations is described in
 .
       In general, symmetric values are referred to as "keys" or "secrets"
interchangeably.  Either term denotes a value that  MUST be kept confidential to
a client.  When labeling individual values, we typically use "secret" to refer
to a value that is used to derive further secret values and "key" to refer to a
value that is used with an algorithm such as Hashed Message Authentication Code
(HMAC) or an Authenticated Encryption with Associated Data (AEAD) algorithm.
       The PublicMessage and PrivateMessage formats are defined in  .
Security notions such as forward secrecy and post-compromise
security are defined in  .
       As detailed in  , MLS uses the "Generate Random Extensions And Sustain
Extensibility" (GREASE) approach to maintaining extensibility, where senders insert random
values into fields in which receivers are required to ignore unknown values.
Specific "GREASE values" for this purpose are registered in the appropriate IANA
registries.
       
         Presentation Language
         We use the TLS presentation language   to describe the structure of
protocol messages.  In addition to the base syntax, we add two additional
features: the ability for fields to be optional and the ability for vectors to
have variable-size length headers.
         
           Optional Value
           An optional value is encoded with a presence-signaling octet, followed by the
value itself if present.  When decoding, a presence octet with a value other
than 0 or 1  MUST be rejected as malformed.
           
struct {
    uint8 present;
    select (present) {
        case 0: struct{};
        case 1: T value;
    };
} optional<T>;

        
         
           Variable-Size Vector Length Headers
           In the TLS presentation language, vectors are encoded as a sequence of encoded
elements prefixed with a length.  The length field has a fixed size set by
specifying the minimum and maximum lengths of the encoded sequence of elements.
           In MLS, there are several vectors whose sizes vary over significant ranges.  So
instead of using a fixed-size length field, we use a variable-size length using
a variable-length integer encoding based on the one described in
 . They differ only in that the one here requires a minimum-size
encoding. Instead of presenting min and max values, the vector description
simply includes a  V. For example:
           
struct {
    uint32 fixed<0..255>;
    opaque variable<V>;
} StructWithVectors;

           Such a vector can represent values with length from 0 bytes to 2 30 bytes.
The variable-length integer encoding reserves the two most significant bits
of the first byte to encode the base 2 logarithm of the integer encoding length
in bytes.  The integer value is encoded on the remaining bits, so that the
overall value is in network byte order.
The encoded value  MUST use the smallest number of bits required to
represent the value.  When decoding, values using more bits than necessary  MUST
be treated as malformed.
           This means that integers are encoded in 1, 2, or 4 bytes and can encode 6-,
14-, or 30-bit values, respectively.
           
             Summary of Integer Encodings
             
               
                 Prefix
                 Length
                 Usable Bits
                 Min
                 Max
              
            
             
               
                 00
                 1
                 6
                 0
                 63
              
               
                 01
                 2
                 14
                 64
                 16383
              
               
                 10
                 4
                 30
                 16384
                 1073741823
              
               
                 11
                 invalid
                 -
                 -
                 -
              
            
          
           Vectors that start with the prefix "11" are invalid and  MUST be rejected.
           For example:
           
             The four-byte length value 0x9d7f3e7d decodes to 494878333.
             The two-byte length value 0x7bbd decodes to 15293.
             The single-byte length value 0x25 decodes to 37.
          
           The following figure adapts the pseudocode provided in   to add a
check for minimum-length encoding:
           
ReadVarint(data):
  // The length of variable-length integers is encoded in the
  // first two bits of the first byte.
  v = data.next_byte()
  prefix = v >> 6
  if prefix == 3:
    raise Exception('invalid variable length integer prefix')

  length = 1 << prefix

  // Once the length is known, remove these bits and read any
  // remaining bytes.
  v = v & 0x3f
  repeat length-1 times:
    v = (v << 8) + data.next_byte()

  // Check if the value would fit in half the provided length.
  if prefix >= 1 && v < (1 << (8*(length/2) - 2)):
    raise Exception('minimum encoding was not used')

  return v

           The use of variable-size integers for vector lengths allows vectors to grow
very large, up to 2 30 bytes.  Implementations should take care not to allow
vectors to overflow available storage.  To facilitate debugging of potential
interoperability problems, implementations  SHOULD provide a clear error when
such an overflow condition occurs.
        
      
    
     
       Protocol Overview
       MLS is designed to operate in the context described in
 . In particular, we assume that the following
services are provided:
       
         An Authentication Service (AS) that enables group members to authenticate the
credentials presented by other group members.
         A Delivery Service (DS) that routes MLS messages among the participants in the
protocol.
      
       MLS assumes a trusted AS but a largely untrusted DS.  
describes the impact of compromise or
misbehavior of an AS. MLS is designed to protect the confidentiality and integrity of
the group data even in the face of a compromised DS;
in general, the DS is only expected to reliably deliver messages.
  describes the impact of compromise or
misbehavior of a DS.
       The core functionality of MLS is continuous group authenticated key exchange
(AKE).  As with other authenticated key exchange protocols (such as TLS), the
participants in the protocol agree on a common secret value, and each
participant can verify the identity of the other participants. That secret
can then be used to protect messages sent from one participant in the
group to the other participants using the MLS framing layer
or can be exported for use with other protocols. MLS provides
group AKE in the sense that there can be more than two participants in the
protocol, and continuous group AKE in the sense that the set of participants in
the protocol can change over time.
       The core organizing principles of MLS are  groups and  epochs.  A group
represents a logical collection of clients that share a common secret value at
any given time.  The history of a group is divided into a linear sequence of
epochs.  In each epoch, a set of authenticated  members agree on an  epoch
secret that is known only to the members of the group in that epoch.  The set
of members involved in the group can change from one epoch to the next, and MLS
ensures that only the members in the current epoch have access to the epoch
secret.  From the epoch secret, members derive further shared secrets for
message encryption, group membership authentication, and so on.
       The creator of an MLS group creates the group's first epoch unilaterally, with
no protocol interactions.  Thereafter, the members of the group advance their
shared cryptographic state from one epoch to another by exchanging MLS messages.
       
         A  KeyPackage object describes a client's capabilities and provides keys that
can be used to add the client to a group.
         A  Proposal message proposes a change to be made in the next epoch, such as
adding or removing a member.
         A  Commit message initiates a new epoch by instructing members of the group
to implement a collection of proposals.
         A  Welcome message provides a new member to the group with the information to
initialize their state for the epoch in which they were added or in which they
want to add themselves to the group.
      
       KeyPackage and Welcome messages are used to initiate a group or introduce new
members, so they are exchanged between group members and clients not yet in the
group. A client publishes a KeyPackage via the DS, thus enabling other
clients to add it to groups. When a group member wants to add a new member to a
group, it uses the new member's KeyPackage to add them and constructs a Welcome
message with which the new member can initialize their local state.
       Proposal and Commit messages are sent from one member of a group to the others.
MLS provides a common framing layer for sending messages within a group:
A  PublicMessage provides sender authentication for unencrypted Proposal and Commit
messages.  A  PrivateMessage provides encryption and authentication for
both Proposal/Commit messages as well as any application data.
       
         Cryptographic State and Evolution
         The cryptographic state at the core of MLS is divided into three areas of responsibility:
         
           Overview of MLS Group Evolution
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           A  ratchet tree that represents the membership of the group, providing group
members a way to authenticate each other and efficiently encrypt messages to
subsets of the group.  Each epoch has a distinct ratchet tree. It seeds the
 key schedule.
           
             A  key schedule that describes the chain of key derivations used to progress from
epoch to epoch (mainly using the  init_secret and  epoch_secret), as well as the derivation of
a variety of other secrets (see  ). For example:
            
             
               An  encryption secret that is used to initialize the secret tree for the
epoch.
               An  exporter secret that allows other protocols to leverage MLS as a
generic authenticated group key exchange.
               A  resumption secret that members can use to prove their membership in the
group, e.g., when creating a subgroup or a successor group.
            
          
           A  secret tree derived from the key schedule that represents shared secrets
used by the members of the group for encrypting and authenticating messages.
Each epoch has a distinct secret tree.
        
         Each member of the group maintains a partial view of these components of the group's
state.  MLS messages are used to initialize these views and keep them in sync as
the group transitions between epochs.
         Each new epoch is initiated with a Commit message.  The Commit instructs
existing members of the group to update their views of the ratchet tree by applying
a set of Proposals, and uses the updated ratchet tree to distribute fresh
entropy to the group.  This fresh entropy is provided only to members in the new
epoch and not to members who have been removed. Commits thus maintain the property that
the epoch secret is confidential to the members in the current epoch.
         For each Commit that adds one or more members to the group, there are one or more corresponding
Welcome messages.  Each Welcome message provides new members with the information
they need to initialize their views of the key schedule and ratchet tree, so
that these views align with the views held by other members of the group
in this epoch.
      
       
         Example Protocol Execution
         There are three major operations in the life of a group:
         
           Adding a member, initiated by a current member;
           Updating the keys that represent a member in the tree; and
           Removing a member.
        
         Each of these operations is "proposed" by sending a message of the corresponding
type (Add / Update / Remove).  The state of the group is not changed, however,
until a Commit message is sent to provide the group with fresh entropy.  In this
section, we show each proposal being committed immediately, but in more advanced
deployment cases, an application might gather several proposals before
committing them all at once.  In the illustrations below, we show the Proposal
and Commit messages directly, while in reality they would be sent encapsulated in
PublicMessage or PrivateMessage objects.
         Before the initialization of a group, clients publish KeyPackages to a directory
provided by the DS (see  ).
         
           Clients A, B, and C publish KeyPackages to the directory
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           shows how these pre-published KeyPackages are used to create a group.
When client A wants to establish a group with clients B and C, it first initializes a
group state containing only itself and downloads KeyPackages for B and C. For
each member, A generates an Add proposal and a Commit message to add that member and then
broadcasts the two messages to the group. Client A also generates a Welcome message and sends it
directly to the new member (there's no need to send it to the group). Only after
A has received its Commit message back from the Delivery Service does it update its
state to reflect the new member's addition.
         Once A has updated its state, the new member has processed the Welcome, and any
other group members have processed the Commit, they will all have consistent
representations of the group state, including a group secret that is known only
to the members the group. The new member will be able to read and send new
messages to the group, but messages sent before they were added to the group
will not be accessible.
         
           Client A creates a group with clients B and C
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|              |              |              |                   |
|              |  Welcome(C)  |              |                   |
+---------------------------->|              |                   |
|              |              |              |                   |
|              |              |              | Add(AB->ABC)      |
|              |              |              | Commit(Add)       |
|<---------------------------------------------------------------+
|              |<------------------------------------------------+
|              |              |              |                   |

          
        
         Subsequent additions of group members proceed in the same way.  Any
member of the group can download a KeyPackage for a new client,
broadcast Add and Commit messages that the current group will use to update
their state, and send a Welcome message that the new client can use to
initialize its state and join the group.
         To enforce the forward secrecy and post-compromise security of messages, each
member periodically updates the keys that represent them to the group.  A member
does this by sending a Commit (possibly with no proposals) or by sending an
Update message that is committed by another member (see  ).
Once the other members of
the group have processed these messages, the group's secrets will be unknown to
an attacker that had compromised the secrets corresponding to the sender's leaf in the tree.
At the end of the scenario shown in  , the group has
post-compromise security with respect to both A and B.
         Update messages  SHOULD be sent at regular intervals of time as long as the group
is active, and members that don't update  SHOULD eventually be removed from the
group. It's left to the application to determine an appropriate amount of time
between Updates. Since the purpose of sending an Update is to proactively
constrain a compromise window, the right frequency is usually on the order of
hours or days, not milliseconds. For example, an application might send an
Update each time a member sends an application message after receiving any
message from another member, or daily if no application messages are sent.
         The MLS architecture recommends that MLS be operated over a secure transport
(see  ).  Such transport protocols
will typically provide functions such as congestion control that manage the
impact of an MLS-using application on other applications sharing the same
network.  Applications should take care that they do not send MLS messages at a
rate that will cause problems such as network congestion, especially if they are
not following the above recommendation (e.g., sending MLS directly over UDP instead).
         
           Client B proposes to update its key, and client A commits the proposal
           
             
               
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                   Group
                   A
                   B
                   ...
                   Z
                   Directory
                   Channel
                   Update(B)
                   |
                   |
                   Update(B)
                   Commit(Upd)
                   |
                   |
                   |
                   Commit(Upd)
                   |
                
              
            
             
                                                          Group
A              B     ...      Z          Directory        Channel
|              |              |              |              |
|              | Update(B)    |              |              |
|              +------------------------------------------->|
|              |              |              | Update(B)    |
|<----------------------------------------------------------+
|              |<-------------------------------------------+
|              |              |<----------------------------+
|              |              |              |              |
| Commit(Upd)  |              |              |              |
+---------------------------------------------------------->|
|              |              |              | Commit(Upd)  |
|<----------------------------------------------------------+
|              |<-------------------------------------------+
|              |              |<----------------------------+
|              |              |              |              |

          
        
         Members are removed from the group in a similar way, as shown in  .
Any member of the group can send a Remove proposal followed by a
Commit message.  The Commit message provides new entropy to all members of the
group except the removed member.  This new entropy is added to the epoch secret
for the new epoch so that it is not known to the removed member.
Note that this does not necessarily imply that any member
is actually allowed to evict other members; groups can
enforce access control policies on top of these
basic mechanisms.
         
           Client Z removes client B from the group
           
             
               
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                   Group
                   A
                   B
                   ...
                   Z
                   Directory
                   Channel
                   Remove(B)
                   Commit(Rem)
                   Remove(B)
                   Commit(Rem)
                   |
                
              
            
             
                                                          Group
A              B     ...      Z          Directory       Channel
|              |              |              |              |
|              |              | Remove(B)    |              |
|              |              | Commit(Rem)  |              |
|              |              +---------------------------->|
|              |              |              |              |
|              |              |              | Remove(B)    |
|              |              |              | Commit(Rem)  |
|<----------------------------------------------------------+
|              |<-------------------------------------------+
|              |              |<----------------------------+
|              |              |              |              |

          
        
         Note that the flows in this section are examples; applications can arrange
message flows in other ways.  For example:
         
           Welcome messages don't necessarily need to be sent directly to new joiners.
Since they are encrypted to new joiners, they could be distributed more
broadly, say if the application only had access to a broadcast channel for the
group.
           Proposal messages don't need to be immediately sent to all group members.  They need to
be available to the committer before generating a Commit, and to other members before
processing the Commit.
           The sender of a Commit doesn't necessarily have to wait to receive its own
Commit back before advancing its state. It only needs to know that its Commit
will be the next one applied by the group, say based on a promise from an
orchestration server.
        
      
       
         External Joins
         In addition to the Welcome-based flow for adding a new member to the group, it
is also possible for a new member to join by means of an "external Commit".
This mechanism can be used when the existing members don't have a KeyPackage for
the new member, for example, in the case of an "open" group that can be joined
by new members without asking permission from existing members.
           shows a typical  message flow for an external join. To enable
a new member to join the group in this way, a member of the group (A, B)
publishes a GroupInfo object that includes the GroupContext for the group as
well as a public key that can be used to encrypt a secret to the existing
members of the group.  When the new member Z wishes to join, they download the
GroupInfo object and use it to form a Commit of a special form that adds Z to
the group (as detailed in  ).  The existing
members of the group process this external Commit in a similar way to a normal
Commit, advancing to a new epoch in which Z is now a member of the group.
         
           Client A publishes a GroupInfo object, and Client Z uses it to join the group
           
                                                          Group
A              B              Z          Directory        Channel
|              |              |              |              |
| GroupInfo    |              |              |              |
+------------------------------------------->|              |
|              |              | GroupInfo    |              |
|              |              |<-------------+              |
|              |              |              |              |
|              |              | Commit(ExtZ) |              |
|              |              +---------------------------->|
|              |              |              | Commit(ExtZ) |
|<----------------------------------------------------------+
|              |<-------------------------------------------+
|              |              |<----------------------------+
|              |              |              |              |

        
      
       
         Relationships between Epochs
         A group has a single linear sequence of epochs. Groups and epochs are generally
independent of one another. However, it can sometimes be useful to link epochs
cryptographically, either within a group or across groups. MLS derives a
resumption pre-shared key (PSK) from each epoch to allow entropy extracted from
one epoch to be injected into a future epoch.  A group member that wishes to
inject a PSK issues a PreSharedKey proposal ( ) describing the
PSK to be injected.  When this proposal is committed, the corresponding PSK will
be incorporated into the key schedule as described in  .
         Linking epochs in this way
guarantees that members entering the new epoch agree on a key if and only if
they were members of the group during the epoch from which the resumption key
was extracted.
         MLS supports two ways to tie a new group to an existing group, which are illustrated in
Figures   and  . Reinitialization
closes one group and creates a new group comprising the same members with
different parameters. Branching starts a new group with a subset of the original
group's participants (with no effect on the original group).  In both cases,
the new group is linked to the old group via a resumption PSK.
         
           Reinitializing a Group
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                   ReInit
                   epoch_A_[n]
                   epoch_B_[0]
                   .
                   .
                   PSK(usage=reinit)
                   .....................>
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epoch_A_[n-1]
     |
     |
     |<-- ReInit
     |
     V
epoch_A_[n]           epoch_B_[0]
     .                     |
     .  PSK(usage=reinit)  |
     .....................>|
                           |
                           V
                      epoch_B_[1]

          
        
         
           Branching a Group
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                   PSK(usage=branch)
                   ....................>
                   epoch_A_[n+1]
                   epoch_B_[1]
                
              
            
             
epoch_A_[n]           epoch_B_[0]
     |                     |
     |  PSK(usage=branch)  |
     |....................>|
     |                     |
     V                     V
epoch_A_[n+1]         epoch_B_[1]

          
        
         Applications may also choose to use resumption PSKs to link epochs in other
ways.  For example,   shows a case where a resumption PSK
from epoch  n is injected into epoch  n+k.  This demonstrates that the members
of the group at epoch  n+k were also members at epoch  n, irrespective of any
changes to these members' keys due to Updates or Commits.
         
           Reinjecting Entropy from an Earlier Epoch
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                   PSK(usage=application)
                   .....................
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epoch_A_[n]
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     |  PSK(usage=application)
     |.....................
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     |                    .
    ...                  ...
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     |                    .
     V                    .
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     |                    .
     |                    .
     |<....................
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     V
epoch_A_[n+k]

          
        
      
    
     
       Ratchet Tree Concepts
       The protocol uses "ratchet trees" for deriving shared secrets among a group of
clients.  A ratchet tree is an arrangement of secrets and key pairs among the
members of a group in a way that allows for secrets to be efficiently updated to
reflect changes in the group.
       Ratchet trees allow a group to efficiently remove any member by encrypting new
entropy to a subset of the group.  A ratchet tree assigns shared keys to
subgroups of the overall group, so that, for example, encrypting to all but one
member of the group requires only  log(N) encryptions to subtrees, instead of the  N-1
encryptions that would be needed to encrypt to each participant individually
(where N is the number of members in the group).
       This remove operation allows MLS to efficiently achieve
post-compromise security.  In an Update proposal or a full Commit message, an old (possibly
compromised) representation of a member is efficiently removed from the group and
replaced with a freshly generated instance.
       
         Ratchet Tree Terminology
         Trees consist of  nodes. A node is a
 leaf if it has no children; otherwise, it is a  parent.
All parents in our trees have precisely
two children, a  left child and a  right child. A node is the  root
of a tree if it has no parent, and  intermediate if it has both
children and a parent. The  descendants of a node are that node's
children, and the descendants of its children.  We say a tree
 contains a node if that node is a descendant of the root of the tree,
or if the node itself is the root of the tree. Nodes are  siblings if they share the same parent.
         A  subtree of a tree is the tree given by any node (the  head of the
subtree) and its descendants. The  size of a tree or subtree is the
number of leaf nodes it contains.  For a given parent node, its  left
subtree is the subtree with its left child as head and its
 right subtree is the subtree with its right child as head.
         Every tree used in this protocol is a perfect binary tree, that is, a complete
balanced binary tree with 2 d leaves all at the same depth  d.  This
structure is unique for a given depth  d.
         There are multiple ways that an implementation might represent a ratchet tree in
memory.  A convenient property of left-balanced binary trees (including the
complete trees used here) is that they can be represented as an array of nodes,
with node relationships computed based on the nodes' indices in the array.  A
more traditional representation based on linked node objects may also be used.
Appendices   and   provide some details on how to
implement the tree operations required for MLS in these representations.  MLS
places no requirements on implementations' internal representations of ratchet
trees.  An implementation may use any tree representation and associated
algorithms, as long as they produce correct protocol messages.
         
           Ratchet Tree Nodes
           Each leaf node in a ratchet tree is given an  index (or  leaf index), starting
at 0 from the left to 2 d - 1 at the right (for a tree with 2 d leaves). A tree
with 2 d leaves has 2 d+1 - 1 nodes, including parent nodes.
           Each node in a ratchet tree is either  blank (containing no value) or it holds
an HPKE public key with some associated data:
           
             A public key (for the HPKE scheme in use; see  )
             A credential (only for leaf nodes; see  )
             An ordered list of "unmerged" leaves (see  )
             A hash of certain information about the node's parent, as of the last time the
node was changed (see  ).
          
           As described in  , different members know different subsets of the set
of private keys corresponding to the public keys in nodes in the tree.  The
private key corresponding to a parent node is known only to members at leaf
nodes that are descendants of that node.  The private key corresponding to a leaf
node is known only to the member at that leaf node.  A leaf node is  unmerged
relative to one of its ancestor nodes if the member at the leaf node does not
know the private key corresponding to the ancestor node.
           Every node, regardless of whether the node is blank or populated, has
a corresponding  hash that summarizes the contents of the subtree
below that node.  The rules for computing these hashes are described
in  .
           The  resolution of a node is an ordered list of non-blank nodes
that collectively cover all non-blank descendants of the node.
The resolution of the root contains the set of keys that are collectively necessary to
encrypt to every node in the group. The resolution
of a node is effectively a depth-first, left-first enumeration of the nearest
non-blank nodes below the node:
           
             The resolution of a non-blank node comprises the node itself,
followed by its list of unmerged leaves, if any.
             The resolution of a blank leaf node is the empty list.
             The resolution of a blank intermediate node is the result of
concatenating the resolution of its left child with the resolution
of its right child, in that order.
          
           For example, consider the following subtree, where the  _ character
represents a blank node and unmerged leaves are indicated in square
brackets:
           
             A Tree with Blanks and Unmerged Leaves
             
               ...
               /
              _
        ______|______
       /             \
      X[B]            _
    __|__           __|__
   /     \         /     \
  _       _       Y       _
 / \     / \     / \     / \
A   B   _   D   E   F   _   H

0   1   2   3   4   5   6   7

          
           In this tree, we can see all of the above rules in play:
           
             The resolution of node X is the list [X, B].
             The resolution of leaf 2 or leaf 6 is the empty list [].
             The resolution of top node is the list [X, B, Y, H].
          
        
         
           Paths through a Ratchet Tree
           The  direct path of a root is the empty list. The direct path of any other node
is the concatenation of that node's parent along with the parent's direct path.
           The  copath of a node is the node's sibling concatenated with the list of
siblings of all the nodes in its direct path, excluding the root.
           The  filtered direct path of a leaf node L is the node's direct path, with any
node removed whose child on the copath of L has an empty resolution (keeping in
mind that any unmerged leaves of the copath child count toward its resolution).
The removed nodes do not need their own key pairs because encrypting to the
node's key pair would be equivalent to encrypting to its non-copath child.
           For example, consider the following tree (where blank nodes are indicated with
 _, but also assigned a label for reference):
           
             A Complete Tree with Five Members, with Labels for Blank Parent Nodes
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                     F
                     G
                     _=H
                     0
                     1
                     2
                     3
                     4
                     5
                     6
                     7
                  
                
              
               
              W = root
              |
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       /             \
      _=U             Y
      |               |
    .-+-.           .-+-.
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  T       _=V     X       _=Z
 / \     / \     / \     / \
A   B   _   _   E   F   G   _=H

0   1   2   3   4   5   6   7

            
          
           In this tree, the direct paths, copaths, and filtered direct paths for the leaf
nodes are as follows:
           
             
               
                 Node
                 Direct path
                 Copath
                 Filtered Direct Path
              
            
             
               
                 A
                 T, U, W
                 B, V, Y
                 T, W
              
               
                 B
                 T, U, W
                 A, V, Y
                 T, W
              
               
                 E
                 X, Y, W
                 F, Z, U
                 X, Y, W
              
               
                 F
                 X, Y, W
                 E, Z, U
                 X, Y, W
              
               
                 G
                 Z, Y, W
                 H, X, U
                 Y, W
              
            
          
        
      
       
         Views of a Ratchet Tree
         We generally assume that each participant maintains a complete and
up-to-date view of the public state of the group's ratchet tree,
including the public keys for all nodes and the credentials
associated with the leaf nodes.
         No participant in an MLS group knows the private key associated with
every node in the tree. Instead, each member is assigned to a leaf of the tree,
which determines the subset of private keys it knows. The
credential stored at that leaf is one provided by the member.
         In particular, MLS maintains the members' views of the tree in such
a way as to maintain the  tree invariant:
         
          The private key for a node in the tree is known to a member of
          the group only if the node's subtree contains that member's leaf.
        
         In other words, if a node is not blank, then it holds a public key.
The corresponding private key is known only to members occupying
leaves below that node.
         The reverse implication is not true: A member may not know the private key of
an intermediate node above them.  Such a member has an  unmerged leaf at the
intermediate node.  Encrypting to an intermediate node requires encrypting to
the node's public key, as well as the public keys of all the unmerged leaves
below it.  A leaf is unmerged with regard to all of its ancestors when it is
first added, because the process of adding the leaf does not give it access to
the private keys for all of the nodes above it in the tree.  Leaves are "merged"
as they receive the private keys for nodes, as described in
 .
         For example, consider a four-member group (A, B, C, D) where the node above the
right two members is blank.  (This is what it would look like if A created a
group with B, C, and D.)  Then the public state of the tree and the views of the
private keys of the tree held by each participant would be as follows, where  _
represents a blank node,  ? represents an unknown private key, and  pk(X)
represents the public key corresponding to the private key  X:
         
         Public Tree
============================
            pk(ABCD)
          /          \
    pk(AB)            _
     / \             / \
pk(A)   pk(B)   pk(C)   pk(D)


 Private @ A       Private @ B       Private @ C       Private @ D
=============     =============     =============     =============
     ABCD              ABCD              ABCD              ABCD
    /   \             /   \             /   \             /   \
  AB      _         AB      _         ?       _         ?       _
 / \     / \       / \     / \       / \     / \       / \     / \
A   ?   ?   ?     ?   B   ?   ?     ?   ?   C   ?     ?   ?   ?   D

         Note how the tree invariant applies: Each member knows only their own leaf,
the private key AB is known only to A and B, and the private key ABCD
is known to all four members. This also illustrates another important
point: it is possible for there to be "holes" on the path from a member's leaf
to the root in which the member knows the key both above and below
a given node, but not for that node, as in the case with D.
      
    
     
       Cryptographic Objects
       
         Cipher Suites
         Each MLS session uses a single cipher suite that specifies the
following primitives to be used in group key computations:
         
           
             HPKE parameters:
            
             
               A Key Encapsulation Mechanism (KEM)
               A Key Derivation Function (KDF)
               An Authenticated Encryption with Associated Data (AEAD) encryption algorithm
            
          
           A hash algorithm
           A Message Authentication Code (MAC) algorithm
           A signature algorithm
        
         MLS uses HPKE for public key encryption  .  The
 DeriveKeyPair function associated to the KEM for the cipher suite maps octet
strings to HPKE key pairs.  As in HPKE, MLS assumes that an AEAD algorithm
produces a single ciphertext output from AEAD encryption (aligning with
 ), as opposed to a separate ciphertext and tag.
         Cipher suites are represented with the CipherSuite type. The cipher suites are
defined in  .
         
           Public Keys
           HPKE public keys are opaque values in a format defined by the underlying
protocol (see   for more information).
           
opaque HPKEPublicKey<V>;

           Signature public keys are likewise represented as opaque values in a format
defined by the cipher suite's signature scheme.
           
opaque SignaturePublicKey<V>;

           For cipher suites using the Edwards-curve Digital Signature Algorithm (EdDSA)
signature schemes (Ed25519 or Ed448), the public key is in the format specified
in  .
           For cipher suites using the Elliptic Curve Digital Signature Algorithm (ECDSA)
with the NIST curves (P-256, P-384, or P-521), the public key is represented as
an encoded UncompressedPointRepresentation struct, as defined in  .
        
         
           Signing
           The signature algorithm specified in a group's cipher suite is the mandatory algorithm
to be used for signing messages within the group.  It
 MUST be the same as the signature algorithm specified in the credentials in the
leaves of the tree (including the leaf node information in KeyPackages used to
add new members).
           The signatures used in this document are encoded as specified in  .
In particular, ECDSA signatures are DER encoded, and EdDSA signatures are defined
as the concatenation of  R and  S, as specified in  .
           To disambiguate different signatures used in MLS, each signed value is prefixed
by a label as shown below:
           
SignWithLabel(SignatureKey, Label, Content) =
    Signature.Sign(SignatureKey, SignContent)

VerifyWithLabel(VerificationKey, Label, Content, SignatureValue) =
    Signature.Verify(VerificationKey, SignContent, SignatureValue)

           Where SignContent is specified as:
           
struct {
    opaque label<V>;
    opaque content<V>;
} SignContent;

           And its fields are set to:
           
label = "MLS 1.0 " + Label;
content = Content;

           The functions  Signature.Sign and  Signature.Verify are defined by the
signature algorithm.  If MLS extensions require signatures by group members,
they should reuse the SignWithLabel construction, using a distinct label.  To
avoid collisions in these labels, an IANA registry is defined in
 .
        
         
           Public Key Encryption
           As with signing, MLS includes a label and context in encryption operations to
avoid confusion between ciphertexts produced for different purposes.  Encryption
and decryption including this label and context are done as follows:
           
EncryptWithLabel(PublicKey, Label, Context, Plaintext) =
  SealBase(PublicKey, EncryptContext, "", Plaintext)

DecryptWithLabel(PrivateKey, Label, Context, KEMOutput, Ciphertext) =
  OpenBase(KEMOutput, PrivateKey, EncryptContext, "", Ciphertext)

           Where EncryptContext is specified as:
           
struct {
  opaque label<V>;
  opaque context<V>;
} EncryptContext;

           And its fields are set to:
           
label = "MLS 1.0 " + Label;
context = Context;

           The functions  SealBase and  OpenBase are defined in   (with "Base" as the MODE), using the HPKE algorithms specified by the
group's cipher suite.  If MLS extensions require HPKE encryption operations, they
should reuse the EncryptWithLabel construction, using a distinct label.  To
avoid collisions in these labels, an IANA registry is defined in
 .
        
      
       
         Hash-Based Identifiers
         Some MLS messages refer to other MLS objects by hash.  For example, Welcome
messages refer to KeyPackages for the members being welcomed, and Commits refer
to Proposals they cover.  These identifiers are computed as follows:
         
opaque HashReference<V>;

HashReference KeyPackageRef;
HashReference ProposalRef;

         
MakeKeyPackageRef(value)
  = RefHash("MLS 1.0 KeyPackage Reference", value)

MakeProposalRef(value)
  = RefHash("MLS 1.0 Proposal Reference", value)

RefHash(label, value) = Hash(RefHashInput)

         Where RefHashInput is defined as:
         
struct {
  opaque label<V>;
  opaque value<V>;
} RefHashInput;

         And its fields are set to:
         
label = label;
value = value;

         For a KeyPackageRef, the  value input is the encoded KeyPackage, and the
cipher suite specified in the KeyPackage determines the KDF used.  For a
ProposalRef, the  value input is the AuthenticatedContent carrying the
Proposal.  In the latter two cases, the KDF is determined by the group's
cipher suite.
      
       
         Credentials
         Each member of a group presents a credential that provides one or more
identities for the member and associates them with the member's signing key.
The identities and signing key are verified by the Authentication Service in use
for a group.
         It is up to the application to decide which identifiers to use at
the application level.  For example,
a certificate in an X509Credential may attest to several domain names or email
addresses in its subjectAltName extension.  An application may decide to
present all of these to a user, or if it knows a "desired" domain name or email
address, it can check that the desired identifier is among those attested.
Using the terminology from  , a credential provides "presented
identifiers", and it is up to the application to supply a "reference identifier"
for the authenticated client, if any.
         
// See the "MLS Credential Types" IANA registry for values
uint16 CredentialType;

struct {
    opaque cert_data<V>;
} Certificate;

struct {
    CredentialType credential_type;
    select (Credential.credential_type) {
        case basic:
            opaque identity<V>;

        case x509:
            Certificate certificates<V>;
    };
} Credential;

         A "basic" credential is a bare assertion of an identity, without any additional
information.  The format of the encoded identity is defined by the application.
         For an X.509 credential, each entry in the  certificates field represents a single DER-encoded
X.509 certificate. The chain is ordered such that the first entry (certificates[0]) is
the end-entity certificate. The public key encoded in the
 subjectPublicKeyInfo of the end-entity certificate  MUST be identical to the
 signature_key in the LeafNode containing this credential. A chain  MAY omit any
non-leaf certificates that supported peers are known to already possess.
         
           Credential Validation
           The application using MLS is responsible for specifying which identifiers it
finds acceptable for each member in a group.  In other words, following the
model that   describes for TLS, the application maintains a list of
"reference identifiers" for the members of a group, and the credentials provide
"presented identifiers".  A member of a group is authenticated by first
validating that the member's credential legitimately represents some presented
identifiers, and then ensuring that the reference identifiers for the member are
authenticated by those presented identifiers.
           The parts of the system that perform these functions are collectively referred
to as the Authentication Service (AS)  .  A
member's credential is said to be  validated with the AS when the AS verifies
that the credential's presented identifiers are correctly associated with the
 signature_key field in the member's LeafNode, and that those
identifiers match the reference identifiers for the member.
           Whenever a new credential is introduced in the group, it  MUST be validated with
the AS.  In particular, at the following events in the protocol:
           
             When a member receives a KeyPackage that it will use in an Add proposal to add
a new member to the group
             When a member receives a GroupInfo object that it will use to join a group,
either via a Welcome or via an external Commit
             When a member receives an Add proposal adding a member to the group
             When a member receives an Update proposal whose LeafNode has a new credential
for the member
             When a member receives a Commit with an UpdatePath whose LeafNode has a new
credential for the committer
             When an  external_senders extension is added to the group
             When an existing  external_senders extension is updated
          
           In cases where a member's credential is being replaced, such as the Update and
Commit cases above, the AS  MUST also verify that the set of presented
identifiers in the new credential is valid as a successor to the set of
presented identifiers in the old credential, according to the application's
policy.
        
         
           Credential Expiry and Revocation
           In some credential schemes, a valid credential can "expire" or become invalid
after a certain point in time. For example, each X.509 certificate has a
 notAfter field, expressing a time after which the certificate is not valid.
           Expired credentials can cause operational problems in light of the validation
requirements of  .  Applications can apply some
operational practices and adaptations to Authentication Service policies to
moderate these impacts.
           In general, to avoid operational problems such as new joiners rejecting expired
credentials in a group, applications that use such credentials should ensure to
the extent practical that all of the credentials in use in a group are valid at
all times.
           If a member finds that its credential has expired (or will soon), it should
issue an Update or Commit that replaces it with a valid credential.  For this
reason, members  SHOULD accept Update proposals and Commits issued by members
with expired credentials, if the credential in the Update or Commit is valid.
           Similarly, when a client is processing messages sent some time in the past
(e.g., syncing up with a group after being offline), the client  SHOULD accept
signatures from members with expired credentials, since the credential may
have been valid at the time the message was sent.
           If a member finds that another member's credential has expired, they may issue a
Remove that removes that member.  For example, an application could require a
member preparing to issue a Commit to check the tree for expired credentials and
include Remove proposals for those members in its Commit.  In situations where
the group tree is known to the DS, the DS could also monitor the tree for
expired credentials and issue external Remove proposals.
           Some credential schemes also allow credentials to be revoked.  Revocation is
similar to expiry in that a previously valid credential becomes invalid.
As such, most of the considerations above also apply to revoked credentials.
However, applications may want to treat revoked credentials differently, e.g.,
by removing members with revoked credentials while allowing members with expired
credentials time to update.
        
         
           Uniquely Identifying Clients
           MLS implementations will presumably provide applications with a way to request
protocol operations with regard to other clients (e.g., removing clients).  Such
functions will need to refer to the other clients using some identifier.  MLS
clients have a few types of identifiers, with different operational properties.
           Internally to the protocol, group members are uniquely identified by their leaf
index. However, a leaf index is only valid for referring to members in a given
epoch. The same leaf index may represent a different member, or no member at
all, in a subsequent epoch.
           The Credentials presented by the clients in a group authenticate
application-level identifiers for the clients.  However, these identifiers may not
uniquely identify clients.  For example, if a user has multiple devices that are
all present in an MLS group, then those devices' clients could all present the
user's application-layer identifiers.
           If needed, applications may add application-specific identifiers to the
 extensions field of a LeafNode object with the  application_id extension.
           
opaque application_id<V>;

           However, applications  MUST NOT rely on the data in an  application_id extension
as if it were authenticated by the Authentication Service, and  SHOULD gracefully
handle cases where the identifier presented is not unique.
        
      
    
     
       Message Framing
       Handshake and application messages use a common framing structure.
This framing provides encryption to ensure confidentiality within the
group, as well as signing to authenticate the sender.
       In most of the protocol, messages are handled in the form of
AuthenticatedContent objects.  These structures contain the content of the
message itself as well as information to authenticate the sender (see
 ).  The additional protections required to transmit
these messages over an untrusted channel (group membership authentication or
AEAD encryption) are added by encoding the AuthenticatedContent as a
PublicMessage or PrivateMessage message, which can then be sent as an MLSMessage.
Likewise, these protections are enforced (via membership verification or AEAD
decryption) when decoding a PublicMessage or PrivateMessage into an
AuthenticatedContent object.
       PrivateMessage represents a signed and encrypted message, with
protections for both the content of the message and related
metadata.  PublicMessage represents a message that is only signed,
and not encrypted.  Applications  MUST use PrivateMessage to encrypt
application messages and  SHOULD use PrivateMessage to encode
handshake messages, but they  MAY transmit handshake messages encoded
as PublicMessage objects in cases where it is necessary for the
Delivery Service to examine such messages.
       
enum {
    reserved(0),
    mls10(1),
    (65535)
} ProtocolVersion;

enum {
    reserved(0),
    application(1),
    proposal(2),
    commit(3),
    (255)
} ContentType;

enum {
    reserved(0),
    member(1),
    external(2),
    new_member_proposal(3),
    new_member_commit(4),
    (255)
} SenderType;

struct {
    SenderType sender_type;
    select (Sender.sender_type) {
        case member:
            uint32 leaf_index;
        case external:
            uint32 sender_index;
        case new_member_commit:
        case new_member_proposal:
            struct{};
    };
} Sender;

// See the "MLS Wire Formats" IANA registry for values
uint16 WireFormat;

struct {
    opaque group_id<V>;
    uint64 epoch;
    Sender sender;
    opaque authenticated_data<V>;

    ContentType content_type;
    select (FramedContent.content_type) {
        case application:
          opaque application_data<V>;
        case proposal:
          Proposal proposal;
        case commit:
          Commit commit;
    };
} FramedContent;

struct {
    ProtocolVersion version = mls10;
    WireFormat wire_format;
    select (MLSMessage.wire_format) {
        case mls_public_message:
            PublicMessage public_message;
        case mls_private_message:
            PrivateMessage private_message;
        case mls_welcome:
            Welcome welcome;
        case mls_group_info:
            GroupInfo group_info;
        case mls_key_package:
            KeyPackage key_package;
    };
} MLSMessage;

       Messages from senders that aren't in the group are sent as PublicMessage. See
Sections   and   for more details.
       The following structure is used to fully describe the data transmitted in
plaintexts or ciphertexts.
       
struct {
    WireFormat wire_format;
    FramedContent content;
    FramedContentAuthData auth;
} AuthenticatedContent;

       The following figure illustrates how the various structures described in this
section relate to each other, and the high-level operations used to produce and
consume them:
       
         Relationships among MLS Objects
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         Content Authentication
         FramedContent is authenticated using the FramedContentAuthData structure.
         
struct {
    ProtocolVersion version = mls10;
    WireFormat wire_format;
    FramedContent content;
    select (FramedContentTBS.content.sender.sender_type) {
        case member:
        case new_member_commit:
            GroupContext context;
        case external:
        case new_member_proposal:
            struct{};
    };
} FramedContentTBS;

opaque MAC<V>;

struct {
    /* SignWithLabel(., "FramedContentTBS", FramedContentTBS) */
    opaque signature<V>;
    select (FramedContent.content_type) {
        case commit:
            /*
              MAC(confirmation_key,
                  GroupContext.confirmed_transcript_hash)
            */
            MAC confirmation_tag;
        case application:
        case proposal:
            struct{};
    };
} FramedContentAuthData;

         The signature is computed using  SignWithLabel with label
 "FramedContentTBS" and with a content that covers the message content and
the wire format that will be used for this message. If the sender's
 sender_type is  member, the content also covers the GroupContext for the
current epoch so that signatures are specific to a given group and epoch.
         The sender  MUST use the private key corresponding to the following signature key
depending on the sender's  sender_type:
         
           
             member: The signature key contained in the LeafNode at the index
indicated by  leaf_index in the ratchet tree.
           
             external: The signature key at the index
indicated by  sender_index in the  external_senders group context
extension (see  ). The
 content_type of the message  MUST be  proposal and the  proposal_type  MUST be a value that is allowed for external senders.
           
             new_member_commit: The signature key in the LeafNode in
  the Commit's path (see  ). The
   content_type of the message  MUST be  commit.
           
             new_member_proposal: The signature key in the LeafNode in
  the KeyPackage embedded in an external Add proposal. The
   content_type of the message  MUST be  proposal and the
   proposal_type of the Proposal  MUST be  add.
        
         Recipients of an MLSMessage  MUST verify the signature with the key depending on
the  sender_type of the sender as described above.
         The confirmation tag value confirms that the members of the group have arrived
at the same state of the group. A FramedContentAuthData is said to be valid when both
the  signature and  confirmation_tag fields are valid.
      
       
         Encoding and Decoding a Public Message
         Messages that are authenticated but not encrypted are encoded using the PublicMessage structure.
         
struct {
    FramedContent content;
    FramedContentAuthData auth;
    select (PublicMessage.content.sender.sender_type) {
        case member:
            MAC membership_tag;
        case external:
        case new_member_commit:
        case new_member_proposal:
            struct{};
    };
} PublicMessage;

         The  membership_tag field in the PublicMessage object authenticates the sender's
membership in the group. For messages sent by members, it  MUST be set to the
following value:
         
struct {
  FramedContentTBS content_tbs;
  FramedContentAuthData auth;
} AuthenticatedContentTBM;

         
membership_tag = MAC(membership_key, AuthenticatedContentTBM)

         When decoding a PublicMessage into an AuthenticatedContent,
the application  MUST check  membership_tag and  MUST check that the
FramedContentAuthData is valid.
      
       
         Encoding and Decoding a Private Message
         Authenticated and encrypted messages are encoded using the PrivateMessage structure.
         
struct {
    opaque group_id<V>;
    uint64 epoch;
    ContentType content_type;
    opaque authenticated_data<V>;
    opaque encrypted_sender_data<V>;
    opaque ciphertext<V>;
} PrivateMessage;

          encrypted_sender_data and  ciphertext are encrypted using the AEAD function
specified by the cipher suite in use, using the SenderData
and PrivateMessageContent structures as input.
         
           Content Encryption
           Content to be encrypted is encoded in a PrivateMessageContent structure.
           
struct {
    select (PrivateMessage.content_type) {
        case application:
          opaque application_data<V>;

        case proposal:
          Proposal proposal;

        case commit:
          Commit commit;
    };

    FramedContentAuthData auth;
    opaque padding[length_of_padding];
} PrivateMessageContent;

           The  padding field is set by the sender, by first encoding the content (via the
 select) and the  auth field, and then appending the chosen number of zero bytes.
A receiver identifies the padding field in a plaintext decoded from
 PrivateMessage.ciphertext by first decoding the content and the  auth field;
then the  padding field comprises any remaining octets of plaintext.  The
 padding field  MUST be filled with all zero bytes.  A receiver  MUST verify that
there are no non-zero bytes in the  padding field, and if this check fails, the
enclosing PrivateMessage  MUST be rejected as malformed.  This check ensures that
the padding process is deterministic, so that, for example, padding cannot be
used as a covert channel.
           In the MLS key schedule, the sender creates two distinct key ratchets for
handshake and application messages for each member of the group. When encrypting
a message, the sender looks at the ratchets it derived for its own member and
chooses an unused generation from either the handshake ratchet or the application ratchet,
depending on the content type of the message. This generation of the ratchet is
used to derive a provisional nonce and key.
           Before use in the encryption operation, the nonce is XORed with a fresh random
value to guard against reuse.  Because the key schedule generates nonces
deterministically, a client  MUST keep persistent state as to where in the key
schedule it is; if this persistent state is lost or corrupted, a client might
reuse a generation that has already been used, causing reuse of a key/nonce pair.
           To avoid this situation, the sender of a message  MUST generate a fresh random
four-byte "reuse guard" value and XOR it with the first four bytes of the nonce
from the key schedule before using the nonce for encryption.  The sender  MUST
include the reuse guard in the  reuse_guard field of the sender data object, so
that the recipient of the message can use it to compute the nonce to be used for
decryption.
           
+-+-+-+-+---------...---+
|   Key Schedule Nonce  |
+-+-+-+-+---------...---+
           XOR
+-+-+-+-+---------...---+
| Guard |       0       |
+-+-+-+-+---------...---+
           ===
+-+-+-+-+---------...---+
| Encrypt/Decrypt Nonce |
+-+-+-+-+---------...---+

           The Additional Authenticated Data (AAD) input to the encryption
contains an object of the following form, with the values used to
identify the key and nonce:
           
struct {
    opaque group_id<V>;
    uint64 epoch;
    ContentType content_type;
    opaque authenticated_data<V>;
} PrivateContentAAD;

           When decoding a PrivateMessageContent, the application  MUST check that the
FramedContentAuthData is valid.
           It is up to the application to decide what  authenticated_data to provide and
how much padding to add to a given message (if any).  The overall size of the
AAD and ciphertext  MUST fit within the limits established for the group's AEAD
algorithm in  .
        
         
           Sender Data Encryption
           The "sender data" used to look up the key for content encryption is
encrypted with the cipher suite's AEAD with a key and nonce derived from both the
 sender_data_secret and a sample of the encrypted content. Before being
encrypted, the sender data is encoded as an object of the following form:
           
struct {
    uint32 leaf_index;
    uint32 generation;
    opaque reuse_guard[4];
} SenderData;

           When constructing a SenderData object from a Sender object, the sender  MUST verify
Sender.sender_type is  member and use Sender.leaf_index for
SenderData.leaf_index.
           The  reuse_guard field contains a fresh random value used to avoid nonce reuse
in the case of state loss or corruption, as described in  .
           The key and nonce provided to the AEAD are computed as the KDF of the first
 KDF.Nh bytes of the ciphertext generated in the previous section. If the
length of the ciphertext is less than  KDF.Nh, the whole ciphertext is used.
In pseudocode, the key and nonce are derived as:
           
ciphertext_sample = ciphertext[0..KDF.Nh-1]

sender_data_key = ExpandWithLabel(sender_data_secret, "key",
                      ciphertext_sample, AEAD.Nk)
sender_data_nonce = ExpandWithLabel(sender_data_secret, "nonce",
                      ciphertext_sample, AEAD.Nn)

           The AAD for the SenderData ciphertext is the
first three fields of PrivateMessage:
           
struct {
    opaque group_id<V>;
    uint64 epoch;
    ContentType content_type;
} SenderDataAAD;

           When parsing a SenderData struct as part of message decryption, the recipient
 MUST verify that the leaf index indicated in the  leaf_index field identifies a
non-blank node.
        
      
    
     
       Ratchet Tree Operations
       The ratchet tree for an epoch describes the membership of a group in that epoch,
providing public key encryption (HPKE) keys that can be used to encrypt to subsets of
the group as well as information to authenticate the members.  In order to
reflect changes to the membership of the group from one epoch to the next,
corresponding changes are made to the ratchet tree.  In this section, we
describe the content of the tree and the required operations.
       
         Parent Node Contents
         As discussed in  , the nodes of a ratchet tree contain
several types of data describing individual members (for leaf nodes) or
subgroups of the group (for parent nodes).  Parent nodes are simpler:
         
struct {
    HPKEPublicKey encryption_key;
    opaque parent_hash<V>;
    uint32 unmerged_leaves<V>;
} ParentNode;

         The  encryption_key field contains an HPKE public key whose private key is held only
by the members at the leaves among its descendants.  The  parent_hash field
contains a hash of this node's parent node, as described in  .
The  unmerged_leaves field lists the leaves under this parent node that are
unmerged, according to their indices among all the leaves in the tree.  The
entries in the  unmerged_leaves vector  MUST be sorted in increasing order.
      
       
         Leaf Node Contents
         A leaf node in the tree describes all the details of an individual client's
appearance in the group, signed by that client. It is also used in client
KeyPackage objects to store the information that will be needed to add a
client to a group.
         
enum {
    reserved(0),
    key_package(1),
    update(2),
    commit(3),
    (255)
} LeafNodeSource;

struct {
    ProtocolVersion versions<V>;
    CipherSuite cipher_suites<V>;
    ExtensionType extensions<V>;
    ProposalType proposals<V>;
    CredentialType credentials<V>;
} Capabilities;

struct {
    uint64 not_before;
    uint64 not_after;
} Lifetime;

// See the "MLS Extension Types" IANA registry for values
uint16 ExtensionType;

struct {
    ExtensionType extension_type;
    opaque extension_data<V>;
} Extension;

struct {
    HPKEPublicKey encryption_key;
    SignaturePublicKey signature_key;
    Credential credential;
    Capabilities capabilities;

    LeafNodeSource leaf_node_source;
    select (LeafNode.leaf_node_source) {
        case key_package:
            Lifetime lifetime;

        case update:
            struct{};

        case commit:
            opaque parent_hash<V>;
    };

    Extension extensions<V>;
    /* SignWithLabel(., "LeafNodeTBS", LeafNodeTBS) */
    opaque signature<V>;
} LeafNode;

struct {
    HPKEPublicKey encryption_key;
    SignaturePublicKey signature_key;
    Credential credential;
    Capabilities capabilities;

    LeafNodeSource leaf_node_source;
    select (LeafNodeTBS.leaf_node_source) {
        case key_package:
            Lifetime lifetime;

        case update:
            struct{};

        case commit:
            opaque parent_hash<V>;
    };

    Extension extensions<V>;

    select (LeafNodeTBS.leaf_node_source) {
        case key_package:
            struct{};

        case update:
            opaque group_id<V>;
            uint32 leaf_index;

        case commit:
            opaque group_id<V>;
            uint32 leaf_index;
    };
} LeafNodeTBS;

         The  encryption_key field contains an HPKE public key whose private key is held only
by the member occupying this leaf (or in the case of a LeafNode in a KeyPackage
object, the issuer of the KeyPackage). The  signature_key field contains the
member's public signing key. The  credential field contains information
authenticating both the member's identity and the provided signing key, as
described in  .
         The  capabilities field indicates the protocol features that the client
supports, including protocol versions, cipher suites, credential types,
non-default proposal types, and non-default extension types.  The following
proposal and extension types are considered "default" and  MUST NOT be
listed:
         
           
             Proposal types:
            
             
               0x0001 -  add
               0x0002 -  update
               0x0003 -  remove
               0x0004 -  psk
               0x0005 -  reinit
               0x0006 -  external_init
               0x0007 -  group_context_extensions
            
          
           
             Extension types:
            
             
               0x0001 -  application_id
               0x0002 -  ratchet_tree
               0x0003 -  required_capabilities
               0x0004 -  external_pub
               0x0005 -  external_senders
            
          
        
         There are no default values for the other fields of a capabilities object.  The
client  MUST list all values for the respective parameters that it supports.
         The types of any non-default extensions that appear in the  extensions field of a LeafNode
 MUST be included in the  extensions field of the  capabilities field, and the
credential type used in the LeafNode  MUST be included in the  credentials field
of the  capabilities field.
         As discussed in  , unknown values
in  capabilities  MUST be ignored, and the creator of a  capabilities field
 SHOULD include some random GREASE values to help ensure that other clients correctly
ignore unknown values.
         The  leaf_node_source field indicates how this LeafNode came to be added to the
tree.  This signal tells other members of the group whether the leaf node is
required to have a  lifetime or  parent_hash, and whether the  group_id is
added as context to the signature.
These fields are included selectively because the client creating a LeafNode is
not always able to compute all of them.
For example, a KeyPackage is created before the client knows which group it will
be used with, so its signature can't bind to a  group_id.
         In the case where the leaf was added to the tree based on a pre-published
KeyPackage, the  lifetime field represents the times between which clients will
consider a LeafNode valid.  These times are represented as absolute times,
measured in seconds since the Unix epoch (1970-01-01T00:00:00Z).  Applications
 MUST define a maximum total lifetime that is acceptable for a LeafNode, and
reject any LeafNode where the total lifetime is longer than this duration. In
order to avoid disagreements about whether a LeafNode has a valid lifetime, the
clients in a group  SHOULD maintain time synchronization (e.g., using the Network
Time Protocol  ).
         In the case where the leaf node was inserted into the tree via a Commit message,
the  parent_hash field contains the parent hash for this leaf node (see
 ).
         The LeafNodeTBS structure covers the fields above the signature in the LeafNode.
In addition, when the leaf node was created in the context of a group (the
 update and  commit cases), the group ID of the group is added as context to the
signature.
         LeafNode objects stored in the group's ratchet tree
are updated according to the evolution of the tree. Each modification of
LeafNode content  MUST be reflected by a change in its signature. This allows other
members to verify the validity of the LeafNode at any time, particularly in the
case of a newcomer joining the group.
      
       
         Leaf Node Validation
         The validity of a LeafNode needs to be verified at the following stages:
         
           When a LeafNode is downloaded in a KeyPackage, before it is used
to add the client to the group
           When a LeafNode is received by a group member in an Add, Update, or Commit
message
           When a client validates a ratchet tree, e.g., when joining a group or after
processing a Commit
        
         The client verifies the validity of a LeafNode using the following steps:
         
           Verify that the credential in the LeafNode is valid, as described in
 .
           Verify that the signature on the LeafNode is valid using  signature_key.
           Verify that the LeafNode is compatible with the group's parameters.  If the
GroupContext has a  required_capabilities extension, then the required
extensions, proposals, and credential types  MUST be listed in the LeafNode's
 capabilities field.
           Verify that the credential type is supported by all members of the group, as
specified by the  capabilities field of each member's LeafNode, and that the
 capabilities field of this LeafNode indicates support for all the credential
types currently in use by other members.
           
             Verify the  lifetime field:
            
             
               If the LeafNode appears in a message being sent by the client, e.g., a
Proposal or a Commit, then the client  MUST verify that the current time is within
the range of the  lifetime field.
               If instead the LeafNode appears in a message being received by the client, e.g.,
a Proposal, a Commit, or a ratchet tree of the group the client is joining, it is
 RECOMMENDED that the client verifies that the current time is within the range
of the  lifetime field.  (This check is not mandatory because the LeafNode
might have expired in the time between when the message was sent and when it
was received.)
            
          
           Verify that the extensions in the LeafNode are supported by checking that the
ID for each extension in the  extensions field is listed in the
 capabilities.extensions field of the LeafNode.
           
             Verify the  leaf_node_source field:
            
             
               If the LeafNode appears in a KeyPackage, verify that  leaf_node_source is
set to  key_package.
               If the LeafNode appears in an Update proposal, verify that  leaf_node_source
is set to  update and that  encryption_key represents a different public
key than the  encryption_key in the leaf node being replaced by the Update
proposal.
               If the LeafNode appears in the  leaf_node value of the UpdatePath in
a Commit, verify that  leaf_node_source is set to  commit.
            
          
           
             Verify that the following fields are unique among the members of the group:
            
             
               
                 signature_key
              
               
                 encryption_key
              
            
          
        
      
       
         Ratchet Tree Evolution
         Whenever a member initiates an epoch change (i.e., commits; see  ),
they may need to refresh the key pairs of their leaf and of the nodes on their
leaf's direct path in order to maintain forward secrecy and post-compromise
security.
         The member initiating the epoch change generates the fresh key pairs using the
following procedure. The procedure is designed in a way that allows group members to
efficiently communicate the fresh secret keys to other group members, as
described in  .
         A member updates the nodes along its direct path as follows:
         
           Blank all the nodes on the direct path from the leaf to the root.
           Generate a fresh HPKE key pair for the leaf.
           Generate a sequence of path secrets, one for each node on the leaf's filtered direct
path, as follows. In this setting,  path_secret[0] refers to the first parent node
in the filtered direct path,  path_secret[1] to the second parent node, and so on.
        
         
path_secret[0] is sampled at random
path_secret[n] = DeriveSecret(path_secret[n-1], "path")

         
           Compute the sequence of HPKE key pairs  (node_priv,node_pub), one for each
node on the leaf's direct path, as follows.
        
         
node_secret[n] = DeriveSecret(path_secret[n], "node")
node_priv[n], node_pub[n] = KEM.DeriveKeyPair(node_secret[n])

         The node secret is derived as a temporary intermediate secret so that each
secret is only used with one algorithm: The path secret is used as an input to
DeriveSecret, and the node secret is used as an input to DeriveKeyPair.
         For example, suppose there is a group with four members, with C an unmerged leaf
at Z:
         
           A Full Tree with One Unmerged Leaf
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         If member B subsequently generates an UpdatePath based on a secret
"leaf_secret", then it would generate the following sequence
of path secrets:
         
           Derivation of Ratchet Tree Keys along a Direct Path
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         After applying the UpdatePath, the tree will have the following structure:
         
           Placement of Keys in a Ratchet Tree
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                 A   B   C   D
                     ^
leaf_priv -----------+
                 0   1   2   3

          
        
      
       
         Synchronizing Views of the Tree
         After generating fresh key material and applying it to update their
local tree state as described in  , the
generator broadcasts
this update to other members of the group in a Commit message, who
apply it to keep their local views of the tree in
sync with the sender's.  More specifically, when a member commits a change to
the tree (e.g., to add or remove a member), it transmits an UpdatePath
containing a set of public keys and encrypted path secrets
for intermediate nodes in the filtered direct path of its leaf. The
other members of the group use these values to update
their view of the tree, aligning their copy of the tree to the
sender's.
         An UpdatePath contains
the following information for each node in the filtered direct path of the
sender's leaf, including the root:
         
           The public key for the node
           One or more encrypted copies of the path secret corresponding to
the node
        
         The path secret value for a given node is encrypted to the subtree
rooted at the parent's non-updated child, i.e., the child
on the copath of the sender's leaf node.
There is one encryption of the path secret to each public key in the resolution
of the non-updated child.
         A member of the group  updates their direct path by computing new values for
their leaf node and the nodes along their filtered direct path as follows:
         
           Blank all nodes along the direct path of the sender's leaf.
           
             Compute updated path secrets and public keys for the nodes on the sender's
filtered direct path.
            
             
               Generate a sequence of path secrets of the same length as the filtered
direct path, as defined in  .
               For each node in the filtered direct path, replace the node's public key
with the  node_pub[n] value derived from the corresponding path secret
 path_secret[n].
            
          
           Compute the new parent hashes for the nodes along the filtered direct path
and the sender's leaf node.
           
             Update the leaf node for the sender.
            
             
               Set the  leaf_node_source to  commit.
               Set the  encryption_key to the public key of a freshly sampled key pair.
               Set the parent hash to the parent hash for the leaf.
               Re-sign the leaf node with its new contents.
            
          
        
         Since the new leaf node effectively updates an existing leaf node in the group,
it  MUST adhere to the same restrictions as LeafNodes used in Update proposals
(aside from  leaf_node_source). The application  MAY specify other changes to
the leaf node, e.g., providing a new signature key, updated capabilities, or
different extensions.
         The member then  encrypts path secrets to the group.  For each node in the
member's filtered direct path, the member takes the following steps:
         
           Compute the resolution of the node's child that is on the copath of the
sender (the child that is not in the direct path of the sender).  Any new
member (from an Add proposal) added in the same Commit  MUST be excluded from
this resolution.
           For each node in the resolution, encrypt the path secret for the direct
path node using the public key of the resolution node, as defined in
 .
        
         The recipient of an UpdatePath performs the corresponding steps. First, the
recipient  merges UpdatePath into the tree:
         
           Blank all nodes on the direct path of the sender's leaf.
           
             For all nodes on the filtered direct path of the sender's leaf,
            
             
               Set the public key to the public key in the UpdatePath.
               Set the list of unmerged leaves to the empty list.
            
          
           
             Compute parent hashes for the nodes in the sender's filtered direct path,
and verify that the  parent_hash field of the leaf node matches the parent
hash for the first node in its filtered direct path.
            
             
               Note that these hashes are computed from root to leaf, so that
each hash incorporates all the non-blank nodes above it. The root node
always has a zero-length hash for its parent hash.
            
          
        
         Second, the recipient  decrypts the path secrets:
         
           Identify a node in the filtered direct path for which the recipient
is in the subtree of the non-updated child.
           Identify a node in the resolution of the copath node for
which the recipient has a private key.
           Decrypt the path secret for the parent of the copath node using
the private key from the resolution node.
           Derive path secrets for ancestors of that node in the sender's filtered
direct path using the algorithm described above.
           Derive the node secrets and node key pairs from the path secrets.
           Verify that the derived public keys are the same as the corresponding public
keys sent in the UpdatePath.
           Store the derived private keys in the corresponding ratchet tree nodes.
        
         For example, in order to communicate the example update described in
 , the member at node B would transmit the following
values:
         
           
             
               Public Key
               Ciphertext(s)
            
          
           
             
               
                 node_pub[1]
              
               
                 E(pk(Z), path_secret[1]),  E(pk(C), path_secret[1])
            
             
               
                 node_pub[0]
              
               
                 E(pk(A), path_secret[0])
              
            
          
        
         In this table, the value node_pub[i] represents the public key
derived from node_secret[i], pk(X) represents the current public key
of node X, and E(K, S) represents
the public key encryption of the path secret S to the
public key K (using HPKE).
         A recipient at node A would decrypt  E(pk(A), path_secret\[0\]) to obtain
 path_secret\[0\], then use it to derive  path_secret[1] and the resulting
node secrets and key pairs.  Thus, A would have the private keys to nodes X'
and Y', in accordance with the tree invariant.
         Similarly, a recipient at node D would decrypt  E(pk(Z), path_secret[1]) to
obtain  path_secret[1], then use it to derive the node secret and key pair
for the node Y'.  As required to maintain the tree invariant, node D does not
receive the private key for the node X', since X' is not an ancestor of D.
         After processing the update, each recipient  MUST delete outdated key material,
specifically:
         
           The path secrets and node secrets used to derive each updated node key pair.
           Each outdated node key pair that was replaced by the update.
        
      
       
         Update Paths
         As described in  , each Commit message may optionally contain an
UpdatePath, with a new LeafNode and set of parent nodes for the sender's
filtered direct path. For each parent node, the UpdatePath contains a new
public key and encrypted path secret. The parent nodes are kept in the same
order as the filtered direct path.
         
struct {
    opaque kem_output<V>;
    opaque ciphertext<V>;
} HPKECiphertext;

struct {
    HPKEPublicKey encryption_key;
    HPKECiphertext encrypted_path_secret<V>;
} UpdatePathNode;

struct {
    LeafNode leaf_node;
    UpdatePathNode nodes<V>;
} UpdatePath;

         For each UpdatePathNode, the resolution of the corresponding copath node  MUST
exclude all new leaf nodes added as part of the current Commit. The length of
the  encrypted_path_secret vector  MUST be equal to the length of the resolution
of the copath node (excluding new leaf nodes), with each ciphertext being the
encryption to the respective resolution node.
         The HPKECiphertext values are encrypted and decrypted as follows:
         
(kem_output, ciphertext) =
  EncryptWithLabel(node_public_key, "UpdatePathNode",
                   group_context, path_secret)

path_secret =
  DecryptWithLabel(node_private_key, "UpdatePathNode",
                   group_context, kem_output, ciphertext)

         Here  node_public_key is the public key of the node for which the path secret is
encrypted,  group_context is the provisional GroupContext object for
the group, and the  EncryptWithLabel function is as defined in
 .
      
       
         Adding and Removing Leaves
         In addition to the path-based updates to the tree described above, it is also
necessary to add and remove leaves of the tree in order to reflect changes to
the membership of the group (see Sections   and  ).  Since the tree is
always full, adding or removing leaves corresponds to increasing or decreasing
the depth of the tree, resulting in the number of leaves being doubled or
halved. These operations are also known as  extending and  truncating the
tree.
         Leaves are always added and removed at the right edge of the tree.  When the
size of the tree needs to be increased, a new blank root node is added, whose
left subtree is the existing tree and right subtree is a new all-blank subtree.
This operation is typically done when adding a member to the group.
         
           Extending the Tree to Make Room for a Third Member
           
                  _ <-- new blank root                    _
                __|__                                   __|__
               /     \                                 /     \
  X    ===>   X       _ <-- new blank subtree ===>    X       _
 / \         / \     / \                             / \     / \
A   B       A   B   _   _                           A   B   C   _
                                                            ^
                                                            |
                                               new member --+

        
         When the right subtree of the tree no longer has any non-blank nodes, it can be
safely removed.  The root of the tree and the right subtree are discarded
(whether or not the root node is blank). The left child of the root becomes the
new root node, and the left subtree becomes the new tree.  This operation is
typically done after removing a member from the group.
         
           Cleaning Up after Removing Member C
           
               Y                  Y
             __|__              __|__
            /     \            /     \
           X       _   ===>   X       _   ==>   X <-- new root
          / \     / \        / \     / \       / \
         A   B   C   _      A   B   _   _     A   B
                 ^
                 |
removed member --+

        
         Concrete algorithms for these operations on array-based and link-based trees are
provided in Appendices   and  .  The concrete
algorithms are non-normative.  An implementation may use any algorithm that
produces the correct tree in its internal representation.
      
       
         Tree Hashes
         MLS hashes the contents of the tree in two ways to authenticate different
properties of the tree.   Tree hashes are defined in this section, and  parent
hashes are defined in  .
         Each node in a ratchet tree has a tree hash that summarizes the subtree below
that node.  The tree hash of the root is used in the GroupContext to confirm
that the group agrees on the whole tree.  Tree hashes are computed recursively
from the leaves up to the root.
         
           Composition of the Tree Hash
           
             
               
                 
                 
                 
                 
                 
                 
                 
                   P
                   th(P)
                   th(L)
                   th(R)
                
              
            
             
P --> th(P)
      ^ ^
     /   \
    /     \
th(L)     th(R)

          
        
         The tree hash of an individual node is the hash of the node's TreeHashInput
object, which may contain either a LeafNodeHashInput or a
ParentNodeHashInput depending on the type of node. LeafNodeHashInput objects
contain the  leaf_index and the LeafNode (if any). ParentNodeHashInput
objects contain the ParentNode (if any) and the tree hash of the node's left
and right children.  For both parent and leaf nodes, the optional node value
 MUST be absent if the node is blank and present if the node contains a value.
         
enum {
    reserved(0),
    leaf(1),
    parent(2),
    (255)
} NodeType;

struct {
  NodeType node_type;
  select (TreeHashInput.node_type) {
    case leaf:   LeafNodeHashInput leaf_node;
    case parent: ParentNodeHashInput parent_node;
  };
} TreeHashInput;

struct {
    uint32 leaf_index;
    optional<LeafNode> leaf_node;
} LeafNodeHashInput;

struct {
    optional<ParentNode> parent_node;
    opaque left_hash<V>;
    opaque right_hash<V>;
} ParentNodeHashInput;

         The tree hash of an entire tree corresponds to the tree hash of the root node,
which is computed recursively by starting at the leaf nodes and building up.
      
       
         Parent Hashes
         While tree hashes summarize the state of a tree at point in time, parent hashes
capture information about how keys in the tree were populated.
         When a client sends a Commit to change a group, it can include an UpdatePath to
assign new keys to the nodes along its filtered direct path.  When a client
computes an UpdatePath (as defined in  ), it
computes and signs a parent hash that summarizes the state of the tree after the
UpdatePath has been applied.  These summaries are constructed in a chain from
the root to the member's leaf so that the part of the chain closer to the root
can be overwritten as nodes set in one UpdatePath are reset by a later
UpdatePath.
         
           Inputs to a Parent Hash
           
             
               
                 
                 
                 
                 
                 
                 
                 
                 
                 
                   ph(Q)
                   P.public_key
                   ph(P)
                   N.parent_hash
                   th(S)
                
              
            
             
                     ph(Q)
                     /
                    /
                   V
P.public_key --> ph(P)
                 / ^
                /   \
               V     \
   N.parent_hash     th(S)

          
        
         As a result, the signature over the parent hash in each member's leaf
effectively signs the subtree of the tree that hasn't been changed since that
leaf was last changed in an UpdatePath.  A new member joining the group uses
these parent hashes to verify that the parent nodes in the tree were set by
members of the group, not chosen by an external attacker.  For an example of how
this works, see  .
         Consider a ratchet tree with a non-blank parent node P and children D and S (for
"parent", "direct path", and "sibling"), with D and P in the direct path of a
leaf node L (for "leaf"):
         
           Nodes Involved in a Parent Hash Computation
           
         ...
         /
        P
      __|__
     /     \
    D       S
   / \     / \
 ... ... ... ...
 /
L

        
         The parent hash of P changes whenever an UpdatePath object is applied to
the ratchet tree along a path from a leaf L traversing node D (and hence also
P). The new "Parent hash of P (with copath child S)" is obtained by hashing P's
ParentHashInput struct.
         
struct {
    HPKEPublicKey encryption_key;
    opaque parent_hash<V>;
    opaque original_sibling_tree_hash<V>;
} ParentHashInput;

         The field  encryption_key contains the HPKE public key of P. If P is the root,
then the  parent_hash field is set to a zero-length octet string. Otherwise,
 parent_hash is the parent hash of the next node after P on the filtered
direct path of the leaf L. This way, P's parent hash fixes
the new HPKE public key of each non-blank node on the path from P to the root. Note
that the path from P to the root may contain some blank nodes that are not
fixed by P's parent hash. However, for each node that has an HPKE key, this key
is fixed by P's parent hash.
         Finally,  original_sibling_tree_hash is the tree hash of S in the ratchet tree
modified as follows: For each leaf L in  P.unmerged_leaves, blank L and remove
it from the  unmerged_leaves sets of all parent nodes.
         Observe that  original_sibling_tree_hash does not change between updates of P.
This property is crucial for the correctness of the protocol.
         Note that  original_sibling_tree_hash is the tree hash of S, not the parent
hash.  The  parent_hash field in ParentHashInput captures information about the
nodes above P. the  original_sibling_tree_hash captures information about the
subtree under S that is not being updated (and thus the subtree to which a path
secret for P would be encrypted according to  ).
         For example, in the following tree:
         
           A Tree Illustrating Parent Hash Computations
           
              W [F]
        ______|_____
       /             \
      U               Y [F]
    __|__           __|__
   /     \         /     \
  T       _       _       _
 / \     / \     / \     / \
A   B   C   D   E   F   G   _

        
         With P = W and S = Y,  original_sibling_tree_hash is the tree hash of the
following tree:
         
      Y
    __|__
   /     \
  _       _
 / \     / \
E   _   G   _

         Because  W.unmerged_leaves includes F, F is blanked and removed from
 Y.unmerged_leaves.
         Note that no recomputation is needed if the tree hash of S is unchanged since
the last time P was updated. This is the case for computing or processing a
Commit whose UpdatePath traverses P, since the Commit itself resets P. (In
other words, it is only necessary to recompute the original sibling tree hash
when validating a group's tree on joining.) More generally, if none of the entries
in  P.unmerged_leaves are in the subtree under S (and thus no leaves were blanked),
then the original tree hash at S is the tree hash of S in the current tree.
         If it is necessary to recompute the original tree hash of a node, the efficiency
of recomputation can be improved by caching intermediate tree hashes, to avoid
recomputing over the subtree when the subtree is included in multiple parent
hashes.  A subtree hash can be reused as long as the intersection of the
parent's unmerged leaves with the subtree is the same as in the earlier
computation.
         
           Using Parent Hashes
           In ParentNode objects and LeafNode objects with  leaf_node_source set to
 commit, the value of the  parent_hash field is the parent hash of the next
non-blank parent node above the node in question (the next node in the filtered
direct path).  Using the node labels in  , the
 parent_hash field of D is equal to the parent hash of P with copath child S.
This is the case even when the node D is a leaf node.
           The  parent_hash field of a LeafNode is signed by the member.  The signature of
such a LeafNode thus attests to which keys the group member introduced into
the ratchet tree and to whom the corresponding secret keys were sent, in
addition to the other contents of the LeafNode. This
prevents malicious insiders from constructing artificial ratchet trees with a
node D whose HPKE secret key is known to the insider, yet where the insider isn't
assigned a leaf in the subtree rooted at D. Indeed, such a ratchet tree would
violate the tree invariant.
        
         
           Verifying Parent Hashes
           Parent hashes are verified at two points in the protocol: When joining a group
and when processing a Commit.
           The parent hash in a node D is valid with respect to a parent node P if the
following criteria hold.  Here C and S are the children of P (for "child" and
"sibling"), with C being the child that is on the direct path of D (possibly D
itself) and S being the other child:
           
             D is a descendant of P in the tree.
             The  parent_hash field of D is equal to the parent hash of P with copath
child S.
             D is in the resolution of C, and the intersection of P's  unmerged_leaves
with the subtree under C is equal to the resolution of C with D removed.
          
           These checks verify that D and P were updated at the same time (in the same
UpdatePath), and that they were neighbors in the UpdatePath because the nodes in
between them would have omitted from the filtered direct path.
           A parent node P is "parent-hash valid" if it can be chained back to a leaf node
in this way.  That is, if there is leaf node L and a sequence of parent nodes
P_1, ..., P_N such that P_N = P and each step in the chain is authenticated
by a parent hash, then L's parent hash is valid with respect to P_1, P_1's parent
hash is valid with respect to P_2, and so on.
           When joining a group, the new member  MUST authenticate that each non-blank
parent node P is parent-hash valid.  This can be done "bottom up" by building
chains up from leaves and verifying that all non-blank parent nodes are covered
by exactly one such chain, or "top down" by verifying that there is exactly one
descendant of each non-blank parent node for which the parent node is
parent-hash valid.
           When processing a Commit message that includes an UpdatePath, clients  MUST
recompute the expected value of  parent_hash for the committer's new leaf and
verify that it matches the  parent_hash value in the supplied  leaf_node.
After being merged into the tree, the nodes in the UpdatePath form a parent-hash
chain from the committer's leaf to the root.
        
      
    
     
       Key Schedule
       Group keys are derived using the  Extract and  Expand functions from the KDF
for the group's cipher suite, as well as the functions defined below:
       
ExpandWithLabel(Secret, Label, Context, Length) =
    KDF.Expand(Secret, KDFLabel, Length)

DeriveSecret(Secret, Label) =
    ExpandWithLabel(Secret, Label, "", KDF.Nh)

       Where KDFLabel is specified as:
       
struct {
    uint16 length;
    opaque label<V>;
    opaque context<V>;
} KDFLabel;

       And its fields are set to:
       
length = Length;
label = "MLS 1.0 " + Label;
context = Context;

       The value  KDF.Nh is the size of an output from  KDF.Extract, in bytes.  In
the below diagram:
       
         KDF.Extract takes its salt argument from the top and its Input
Keying Material (IKM) argument from the left.
         DeriveSecret takes its Secret argument from the incoming arrow.
         
           0 represents an all-zero byte string of length  KDF.Nh.
      
       When processing a handshake message, a client combines the
following information to derive new epoch secrets:
       
         The init secret from the previous epoch
         The commit secret for the current epoch
         The GroupContext object for current epoch
      
       Given these inputs, the derivation of secrets for an epoch
proceeds as shown in the following diagram:
       
         The MLS Key Schedule
         
           
             
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
                 init_secret_[n-1]
                 commit_secret
                 KDF.Extract
                 ExpandWithLabel(.,
                 "joiner",
                 GroupContext_[n],
                 KDF.Nh)
                 joiner_secret
                 psk_secret
                 (or
                 0)
                 KDF.Extract
                 DeriveSecret(.,
                 "welcome")
                 =
                 welcome_secret
                 ExpandWithLabel(.,
                 "epoch",
                 GroupContext_[n],
                 KDF.Nh)
                 epoch_secret
                 DeriveSecret(.,
                 <label>)
                 =
                 <secret>
                 DeriveSecret(.,
                 "init")
                 init_secret_[n]
              
            
          
           
                    init_secret_[n-1]
                          |
                          |
                          V
    commit_secret --> KDF.Extract
                          |
                          |
                          V
                  ExpandWithLabel(., "joiner", GroupContext_[n], KDF.Nh)
                          |
                          |
                          V
                     joiner_secret
                          |
                          |
                          V
psk_secret (or 0) --> KDF.Extract
                          |
                          |
                          +--> DeriveSecret(., "welcome")
                          |    = welcome_secret
                          |
                          V
                  ExpandWithLabel(., "epoch", GroupContext_[n], KDF.Nh)
                          |
                          |
                          V
                     epoch_secret
                          |
                          |
                          +--> DeriveSecret(., <label>)
                          |    = <secret>
                          |
                          V
                    DeriveSecret(., "init")
                          |
                          |
                          V
                    init_secret_[n]

        
      
       A number of values are derived from the epoch secret for different purposes:
       
         Epoch-Derived Secrets
         
           
             Label
             Secret
             Purpose
          
        
         
           
             "sender data"
             
               sender_data_secret
            
             Deriving keys to encrypt sender data
          
           
             "encryption"
             
               encryption_secret
            
             Deriving message encryption keys (via the secret tree)
          
           
             "exporter"
             
               exporter_secret
            
             Deriving exported secrets
          
           
             "external"
             
               external_secret
            
             Deriving the external init key
          
           
             "confirm"
             
               confirmation_key
            
             Computing the confirmation MAC for an epoch
          
           
             "membership"
             
               membership_key
            
             Computing the membership MAC for a PublicMessage
          
           
             "resumption"
             
               resumption_psk
            
             Proving membership in this epoch (via a PSK injected later)
          
           
             "authentication"
             
               epoch_authenticator
            
             Confirming that two clients have the same view of the group
          
        
      
       The  external_secret is used to derive an HPKE key pair whose private key is
held by the entire group:
       
external_priv, external_pub = KEM.DeriveKeyPair(external_secret)

       The public key  external_pub can be published as part of the GroupInfo struct
in order to allow non-members to join the group using an external Commit.
       
         Group Context
         Each member of the group maintains a GroupContext object that
summarizes the state of the group:
         
struct {
    ProtocolVersion version = mls10;
    CipherSuite cipher_suite;
    opaque group_id<V>;
    uint64 epoch;
    opaque tree_hash<V>;
    opaque confirmed_transcript_hash<V>;
    Extension extensions<V>;
} GroupContext;

         The fields in this state have the following semantics:
         
           The  cipher_suite is the cipher suite used by the group.
           The  group_id field is an application-defined identifier for the
group.
           The  epoch field represents the current version of the group.
           The  tree_hash field contains a commitment to the contents of the
group's ratchet tree and the credentials for the members of the
group, as described in  .
           The  confirmed_transcript_hash field contains a running hash over
the messages that led to this state.
           The  extensions field contains the details of any protocol extensions that
apply to the group.
        
         When a new member is added to the group, an existing member of the
group provides the new member with a Welcome message.  The Welcome
message provides the information the new member needs to initialize
its GroupContext.
         Different changes to the group will have different effects on the group state.
These effects are described in their respective subsections of  .
The following general rules apply:
         
           The  group_id field is constant.
           The  epoch field increments by one for each Commit message that
is processed.
           The  tree_hash is updated to represent the current tree and
credentials.
           The  confirmed_transcript_hash field is updated with the data for an
AuthenticatedContent encoding a Commit message, as described below.
           The  extensions field changes when a GroupContextExtensions proposal is
committed.
        
      
       
         Transcript Hashes
         The transcript hashes computed in MLS represent a running hash over all Proposal
and Commit messages that have ever been sent in a group.  Commit messages are
included directly. Proposal messages are indirectly included via the Commit that
applied them. Messages of both types are included by hashing the AuthenticatedContent
object in which they were sent.
         The transcript hash comprises two individual hashes:
         
           A  confirmed_transcript_hash that represents a transcript over the whole
history of Commit messages, up to and including the signature of the most
recent Commit.
           An  interim_transcript_hash that covers the confirmed transcript hash plus
the  confirmation_tag of the most recent Commit.
        
         New members compute the interim transcript hash using the  confirmation_tag
field of the GroupInfo struct, while existing members can compute it directly.
         Each Commit message updates these hashes by way of its enclosing
AuthenticatedContent.  The AuthenticatedContent struct is split into
ConfirmedTranscriptHashInput and InterimTranscriptHashInput. The former is used to
update the confirmed transcript hash and the latter is used to update the interim
transcript hash.
         
struct {
    WireFormat wire_format;
    FramedContent content; /* with content_type == commit */
    opaque signature<V>;
} ConfirmedTranscriptHashInput;

struct {
    MAC confirmation_tag;
} InterimTranscriptHashInput;

         
confirmed_transcript_hash_[0] = ""; /* zero-length octet string */
interim_transcript_hash_[0] = ""; /* zero-length octet string */

confirmed_transcript_hash_[epoch] =
    Hash(interim_transcript_hash_[epoch - 1] ||
        ConfirmedTranscriptHashInput_[epoch]);

interim_transcript_hash_[epoch] =
    Hash(confirmed_transcript_hash_[epoch] ||
        InterimTranscriptHashInput_[epoch]);

         In this notation,  ConfirmedTranscriptHashInput_[epoch] and
 InterimTranscriptHashInput_[epoch] are based on the Commit that initiated the
epoch with epoch number  epoch.  (Note that the epoch  field in this
Commit will be set to epoch - 1`, since it is sent within the previous epoch.)
         The transcript hash  ConfirmedTranscriptHashInput_[epoch] is used as the
 confirmed_transcript_hash input to the  confirmation_tag field for this
Commit. Each Commit thus confirms the whole transcript of Commits up to that
point, except for the latest Commit's confirmation tag.
         
           Evolution of the Transcript Hashes through Two Epoch Changes
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                                                              |
                                                              |
                                                              V
                                                     +-----------------+
                                                     |  interim_[N-1]  |
                                                     +--------+--------+
                                                              |
     .--------------.         +------------------+            |
    |  Ratchet Tree  |        | wire_format      |            |
    |  Key Schedule  |<-------+ content          |            |
     '-------+------'         |   epoch = N-1    +------------+
             |                |   commit         |            |
             V                | signature        |            V
 +------------------------+   +------------------+   +-----------------+
 |  confirmation_key_[N]  +-->| confirmation_tag |<--+  confirmed_[N]  |
 +------------------------+   +--------+---------+   +--------+--------+
                                       |                      |
                                       |                      V
                                       |             +-----------------+
                                       +------------>|   interim_[N]   |
                                                     +--------+--------+
                                                              |
     .--------------.         +------------------+            |
    |  Ratchet Tree  |        | wire_format      |            |
    |  Key Schedule  |<-------+ content          |            |
     '-------+------'         |   epoch = N      +------------+
             |                |   commit         |            |
             V                | signature        |            V
 +------------------------+   +------------------+   +-----------------+
 | confirmation_key_[N+1] +-->| confirmation_tag |<--+ confirmed_[N+1] |
 +------------------------+   +--------+---------+   +--------+--------+
                                       |                      |
                                       |                      V
                                       |             +-----------------+
                                       +------------>|  interim_[N+1]  |
                                                     +--------+--------+
                                                              |
                                                              V

                                                             ...

          
        
      
       
         External Initialization
         In addition to initializing a new epoch via KDF invocations as described above,
an MLS group can also initialize a new epoch via an asymmetric interaction using
the external key pair for the previous epoch.  This is done when a new member
is joining via an external commit.
         In this process, the joiner sends a new  init_secret value to the group using
the HPKE export method.  The joiner then uses that  init_secret with
information provided in the GroupInfo and an external Commit to initialize
their copy of the key schedule for the new epoch.
         
kem_output, context = SetupBaseS(external_pub, "")
init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

         Members of the group receive the  kem_output in an ExternalInit proposal and
perform the corresponding calculation to retrieve the  init_secret value.
         
context = SetupBaseR(kem_output, external_priv, "")
init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

      
       
         Pre-Shared Keys
         Groups that already have an out-of-band mechanism to generate
shared group secrets can inject them into the MLS key schedule to
incorporate this external entropy in the computation of MLS group secrets.
         Injecting an external PSK can improve security in the case
where having a full run of Updates across members is too expensive, or if
the external group key establishment mechanism provides
stronger security against classical or quantum adversaries.
         Note that, as a PSK may have a different lifetime than an Update, it does not
necessarily provide the same forward secrecy or post-compromise security
guarantees as a Commit message.  Unlike the key pairs populated in the
tree by an Update or Commit, which are always freshly generated, PSKs may be
pre-distributed and stored. This creates the risk that a PSK may be compromised
in the process of distribution and storage. The security that the group gets
from injecting a PSK thus depends on both the entropy of the PSK and the risk of
compromise.  These factors are outside of the scope of this document, but they should
be considered by application designers relying on PSKs.
         Each PSK in MLS has a type that designates how it was provisioned.
External PSKs are provided by the application, while resumption PSKs
are derived from the MLS key schedule and used in cases where it is
necessary to authenticate a member's participation in a prior epoch.
         The injection of one or more PSKs into the key schedule is signaled in two ways:
Existing members are informed via PreSharedKey proposals covered by a Commit,
and new members added in the Commit are informed by the GroupSecrets object in the
Welcome message corresponding to the Commit.  To ensure that existing and new
members compute the same PSK input to the key schedule, the Commit and
GroupSecrets objects  MUST indicate the same set of PSKs, in the same order.
         
enum {
  reserved(0),
  external(1),
  resumption(2),
  (255)
} PSKType;

enum {
  reserved(0),
  application(1),
  reinit(2),
  branch(3),
  (255)
} ResumptionPSKUsage;

struct {
  PSKType psktype;
  select (PreSharedKeyID.psktype) {
    case external:
      opaque psk_id<V>;

    case resumption:
      ResumptionPSKUsage usage;
      opaque psk_group_id<V>;
      uint64 psk_epoch;
  };
  opaque psk_nonce<V>;
} PreSharedKeyID;

         Each time a client injects a PSK into a group, the  psk_nonce of its
PreSharedKeyID  MUST be set to a fresh random value of length  KDF.Nh, where
 KDF is the KDF for the cipher suite of the group into which the PSK is being
injected. This ensures that even when a PSK is used multiple times, the value
used as an input into the key schedule is different each time.
         Upon receiving a Commit with a PreSharedKey proposal or a GroupSecrets object
with the  psks field set, the receiving client includes them in the key
schedule in the order listed in the Commit, or in the  psks field, respectively.
For resumption PSKs, the PSK is defined as the  resumption_psk of the group and
epoch specified in the PreSharedKeyID object. Specifically,  psk_secret is
computed as follows:
         
struct {
    PreSharedKeyID id;
    uint16 index;
    uint16 count;
} PSKLabel;

         
psk_extracted_[i] = KDF.Extract(0, psk_[i])
psk_input_[i] = ExpandWithLabel(psk_extracted_[i], "derived psk",
                  PSKLabel, KDF.Nh)

psk_secret_[0] = 0
psk_secret_[i] = KDF.Extract(psk_input_[i-1], psk_secret_[i-1])
psk_secret     = psk_secret_[n]

         Here  0 represents the all-zero vector of length  KDF.Nh. The  index field in
PSKLabel corresponds to the index of the PSK in the  psk array, while the
 count field contains the total number of PSKs.  In other words, the PSKs are
chained together with KDF.Extract invocations (labeled "Extract" for brevity
in the diagram), as follows:
         
           Computation of a PSK Secret from a Set of PSKs
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         In particular, if there are no PreSharedKey proposals in a given Commit, then
the resulting  psk_secret is  psk_secret_[0], the all-zero vector.
      
       
         Exporters
         The main MLS key schedule provides an  exporter_secret that can
be used by an application to derive new secrets for use outside of MLS.
         
MLS-Exporter(Label, Context, Length) =
       ExpandWithLabel(DeriveSecret(exporter_secret, Label),
                         "exported", Hash(Context), Length)

         Applications  SHOULD provide a unique label to  MLS-Exporter that
identifies the secret's intended purpose. This is to help prevent the same
secret from being generated and used in two different places. To help avoid
the same label being used in different applications, an IANA registry for these
labels has been defined in  .
         The exported values are bound to the group epoch from which the
 exporter_secret is derived, and hence reflect a particular state of
the group.
         It is  RECOMMENDED for the application generating exported values
to refresh those values after a Commit is processed.
      
       
         Resumption PSK
         The main MLS key schedule provides a  resumption_psk that is used as a PSK
to inject entropy from one epoch into another.  This functionality is used in the
reinitialization and branching processes described in Sections   and
 , but it may be used by applications for other purposes.
         Some uses of resumption PSKs might call for the use of PSKs from historical
epochs. The application  SHOULD specify an upper limit on the number of past
epochs for which the  resumption_psk may be stored.
      
       
         Epoch Authenticators
         The main MLS key schedule provides a per-epoch  epoch_authenticator. If one
member of the group is being impersonated by an active attacker, the
 epoch_authenticator computed by their client will differ from those computed
by the other group members.
         This property can be used to construct defenses against impersonation attacks
that are effective even if members' signature keys are compromised. As a trivial
example, if the users of the clients in an MLS group were to meet in person and
reliably confirm that their epoch authenticator values were equal (using some
suitable user interface), then each user would be assured that the others were
not being impersonated in the current epoch. As soon as the epoch changed,
though, they would need to redo this confirmation. The state of the group would
have changed, possibly introducing an attacker.
         More generally, in order for the members of an MLS group to obtain concrete
authentication protections using the  epoch_authenticator, they will need to
use it in some secondary protocol (such as the face-to-face protocol above).
The details of that protocol will then determine the specific authentication
protections provided to the MLS group.
      
    
     
       Secret Tree
       For the generation of encryption keys and nonces, the key schedule begins with
the  encryption_secret at the root and derives a tree of secrets with the same
structure as the group's ratchet tree. Each leaf in the secret tree is
associated with the same group member as the corresponding leaf in the ratchet
tree.
       If N is a parent node in the secret tree, then the secrets of the children of N
are defined as follows (where left(N) and right(N) denote the children of N):
       
         Derivation of Secrets from Parent to Children within a Secret Tree
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tree_node_[N]_secret
        |
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        +--> ExpandWithLabel(., "tree", "left", KDF.Nh)
        |    = tree_node_[left(N)]_secret
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        +--> ExpandWithLabel(., "tree", "right", KDF.Nh)
             = tree_node_[right(N)]_secret

        
      
       The secret in the leaf of the secret tree is used to initiate two symmetric hash
ratchets, from which a sequence of single-use keys and nonces are derived, as
described in  . The root of each ratchet is computed as:
       
         Initialization of the Hash Ratchets from the Leaves of a Secret Tree
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tree_node_[N]_secret
        |
        |
        +--> ExpandWithLabel(., "handshake", "", KDF.Nh)
        |    = handshake_ratchet_secret_[N]_[0]
        |
        +--> ExpandWithLabel(., "application", "", KDF.Nh)
             = application_ratchet_secret_[N]_[0]

        
      
       
         Encryption Keys
         As described in  , MLS encrypts three different
types of information:
         
           Metadata (sender information)
           Handshake messages (Proposal and Commit)
           Application messages
        
         The sender information used to look up the key for content encryption is
encrypted with an AEAD where the key and nonce are derived from both
 sender_data_secret and a sample of the encrypted message content.
         For handshake and application messages, a sequence of keys is derived via a
"sender ratchet".  Each sender has their own sender ratchet, and each step along
the ratchet is called a "generation".
         The following figure shows a secret tree for a four-member group, with the
handshake and application ratchets that member D will use for sending and the
first two application keys and nonces.
         
           Secret Tree for a Four-Member Group
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         A sender ratchet starts from a per-sender base secret derived from a Secret
Tree, as described in  . The base secret initiates a symmetric
hash ratchet, which generates a sequence of keys and nonces. The sender uses the
j-th key/nonce pair in the sequence to encrypt (using the AEAD) the j-th message
they send during that epoch. Each key/nonce pair  MUST NOT be used to encrypt
more than one message.
         Keys, nonces, and the secrets in ratchets are derived using
DeriveTreeSecret. The context in a given call consists of the current position
in the ratchet.
         
DeriveTreeSecret(Secret, Label, Generation, Length) =
    ExpandWithLabel(Secret, Label, Generation, Length)

         Where  Generation is encoded as a big endian uint32.
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ratchet_secret_[N]_[j]
      |
      +--> DeriveTreeSecret(., "nonce", j, AEAD.Nn)
      |    = ratchet_nonce_[N]_[j]
      |
      +--> DeriveTreeSecret(., "key", j,  AEAD.Nk)
      |    = ratchet_key_[N]_[j]
      |
      V
DeriveTreeSecret(., "secret", j, KDF.Nh)
= ratchet_secret_[N]_[j+1]

        
         Here  AEAD.Nn and  AEAD.Nk denote the lengths
in bytes of the nonce and key for the AEAD scheme defined by
the cipher suite.
      
       
         Deletion Schedule
         It is important to delete all security-sensitive values as soon as they are
 consumed. A sensitive value S is said to be  consumed if:
         
           S was used to encrypt or (successfully) decrypt a message, or
           a key, nonce, or secret derived from S has been consumed. (This goes for
values derived via DeriveSecret as well as ExpandWithLabel.)
        
         Here S may be the  init_secret,  commit_secret,  epoch_secret, or
 encryption_secret as well as any secret in a secret tree or one of the
ratchets.
         As soon as a group member consumes a value, they  MUST immediately delete
(all representations of) that value. This is crucial to ensuring
forward secrecy for past messages. Members  MAY keep unconsumed values around
for some reasonable amount of time to handle out-of-order message delivery.
         For example, suppose a group member encrypts or (successfully) decrypts an
application message using the j-th key and nonce in the ratchet of leaf node
L in some epoch n. Then, for that member, at least the following
values have been consumed and  MUST be deleted:
         
           the  commit_secret,  joiner_secret,  epoch_secret, and  encryption_secret of
that epoch n as well as the  init_secret of the previous epoch n-1,
           all node secrets in the secret tree on the path from the root to the leaf with
node L,
           the first j secrets in the application data ratchet of node L, and
           
             application_ratchet_nonce_[L]_[j] and  application_ratchet_key_[L]_[j].
        
         Concretely, consider the secret tree shown in  .  Client
A, B, or C would generate the illustrated values on receiving a message from D
with generation equal to 1, having not received a message with generation 0
(e.g., due to out-of-order delivery).  In such a case, the following values
would be consumed:
         
           The key K1 and nonce N1 used to decrypt the message
           The application ratchet secrets AR1 and AR0
           The tree secrets D, F, and G (recall that G is the  encryption_secret for the
epoch)
           The  epoch_secret,  commit_secret,  psk_secret, and  joiner_secret for the
current epoch
        
         Other values may be retained (not consumed):
         
           K0 and N0 for decryption of an out-of-order message with generation 0
           AR2 for derivation of further message decryption keys and nonces
           HR0 for protection of handshake messages from D
           E and C for deriving secrets used by senders A, B, and C
        
      
    
     
       Key Packages
       In order to facilitate the asynchronous addition of clients to a
group, clients can pre-publish KeyPackage objects that
provide some public information about a user. A KeyPackage object specifies:
       
         a protocol version and cipher suite that the client supports,
         a public key that others can use to encrypt a Welcome message to this client
(an "init key"), and
         the content of the leaf node that should be added to the tree to represent
this client.
      
       KeyPackages are intended to be used only once and  SHOULD NOT
be reused except in the case of a "last resort" KeyPackage (see  ).
Clients  MAY generate and publish multiple KeyPackages to
support multiple cipher suites.
       The value for  init_key  MUST be a public key for the asymmetric encryption
scheme defined by  cipher_suite, and it  MUST be unique among the set of
KeyPackages created by this client.  Likewise, the  leaf_node field  MUST be
valid for the cipher suite, including both the  encryption_key and
 signature_key fields.  The whole structure is signed using the client's
signature key. A KeyPackage object with an invalid signature field  MUST be
considered malformed.
       The signature is computed by the function  SignWithLabel with a label
 "KeyPackageTBS" and a  Content input comprising all of the fields except for the
signature field.
       
struct {
    ProtocolVersion version;
    CipherSuite cipher_suite;
    HPKEPublicKey init_key;
    LeafNode leaf_node;
    Extension extensions<V>;
    /* SignWithLabel(., "KeyPackageTBS", KeyPackageTBS) */
    opaque signature<V>;
} KeyPackage;

struct {
    ProtocolVersion version;
    CipherSuite cipher_suite;
    HPKEPublicKey init_key;
    LeafNode leaf_node;
    Extension extensions<V>;
} KeyPackageTBS;

       If a client receives a KeyPackage carried within an MLSMessage object, then it
 MUST verify that the  version field of the KeyPackage has the same value as the
 version field of the MLSMessage.  The  version field in the KeyPackage
provides an explicit signal of the intended version to the other members of
group when they receive the KeyPackage in an Add proposal.
       The field  leaf_node.capabilities indicates what protocol versions,
cipher suites, credential types, and non-default proposal/extension types are supported
by the client.  (As discussed in  , some proposal and extension types defined in this document are considered
"default" and thus are not listed.)  This information allows MLS session
establishment to be safe from downgrade attacks on the parameters described (as
discussed in  ), while still only advertising one version and
one cipher suite per KeyPackage.
       The field  leaf_node.leaf_node_source of the LeafNode in a KeyPackage  MUST be
set to  key_package.
       Extensions included in the  extensions or  leaf_node.extensions fields  MUST
be included in the  leaf_node.capabilities field.  As discussed in
 , unknown extensions in  KeyPackage.extensions  MUST be
ignored, and the creator of a KeyPackage object  SHOULD include some random GREASE
extensions to help ensure that other clients correctly ignore unknown
extensions.
       
         KeyPackage Validation
         The validity of a KeyPackage needs to be verified at a few stages:
         
           When a KeyPackage is downloaded by a group member, before it is used
to add the client to the group
           When a KeyPackage is received by a group member in an Add message
        
         The client verifies the validity of a KeyPackage using the following steps:
         
           Verify that the cipher suite and protocol version of the KeyPackage match
those in the GroupContext.
           Verify that the  leaf_node of the KeyPackage is valid for a KeyPackage
according to  .
           Verify that the signature on the KeyPackage is valid using the public key
in  leaf_node.credential.
           Verify that the value of  leaf_node.encryption_key is different from the value of
the  init_key field.
        
      
    
     
       Group Creation
       A group is always created with a single member, the "creator".  Other members
are then added to the group using the usual Add/Commit mechanism.
       The creator of a group is responsible for setting the group ID, cipher suite, and
initial extensions for the group.  If the creator intends to add other members
at the time of creation, then it  SHOULD fetch KeyPackages for the members to be
added, and select a cipher suite and extensions according to the capabilities of
the members.  To protect against downgrade attacks, the creator  MUST use the
 capabilities information in these KeyPackages to verify that the chosen
version and cipher suite is the best option supported by all members.
       Group IDs  SHOULD be constructed in such a way that there is an overwhelmingly low
probability of honest group creators generating the same group ID, even without
assistance from the Delivery Service. This can be done, for example, by making the group ID a
freshly generated random value of size  KDF.Nh. The Delivery Service  MAY
attempt to ensure that group IDs are globally unique by rejecting the creation
of new groups with a previously used ID.
       To initialize a group, the creator of the group  MUST take the
following steps:
       
         
           Initialize a one-member group with the following initial values:
          
           
             Ratchet tree: A tree with a single node, a leaf node containing an HPKE public
key and credential for the creator
             Group ID: A value set by the creator
             Epoch: 0
             Tree hash: The root hash of the above ratchet tree
             Confirmed transcript hash: The zero-length octet string
             Epoch secret: A fresh random value of size  KDF.Nh
             Extensions: Any values of the creator's choosing
          
        
         
           Calculate the interim transcript hash:
          
           
             Derive the  confirmation_key for the epoch as described in
 .
             Compute a  confirmation_tag over the empty  confirmed_transcript_hash
using the  confirmation_key as described in  .
             Compute the updated  interim_transcript_hash from the
 confirmed_transcript_hash and the  confirmation_tag as described in
 .
          
        
      
       At this point, the creator's state represents a one-member group with a fully
initialized key schedule, transcript hashes, etc.  Proposals and Commits can be
generated for this group state just like any other state of the group, such as
Add proposals and Commits to add other members to the group.  A GroupInfo object
for this group state can also be published to facilitate external joins.
       Members other than the creator join either by being sent a Welcome message (as
described in  ) or by sending an external Commit
(see  ).
       In principle, the above process could be streamlined by having the
creator directly create a tree and choose a random value for first
epoch's epoch secret.  We follow the steps above because it removes
unnecessary choices, by which, for example, bad randomness could be
introduced.  The only choices the creator makes here are its own
KeyPackage and the leaf secret from which the Commit is built.
       
         Required Capabilities
         The configuration of a group imposes certain requirements on clients in the
group.  At a minimum, all members of the group need to support the cipher suite
and protocol version in use.  Additional requirements can be imposed by
including a  required_capabilities extension in the GroupContext.
         
struct {
    ExtensionType extension_types<V>;
    ProposalType proposal_types<V>;
    CredentialType credential_types<V>;
} RequiredCapabilities;

         This extension lists the extensions, proposals, and credential types that must be supported by
all members of the group. The "default" proposal and extension types defined in this
document are assumed to be implemented by all clients, and need not be listed in
RequiredCapabilities in order to be safely used. Note that this is not true for
credential types.
         For new members, support for required capabilities is enforced by existing
members during the application of Add commits.  Existing members should of
course be in compliance already.  In order to ensure this continues to be the
case even as the group's extensions are updated, a GroupContextExtensions
proposal is deemed invalid if it contains a  required_capabilities extension that
requires non-default capabilities not supported by all current members.
      
       
         Reinitialization
         A group may be reinitialized by creating a new group with the same membership
and different parameters, and linking it to the old group via a resumption PSK.
The members of a group reinitialize it using the following steps:
         
           A member of the old group sends a ReInit proposal (see  ).
           A member of the old group sends a Commit covering the ReInit proposal.
           
             A member of the old group creates an initial Commit that sets up a new group
that matches the ReInit and sends a Welcome message:
            
             
               The  version,  cipher_suite,  group_id, and  extensions fields of the GroupContext object in the Welcome
message  MUST be the same as the corresponding fields in the ReInit
proposal. The  epoch in the Welcome message  MUST be 1.
               The Welcome message  MUST specify a PreSharedKeyID of type  resumption with usage
 reinit, where the  group_id field matches the old group and the  epoch
field indicates the epoch after the Commit covering the ReInit.
            
          
        
         Note that these three steps may be done by the same group member or different
members.  For example, if a group member sends a Commit with an inline ReInit
proposal (steps 1 and 2) but then goes offline, another group member may
recreate the group instead.  This flexibility avoids situations where a group
gets stuck between steps 2 and 3.
         Resumption PSKs with usage  reinit  MUST NOT be used in other contexts.  A
PreSharedKey proposal with type  resumption and usage  reinit  MUST be
considered invalid.
      
       
         Subgroup Branching
         A new group can be formed from a subset of an existing group's members, using
the same parameters as the old group.
         A member can create a subgroup by performing the following steps:
         
           Fetch a new KeyPackage for each group member that should be included in the
subgroup.
           Create an initial Commit message that sets up the new group and contains a
PreSharedKey proposal of type  resumption with usage  branch. To avoid key
reuse, the  psk_nonce included in the PreSharedKeyID object  MUST be a
randomly sampled nonce of length  KDF.Nh.
           Send the corresponding Welcome message to the subgroup members.
        
         A client receiving a Welcome message including a PreSharedKey of type  resumption with
usage  branch  MUST verify that the new group reflects a subgroup branched from
the referenced group by checking that:
         
           The  version and  cipher_suite values in the Welcome message are the same as
those used by the old group.
           The  epoch in the Welcome message  MUST be 1.
           Each LeafNode in a new subgroup  MUST match some LeafNode in the original
group. In this context, a pair of LeafNodes is said to "match" if the
identifiers presented by their respective credentials are considered
equivalent by the application.
        
         Resumption PSKs with usage  branch  MUST NOT be used in other contexts.  A
PreSharedKey proposal with type  resumption and usage  branch  MUST be
considered invalid.
      
    
     
       Group Evolution
       Over the lifetime of a group, its membership can change, and existing members
might want to change their keys in order to achieve post-compromise security.
In MLS, each such change is accomplished by a two-step process:
       
         A proposal to make the change is broadcast to the group in a Proposal
message.
         A member of the group or a new member broadcasts a Commit message that causes
one or more proposed changes to enter into effect.
      
       In cases where the Proposal and Commit are sent by the same member, these two steps
can be combined by sending the proposals in the commit.
       The group thus evolves from one cryptographic state to another each time a
Commit message is sent and processed.  These states are referred to as "epochs"
and are uniquely identified among states of the group by eight-octet epoch values.
When a new group is initialized, its initial state epoch is 0x0000000000000000.  Each time
a state transition occurs, the epoch number is incremented by one.
       
         Proposals
         Proposals are included in a FramedContent by way of a Proposal structure
that indicates their type:
         
// See the "MLS Proposal Types" IANA registry for values
uint16 ProposalType;

struct {
    ProposalType proposal_type;
    select (Proposal.proposal_type) {
        case add:                      Add;
        case update:                   Update;
        case remove:                   Remove;
        case psk:                      PreSharedKey;
        case reinit:                   ReInit;
        case external_init:            ExternalInit;
        case group_context_extensions: GroupContextExtensions;
    };
} Proposal;

         On receiving a FramedContent containing a Proposal, a client  MUST verify the
signature inside FramedContentAuthData and that the  epoch field of the enclosing
FramedContent is equal to the  epoch field of the current GroupContext object.
If the verification is successful, then the Proposal should be cached in such a way
that it can be retrieved by hash (as a ProposalOrRef object) in a later Commit message.
         
           Add
           An Add proposal requests that a client with a specified KeyPackage be added
to the group.
           
struct {
    KeyPackage key_package;
} Add;

           An Add proposal is invalid if the KeyPackage is invalid according to
 .
           An Add is applied after being included in a Commit message.  The position of the
Add in the list of proposals determines the leaf node where the new member will
be added.  For the first Add in the Commit, the corresponding new member will be
placed in the leftmost empty leaf in the tree, for the second Add, the next
empty leaf to the right, etc. If no empty leaf exists, the tree is extended to
the right.
           
             Identify the leaf L for the new member: if there are empty leaves in the tree,
L is the leftmost empty leaf. Otherwise, the tree is extended to the right as
described in  , and L is assigned the leftmost new
blank leaf.
             For each non-blank intermediate node along the path from the leaf L
to the root, add L's leaf index to the  unmerged_leaves list for the node.
             Set the leaf node L to a new node containing the LeafNode object carried in
the  leaf_node field of the KeyPackage in the Add.
          
        
         
           Update
           An Update proposal is a similar mechanism to Add with the distinction
that it replaces the sender's LeafNode in the tree instead of adding a new leaf
to the tree.
           
struct {
    LeafNode leaf_node;
} Update;

           An Update proposal is invalid if the LeafNode is invalid for an Update
proposal according to  .
           A member of the group applies an Update message by taking the following steps:
           
             Replace the sender's LeafNode with the one contained in the Update proposal.
             Blank the intermediate nodes along the path from the sender's leaf to the
root.
          
        
         
           Remove
           A Remove proposal requests that the member with the leaf index  removed be removed
from the group.
           
struct {
    uint32 removed;
} Remove;

           A Remove proposal is invalid if the  removed field does not identify a non-blank
leaf node.
           A member of the group applies a Remove message by taking the following steps:
           
             Identify the leaf node matching  removed.  Let L be this leaf node.
             Replace the leaf node L with a blank node.
             Blank the intermediate nodes along the path from L to the root.
             Truncate the tree by removing the right subtree until there is at least one
non-blank leaf node in the right subtree.  If the rightmost non-blank leaf has
index L, then this will result in the tree having 2 d leaves, where  d is
the smallest value such that 2 d >  L.
          
        
         
           PreSharedKey
           A PreSharedKey proposal can be used to request that a pre-shared key be
injected into the key schedule in the process of advancing the epoch.
           
struct {
    PreSharedKeyID psk;
} PreSharedKey;

           A PreSharedKey proposal is invalid if any of the following is true:
           
             The PreSharedKey proposal is not being processed as part of a reinitialization
of the group (see  ), and the PreSharedKeyID has  psktype
set to  resumption and  usage set to  reinit.
             The PreSharedKey proposal is not being processed as part of a subgroup
branching operation (see  ), and the PreSharedKeyID has
 psktype set to  resumption and  usage set to  branch.
             The  psk_nonce is not of length  KDF.Nh.
          
           The  psk_nonce  MUST be randomly sampled. When processing
a Commit message that includes one or more PreSharedKey proposals, group
members derive  psk_secret as described in  , where the
order of the PSKs corresponds to the order of the PreSharedKey proposals
in the Commit.
        
         
           ReInit
           A ReInit proposal represents a request to reinitialize the group with different
parameters, for example, to increase the version number or to change the
cipher suite. The reinitialization is done by creating a completely new group
and shutting down the old one.
           
struct {
    opaque group_id<V>;
    ProtocolVersion version;
    CipherSuite cipher_suite;
    Extension extensions<V>;
} ReInit;

           A ReInit proposal is invalid if the  version field is less than the version
for the current group.
           A member of the group applies a ReInit proposal by waiting for the committer to
send the Welcome message that matches the ReInit, according to the criteria in
 .
        
         
           ExternalInit
           An ExternalInit proposal is used by new members that want to join a group by
using an external commit. This proposal can only be used in that context.
           
struct {
  opaque kem_output<V>;
} ExternalInit;

           A member of the group applies an ExternalInit message by initializing the next
epoch using an init secret computed as described in  .
The  kem_output field contains the required KEM output.
        
         
           GroupContextExtensions
           A GroupContextExtensions proposal is used to update the list of extensions in
the GroupContext for the group.
           
struct {
  Extension extensions<V>;
} GroupContextExtensions;

           A GroupContextExtensions proposal is invalid if it includes a
 required_capabilities extension and some members of the group do not support
some of the required capabilities (including those added in the same Commit,
and excluding those removed).
           A member of the group applies a GroupContextExtensions proposal with the
following steps:
           
             Remove all of the existing extensions from the GroupContext object for the
group and replace them with the list of extensions in the proposal.  (This
is a wholesale replacement, not a merge. An extension is only carried over if
the sender of the proposal includes it in the new list.)
          
           Note that once the GroupContext is updated, its inclusion in the
 confirmation_tag by way of the key schedule will confirm that all members of the
group agree on the extensions in use.
        
         
           External Proposals
           Proposals can be constructed and sent to the group by a party
that is outside the group in two cases. One case, indicated by the  external SenderType,
allows an entity outside the group to submit proposals to the group.
For example, an automated service might propose
removing a member of a group who has been inactive for a long time, or propose adding
a newly hired staff member to a group representing a real-world team.
An  external sender might send a ReInit proposal to enforce a changed policy
regarding MLS versions or cipher suites.
           The  external SenderType requires that signers are pre-provisioned
to the clients within a group and can only be used if the
 external_senders extension is present in the group's GroupContext.
           The other case, indicated by the  new_member_proposal SenderType, is useful
when existing members of the group can independently verify that an Add proposal
sent by the new joiner itself (not an existing member) is authorized. External
proposals that are not authorized are considered invalid.
           An external proposal  MUST be sent as a PublicMessage object, since the sender
will not have the keys necessary to construct a PrivateMessage object.
           Proposals of some types cannot be sent by an  external sender.  Among the
proposal types defined in this document, only the following types may be sent by
an  external sender:
           
             
               add
            
             
               remove
            
             
               psk
            
             
               reinit
            
             
               group_context_extensions
            
          
           Messages from  external senders containing proposal types other than the above
 MUST be rejected as malformed.  New proposal types defined in the future  MUST
define whether they may be sent by  external senders.  The "Ext" column in
the "MLS Proposal Types" registry ( ) reflects this property.
           
             External Senders Extension
             The  external_senders extension is a group context extension that contains
the credentials and signature keys of senders that are permitted to send
external proposals to the group.
             
struct {
  SignaturePublicKey signature_key;
  Credential credential;
} ExternalSender;

ExternalSender external_senders<V>;

          
        
      
       
         Proposal List Validation
         A group member creating a Commit and a group member processing a Commit
 MUST verify that the list of committed proposals is valid using one of the following
procedures, depending on whether the Commit is external or not.  If the list of
proposals is invalid, then the Commit message  MUST be rejected as invalid.
         For a regular, i.e., not external, Commit, the list is invalid if any of the
following occurs:
         
           It contains an individual proposal that is invalid as specified in  .
           It contains an Update proposal generated by the committer.
           It contains a Remove proposal that removes the committer.
           It contains multiple Update and/or Remove proposals that apply to the same leaf.
If the committer has received multiple such proposals they  SHOULD prefer any Remove
received, or the most recent Update if there are no Removes.
           It contains multiple Add proposals that contain KeyPackages that represent the same
client according to the application (for example, identical signature keys).
           It contains an Add proposal with a KeyPackage that represents a client already
in the group according to the application, unless there is a Remove proposal
in the list removing the matching client from the group.
           It contains multiple PreSharedKey proposals that reference the same PreSharedKeyID.
           It contains multiple GroupContextExtensions proposals.
           It contains a ReInit proposal together with any other proposal. If the committer has
received other proposals during the epoch, they  SHOULD prefer them over the
ReInit proposal, allowing the ReInit to be resent and applied in a subsequent
epoch.
           It contains an ExternalInit proposal.
           It contains a Proposal with a non-default proposal type that is not supported by some
members of the group that will process the Commit (i.e., members being added
or removed by the Commit do not need to support the proposal type).
           After processing the Commit the ratchet tree is invalid, in particular, if it
contains any leaf node that is invalid according to  .
        
         An application may extend the above procedure by additional rules, for example,
requiring application-level permissions to add members, or rules concerning
non-default proposal types.
         For an external Commit, the list is valid if it contains only the following proposals
(not necessarily in this order):
         
           Exactly one ExternalInit
           At most one Remove proposal, with which the joiner removes an
old version of themselves. If a Remove proposal is present, then the LeafNode in the
 path field of the external Commit  MUST meet the same criteria as would the LeafNode
in an Update for the removed leaf (see  ). In particular, the  credential
in the LeafNode  MUST present a set of identifiers that is acceptable to the
application for the removed participant.
           Zero or more PreSharedKey proposals
           No other proposals
        
         Proposal types defined in the future may make updates to the above validation
logic to incorporate considerations related to proposals of the new type.
      
       
         Applying a Proposal List
         The sections above defining each proposal type describe how each individual
proposal is applied.  When creating or processing a Commit, a client applies a
list of proposals to the ratchet tree and GroupContext. The client  MUST apply
the proposals in the list in the following order:
         
           If there is a GroupContextExtensions proposal, replace the  extensions field
of the GroupContext for the group with the contents of the proposal.  The
new  extensions  MUST be used when evaluating other proposals in this list. For
example, if a GroupContextExtensions proposal adds a  required_capabilities
extension, then any Add proposals need to indicate support for those
capabilities.
           Apply any Update proposals to the ratchet tree, in any order.
           Apply any Remove proposals to the ratchet tree, in any order.
           Apply any Add proposals to the ratchet tree, in the order they appear in the list.
           Look up the PSK secrets for any PreSharedKey proposals, in the order they
appear in the list.  These secrets are then used to advance the key schedule
later in Commit processing.
           If there is an ExternalInit proposal, use it to derive the  init_secret for
use later in Commit processing.
           If there is a ReInit proposal, note its parameters for application later in
Commit processing.
        
         Proposal types defined in the future  MUST specify how the above steps are to be
adjusted to accommodate the application of proposals of the new type.
      
       
         Commit
         A Commit message initiates a new epoch for the group, based on a collection of
Proposals. It instructs group members to update their representation of the
state of the group by applying the proposals and advancing the key schedule.
         Each proposal covered by the Commit is included by a ProposalOrRef value, which
identifies the proposal to be applied by value or by reference.  Commits that
refer to new Proposals from the committer can be included by value. Commits
for previously sent proposals from anyone (including the committer) can be sent
by reference.  Proposals sent by reference are specified by including the hash of
the AuthenticatedContent object in which the proposal was sent (see  ).
         
enum {
  reserved(0),
  proposal(1),
  reference(2),
  (255)
} ProposalOrRefType;

struct {
  ProposalOrRefType type;
  select (ProposalOrRef.type) {
    case proposal:  Proposal proposal;
    case reference: ProposalRef reference;
  };
} ProposalOrRef;

struct {
    ProposalOrRef proposals<V>;
    optional<UpdatePath> path;
} Commit;

         A group member that has observed one or more valid proposals within an epoch  MUST send
a Commit message before sending application data. This ensures, for example,
that any members whose removal was proposed during the epoch are actually
removed before any application data is transmitted.
         A sender and a receiver of a Commit  MUST verify that the committed list of
proposals is valid as specified in  . A list is invalid if, for example,
it includes an Update and a Remove for the same member, or an Add when the sender does not have
the application-level permission to add new users.
         The sender of a Commit  SHOULD include all proposals that it has received
during the current epoch that are valid according to the rules for their
proposal types and according to application policy, as long as this results in
a valid proposal list.
         Due to the asynchronous nature of proposals, receivers of a Commit  SHOULD NOT enforce
that all valid proposals sent within the current epoch are referenced by the next
Commit. In the event that a valid proposal is omitted from the next Commit, and
that proposal is still valid in the current epoch, the sender of the proposal
 MAY resend it after updating it to reflect the current epoch.
         A member of the group  MAY send a Commit that references no proposals at all,
which would thus have an empty  proposals vector.  Such
a Commit resets the sender's leaf and the nodes along its direct path, and
provides forward secrecy and post-compromise security with regard to the sender
of the Commit.  An Update proposal can be regarded as a "lazy" version of this
operation, where only the leaf changes and intermediate nodes are blanked out.
         By default, the  path field of a Commit  MUST be populated.  The  path field
 MAY be omitted if (a) it covers at least one proposal and (b) none of the proposals
covered by the Commit are of "path required" types.  A proposal type requires a
path if it cannot change the group membership in a way that requires the forward
secrecy and post-compromise security guarantees that an UpdatePath provides.
The only proposal types defined in this document that do not require a path are:
         
           
             add
          
           
             psk
          
           
             reinit
          
        
         New proposal types  MUST state whether they require a path. If any instance of a
proposal type requires a path, then the proposal type requires a path. This
attribute of a proposal type is reflected in the "Path Required" field of the
"MLS Proposal Types" registry defined in  .
         Update and Remove proposals are the clearest examples of proposals that require
a path.  An UpdatePath is required to evict the removed member or the old
appearance of the updated member.
         In pseudocode, the logic for validating the  path field of a Commit is as
follows:
         
pathRequiredTypes = [
    update,
    remove,
    external_init,
    group_context_extensions
]

pathRequired = false

for proposal in commit.proposals:
    pathRequired = pathRequired ||
                   (proposal.msg_type in pathRequiredTypes)

if len(commit.proposals) == 0 || pathRequired:
    assert(commit.path != null)

         To summarize, a Commit can have three different configurations, with different
uses:
         
           An "empty" Commit that references no proposals, which updates the committer's
contribution to the group and provides PCS with regard to the committer.
           A "partial" Commit that references proposals that do not require a path, and
where the path is empty. Such a Commit doesn't provide PCS with regard to the
committer.
           A "full" Commit that references proposals of any type, which provides FS with
regard to any removed members and PCS for the committer and any updated
members.
        
         
           Creating a Commit
           When creating or processing a Commit, a client updates the ratchet tree and
GroupContext for the group.  These values advance from an "old" state reflecting
the current epoch to a "new" state reflecting the new epoch initiated by the
Commit.  When the Commit includes an UpdatePath, a "provisional" group context
is constructed that reflects changes due to the proposals and UpdatePath, but
with the old confirmed transcript hash.
           A member of the group creates a Commit message and the corresponding Welcome
message at the same time, by taking the following steps:
           
             Verify that the list of proposals to be committed is valid as specified in
 .
             Construct an initial Commit object with the  proposals field populated from
Proposals received during the current epoch, and with the  path field empty.
             Create the new ratchet tree and GroupContext by applying the list of proposals
to the old ratchet tree and GroupContext, as defined in
 .
             Decide whether to populate the  path field: If the  path field is required
based on the proposals that are in the Commit (see above), then it  MUST be
populated.  Otherwise, the sender  MAY omit the  path field at its discretion.
             
               If populating the  path field:  
               
                 If this is an external Commit, assign the sender the leftmost blank leaf
node in the new ratchet tree.  If there are no blank leaf nodes in the new
ratchet tree, expand the tree to the right as defined in
  and assign the leftmost new blank leaf to the
sender.
                 Update the sender's direct path in the ratchet tree as described in
 .  Define
 commit_secret as the value  path_secret[n+1] derived from the
last path secret value ( path_secret[n]) derived for the UpdatePath.
                 
                   Construct a provisional GroupContext object containing the following values:
                  
                   
                     
                       group_id: Same as the old GroupContext
                     
                       epoch: The epoch number for the new epoch
                     
                       tree_hash: The tree hash of the new ratchet tree
                     
                       confirmed_transcript_hash: Same as the old GroupContext
                     
                       extensions: The new GroupContext extensions (possibly updated by a
GroupContextExtensions proposal)
                  
                
                 Encrypt the path secrets resulting from the tree update to the group as
described in  , using the provisional
group context as the context for HPKE encryption.
                 Create an UpdatePath containing the sender's new leaf node and the new
public keys and encrypted path secrets along the sender's filtered direct
path.  Assign this UpdatePath to the  path field in the Commit.
              
            
             If not populating the  path field: Set the  path field in the Commit to the
null optional.  Define  commit_secret as the all-zero vector of length
 KDF.Nh (the same length as a  path_secret value would be).
             Derive the  psk_secret as specified in  , where the order
of PSKs in the derivation corresponds to the order of PreSharedKey proposals
in the  proposals vector.
             
               Construct a FramedContent object containing the Commit object. Sign the
FramedContent using the old GroupContext as context.
              
               
                 Use the FramedContent to update the confirmed transcript hash and update
the new GroupContext.
                 Use the  init_secret from the previous epoch, the  commit_secret and
 psk_secret defined in the previous steps, and the new GroupContext to
compute the new  joiner_secret,  welcome_secret,  epoch_secret, and
derived secrets for the new epoch.
                 Use the  confirmation_key for the new epoch to compute the
 confirmation_tag value.
                 Calculate the interim transcript hash using the new confirmed transcript
hash and the  confirmation_tag from the FramedContentAuthData.
              
            
             
               Protect the AuthenticatedContent object using keys from the old epoch:
              
               
                 If encoding as PublicMessage, compute the  membership_tag value using the
 membership_key.
                 If encoding as a PrivateMessage, encrypt the message using the
 sender_data_secret and the next (key, nonce) pair from the sender's
handshake ratchet.
              
            
             
               Construct a GroupInfo reflecting the new state:
              
               
                 Set the  group_id,  epoch,  tree,  confirmed_transcript_hash,
 interim_transcript_hash, and  group_context_extensions fields to reflect
the new state.
                 Set the  confirmation_tag field to the value of the corresponding field in
the FramedContentAuthData object.
                 Add any other extensions as defined by the application.
                 Optionally derive an external key pair as described in  .
(required for external Commits, see  ).
                 Sign the GroupInfo using the member's private signing key.
                 Encrypt the GroupInfo using the key and nonce derived from the  joiner_secret.
for the new epoch (see  ).
              
            
             
               For each new member in the group:
              
               
                 Identify the lowest common ancestor in the tree of the new member's
leaf node and the member sending the Commit.
                 If the  path field was populated above: Compute the path secret
corresponding to the common ancestor node.
                 Compute an EncryptedGroupSecrets object that encapsulates the  init_secret
for the current epoch and the path secret (if present).
              
            
             Construct one or more Welcome messages from the encrypted GroupInfo object,
the encrypted key packages, and any PSKs for which a proposal was included in
the Commit. The order of the  psks  MUST be the same as the order of
PreSharedKey proposals in the  proposals vector.  As discussed in
 , the committer is free to choose how many
Welcome messages to construct.  However, the set of Welcome messages produced
in this step  MUST cover every new member added in the Commit.
             
               If a ReInit proposal was part of the Commit, the committer  MUST create a new
group with the parameters specified in the ReInit proposal,
and with the same members as the original group.
The Welcome message  MUST include a PreSharedKeyID with the following
parameters:
              
               
                 
                   psktype:  resumption
                 
                   usage:  reinit
                 
                   group_id: The group ID for the current group
                 
                   epoch: The epoch that the group will be in after this Commit
              
            
          
        
         
           Processing a Commit
           A member of the group applies a Commit message by taking the following steps:
           
             Verify that the  epoch field of the enclosing FramedContent is equal
to the  epoch field of the current GroupContext object.
             
               Unprotect the Commit using the keys from the current epoch:
              
               
                 If the message is encoded as PublicMessage, verify the membership MAC using
the  membership_key.
                 If the message is encoded as PrivateMessage, decrypt the message using the
 sender_data_secret and the (key, nonce) pair from the step on the sender's
hash ratchet indicated by the  generation field.
              
            
             Verify the signature on the FramedContent message as described in
 .
             Verify that the  proposals vector is valid according to the rules in
 .
             Verify that all PreSharedKey proposals in the  proposals vector are available.
             Create the new ratchet tree and GroupContext by applying the list of proposals
to the old ratchet tree and GroupContext, as defined in
 .
             Verify that the  path value is populated if the  proposals vector contains
any Update or Remove proposals, or if it's empty. Otherwise, the  path value
 MAY be omitted.
             
               If the  path value is populated, validate it and apply it to the tree:  
               
                 If this is an external Commit, assign the sender the leftmost blank leaf
node in the new ratchet tree.  If there are no blank leaf nodes in the new
ratchet tree, add a blank leaf to the right side of the new ratchet tree and
assign it to the sender.
                 Validate the LeafNode as specified in  .  The
 leaf_node_source field  MUST be set to  commit.
                 Verify that the  encryption_key value in the LeafNode is different from the
committer's current leaf node.
                 Verify that none of the public keys in the UpdatePath appear in any node of
the new ratchet tree.
                 Merge the UpdatePath into the new ratchet tree, as described in
 .
                 
                   Construct a provisional GroupContext object containing the following values:
                  
                   
                     
                       group_id: Same as the old GroupContext
                     
                       epoch: The epoch number for the new epoch
                     
                       tree_hash: The tree hash of the new ratchet tree
                     
                       confirmed_transcript_hash: Same as the old GroupContext
                     
                       extensions: The new GroupContext extensions (possibly updated by a
GroupContextExtensions proposal)
                  
                
                 Decrypt the path secrets for UpdatePath as described in
 , using the provisional GroupContext as
the context for HPKE decryption.
                 Define  commit_secret as the value  path_secret[n+1] derived from the
last path secret value ( path_secret[n]) derived for the UpdatePath.
              
            
             If the  path value is not populated, define  commit_secret as the all-zero
vector of length  KDF.Nh (the same length as a  path_secret value would be).
             Update the confirmed and interim transcript hashes using the new Commit, and
generate the new GroupContext.
             Derive the  psk_secret as specified in  , where the order
of PSKs in the derivation corresponds to the order of PreSharedKey proposals
in the  proposals vector.
             Use the  init_secret from the previous epoch, the  commit_secret and
 psk_secret defined in the previous steps, and the new GroupContext to
compute the new  joiner_secret,  welcome_secret,  epoch_secret, and
derived secrets for the new epoch.
             Use the  confirmation_key for the new epoch to compute the confirmation tag
for this message, as described below, and verify that it is the same as the
 confirmation_tag field in the FramedContentAuthData object.
             If the above checks are successful, consider the new GroupContext object
as the current state of the group.
             If the Commit included a ReInit proposal, the client  MUST NOT use the group to
send messages anymore. Instead, it  MUST wait for a Welcome message from the committer
meeting the requirements of  .
          
           Note that clients need to be prepared to receive a valid Commit message that removes
them from the group. In this case, the client cannot send any more messages in the
group and  SHOULD promptly delete its group state and secret tree. (A client might keep
the secret tree for a short time to decrypt late messages in the previous epoch.)
        
         
           Adding Members to the Group
           New members can join the group in two ways: by being added by a group
member or by adding themselves through an external Commit. In both cases, the
new members need information to bootstrap their local group state.
           
struct {
    GroupContext group_context;
    Extension extensions<V>;
    MAC confirmation_tag;
    uint32 signer;
    /* SignWithLabel(., "GroupInfoTBS", GroupInfoTBS) */
    opaque signature<V>;
} GroupInfo;

           The  group_context field represents the current state of the group.  The
 extensions field allows the sender to provide additional data that might be
useful to new joiners.  The  confirmation_tag represents the  confirmation tag
from the Commit that initiated the current epoch, or for epoch 0, the
confirmation tag computed in the creation of the group (see  ).
(In either case, the creator of a GroupInfo may recompute the confirmation tag
as  MAC(confirmation_key, confirmed_transcript_hash).)
           As discussed in  , unknown extensions in  GroupInfo.extensions  MUST be ignored, and the creator of a GroupInfo object  SHOULD include some
random GREASE extensions to help ensure that other clients correctly ignore unknown
extensions.  Extensions in  GroupInfo.group_context.extensions, however,  MUST
be supported by the new joiner.
           New members  MUST verify that  group_id is unique among the groups they are
currently participating in.
           New members also  MUST verify the  signature using the public key taken from the
leaf node of the ratchet tree with leaf index  signer. The
signature covers the following structure, comprising all the fields in the
GroupInfo above  signature:
           
struct {
    GroupContext group_context;
    Extension extensions<V>;
    MAC confirmation_tag;
    uint32 signer;
} GroupInfoTBS;

           
             Joining via Welcome Message
             The sender of a Commit message is responsible for sending a Welcome message to
each new member added via Add proposals.  The format of the Welcome message
allows a single Welcome message to be encrypted for multiple new members.  It is
up to the committer to decide how many Welcome messages to create for a given
Commit. The committer could create one Welcome that is encrypted for all new
members, a different Welcome for each new member, or Welcome messages for
batches of new members (according to some batching scheme that works well for
the application).  The processes for creating and processing the Welcome are the
same in all cases, aside from the set of new members for whom a given Welcome is
encrypted.
             The Welcome message provides the new
members with the current state of the group after the application of the Commit
message.  The new members will not be able to decrypt or verify the Commit
message, but they will have the secrets they need to participate in the epoch
initiated by the Commit message.
             In order to allow the same Welcome message to be sent to multiple new members,
information describing the group is encrypted with a symmetric key and nonce
derived from the  joiner_secret for the new epoch.  The  joiner_secret is
then encrypted to each new member using HPKE.  In the same encrypted package,
the committer transmits the path secret for the lowest (closest to the leaf) node
that is contained in the direct paths of both the committer and the new member.
This allows the new
member to compute private keys for nodes in its direct path that are being
reset by the corresponding Commit.
             If the sender of the Welcome message wants the receiving member to include a PSK
in the derivation of the  epoch_secret, they can populate the  psks field
indicating which PSK to use.
             
struct {
  opaque path_secret<V>;
} PathSecret;

struct {
  opaque joiner_secret<V>;
  optional<PathSecret> path_secret;
  PreSharedKeyID psks<V>;
} GroupSecrets;

struct {
  KeyPackageRef new_member;
  HPKECiphertext encrypted_group_secrets;
} EncryptedGroupSecrets;

struct {
  CipherSuite cipher_suite;
  EncryptedGroupSecrets secrets<V>;
  opaque encrypted_group_info<V>;
} Welcome;

             The client processing a Welcome message will need to have a copy of the group's
ratchet tree.  The tree can be provided in the Welcome message, in an extension
of type  ratchet_tree.  If it is sent otherwise (e.g., provided by a caching
service on the Delivery Service), then the client  MUST download the tree before
processing the Welcome.
             On receiving a Welcome message, a client processes it using the following steps:
             
               Identify an entry in the  secrets array where the  new_member
value corresponds to one of this client's KeyPackages, using the hash
indicated by the  cipher_suite field. If no such field exists, or if the
cipher suite indicated in the KeyPackage does not match the one in the
Welcome message, return an error.
               Decrypt the  encrypted_group_secrets value with the algorithms indicated by
the cipher suite and the private key  init_key_priv corresponding to
 init_key in the referenced KeyPackage.
            
             
encrypted_group_secrets =
  EncryptWithLabel(init_key, "Welcome",
                   encrypted_group_info, group_secrets)

group_secrets =
  DecryptWithLabel(init_key_priv, "Welcome",
                   encrypted_group_info, kem_output, ciphertext)

             
               If a PreSharedKeyID is part of the GroupSecrets and the client is not in
possession of the corresponding PSK, return an error. Additionally, if a
PreSharedKeyID has type  resumption with usage  reinit or  branch, verify
that it is the only such PSK.
               From the  joiner_secret in the decrypted GroupSecrets object and the PSKs
specified in the GroupSecrets, derive the  welcome_secret and then
the  welcome_key and  welcome_nonce. Use the key and nonce to decrypt the
 encrypted_group_info field.
            
             
welcome_nonce = ExpandWithLabel(welcome_secret, "nonce", "", AEAD.Nn)
welcome_key = ExpandWithLabel(welcome_secret, "key", "", AEAD.Nk)

             
               Verify the signature on the GroupInfo object. The signature input comprises
all of the fields in the GroupInfo object except the signature field. The
public key is taken from the LeafNode of the
ratchet tree with leaf index  signer. If the node is blank or if
signature verification fails, return an error.
               Verify that the  group_id is unique among the groups that the client is
currently participating in.
               Verify that the  cipher_suite in the GroupInfo matches the  cipher_suite in
the KeyPackage.
               
                 Verify the integrity of the ratchet tree.  
                 
                   Verify that the tree hash of the ratchet tree matches the  tree_hash field
in GroupInfo.
                   For each non-empty parent node, verify that it is "parent-hash valid",
as described in  .
                   For each non-empty leaf node, validate the LeafNode as described in
 .
                   
                     For each non-empty parent node and each entry in the node's
 unmerged_leaves field:      
                     
                       Verify that the entry represents a non-blank leaf node that is a
descendant of the parent node.
                       Verify that every non-blank intermediate node between the leaf node and the
parent node also has an entry for the leaf node in its  unmerged_leaves.
                       Verify that the encryption key in the parent node does not appear in any
other node of the tree.
                    
                  
                
              
               Identify a leaf whose LeafNode is
identical to the one in the KeyPackage.  If no such field exists, return an
error.  Let  my_leaf represent this leaf in the tree.
               
                 Construct a new group state using the information in the GroupInfo object.  
                 
                   Initialize the GroupContext for the group from the  group_context field
from the GroupInfo object.
                   Update the leaf  my_leaf with the private key corresponding to the
public key in the node, where  my_leaf is the new member's leaf node in
the ratchet tree, as defined above.
                   If the  path_secret value is set in the GroupSecrets object: Identify the
lowest common ancestor of the leaf node  my_leaf and of the node of
the member with leaf index  GroupInfo.signer. Set the private key for
this node to the private key derived from the  path_secret.
                   For each parent of the common ancestor, up to the root of the tree, derive
a new path secret, and set the private key for the node to the private key
derived from the path secret.  The private key  MUST be the private key
that corresponds to the public key in the node.
                
              
               Use the  joiner_secret from the GroupSecrets object to generate the epoch secret
and other derived secrets for the current epoch.
               Set the confirmed transcript hash in the new state to the value of the
 confirmed_transcript_hash in the GroupInfo.
               Verify the confirmation tag in the GroupInfo using the derived confirmation
key and the  confirmed_transcript_hash from the GroupInfo.
               Use the confirmed transcript hash and confirmation tag to compute the interim
transcript hash in the new state.
               
                 If a PreSharedKeyID was used that has type  resumption with usage  reinit
or  branch, verify that the  epoch field in the GroupInfo is equal to 1.  
                 
                   For usage  reinit, verify that the last Commit to the referenced group
contains a ReInit proposal and that the  group_id,  version,
 cipher_suite, and  group_context.extensions fields of the GroupInfo match
the ReInit proposal. Additionally, verify that all the members of the old
group are also members of the new group, according to the application.
                   For usage  branch, verify that the  version and  cipher_suite of the new
group match those of the old group, and that the members of the new group
compose a subset of the members of the old group, according to the
application.
                
              
            
          
           
             Joining via External Commits
             External Commits are a mechanism for new members (external parties that want to
become members of the group) to add themselves to a group, without requiring
that an existing member has to come online to issue a Commit that references an
Add proposal.
             Whether existing members of the group will accept or reject an external Commit
follows the same rules that are applied to other handshake messages.
             New members can create and issue an external Commit if they have access to the
following information for the group's current epoch:
             
               group ID
               epoch ID
               cipher suite
               public tree hash
               confirmed transcript hash
               confirmation tag of the most recent Commit
               group extensions
               external public key
            
             In other words, to join a group via an external Commit, a new member needs a
GroupInfo with an  external_pub extension present in its  extensions field.
             
struct {
    HPKEPublicKey external_pub;
} ExternalPub;

             Thus, a member of the group can enable new clients to join by making a GroupInfo
object available to them. Note that because a GroupInfo object is specific to an
epoch, it will need to be updated as the group advances. In particular, each
GroupInfo object can be used for one external join, since that external join
will cause the epoch to change.
             Note that the  tree_hash field is used the same way as in the Welcome message.
The full tree can be included via the  ratchet_tree extension
(see  ).
             The information in a GroupInfo is not generally public information, but applications
can choose to make it available to new members in order to allow External
Commits.
             In principle, external Commits work like regular Commits. However, their content
has to meet a specific set of requirements:
             
               External Commits  MUST contain a  path field (and is therefore a "full"
Commit).  The joiner is added at the leftmost free leaf node (just as if they
were added with an Add proposal), and the path is calculated relative to that
leaf node.
               The Commit  MUST NOT include any proposals by reference, since an external
joiner cannot determine the validity of proposals sent within the group.
               External Commits  MUST be signed by the new member.  In particular, the
signature on the enclosing AuthenticatedContent  MUST verify using the public key for
the credential in the  leaf_node of the  path field.
               When processing a Commit, both existing and new members  MUST use the external
init secret as described in  .
               The sender type for the AuthenticatedContent encapsulating the external Commit  MUST be
 new_member_commit.
            
             External Commits come in two "flavors" -- a "join" Commit that
adds the sender to the group or a "resync" Commit that replaces a member's prior
appearance with a new one.
             Note that the "resync" operation allows an attacker that has compromised a
member's signature private key to introduce themselves into the group and remove the
prior, legitimate member in a single Commit.  Without resync, this
can still be done, but it requires two operations: the external Commit to join and
a second Commit to remove the old appearance.  Applications for whom this
distinction is salient can choose to disallow external commits that contain a
Remove, or to allow such resync commits only if they contain a "reinit" PSK
proposal that demonstrates the joining member's presence in a prior epoch of the
group.  With the latter approach, the attacker would need to compromise the PSK
as well as the signing key, but the application will need to ensure that
continuing, non-resynchronizing members have the required PSK.
          
           
             Ratchet Tree Extension
             By default, a GroupInfo message only provides the joiner with a hash of
the group's ratchet tree.  In order to process or generate handshake
messages, the joiner will need to get a copy of the ratchet tree from some other
source.  (For example, the DS might provide a cached copy.)  The inclusion of
the tree hash in the GroupInfo message means that the source of the ratchet
tree need not be trusted to maintain the integrity of the tree.
             In cases where the application does not wish to provide such an external source,
the whole public state of the ratchet tree can be provided in an extension of
type  ratchet_tree, containing a  ratchet_tree object of the following form:
             
struct {
    NodeType node_type;
    select (Node.node_type) {
        case leaf:   LeafNode leaf_node;
        case parent: ParentNode parent_node;
    };
} Node;

optional<Node> ratchet_tree<V>;

             Each entry in the  ratchet_tree vector provides the value for a node in the
tree, or the null optional for a blank node.
             The nodes are listed in the order specified by a left-to-right in-order
traversal of the ratchet tree. Each node is listed between its left subtree and
its right subtree.  (This is the same ordering as specified for the array-based
trees outlined in  .)
             If the tree has 2 d leaves, then it has 2 d+1 - 1 nodes.  The
 ratchet_tree vector logically has this number of entries, but the sender
 MUST NOT include blank nodes after the last non-blank node.  The receiver  MUST
check that the last node in  ratchet_tree is non-blank, and then extend the tree to the
right until it has a length of the form 2 d+1 - 1, adding the minimum number
of blank values possible.  (Obviously, this may be done "virtually", by
synthesizing blank nodes when required, as opposed to actually changing the
structure in memory.)
             The leaves of the tree are stored in even-numbered entries in the array (the
leaf with index  L in array position  2*L). The root node of the tree is at
position 2 d - 1 of the array. Intermediate parent nodes can be identified by
performing the same calculation to the subarrays to the left and right of the
root, following something like the following algorithm:
             
# Assuming a class Node that has left and right members
def subtree_root(nodes):
    # If there is only one node in the array, return it
    if len(nodes) == 1:
        return Node(nodes[0])

    # Otherwise, the length of the array MUST be odd
    if len(nodes) % 2 == 0:
        raise Exception("Malformed node array {}", len(nodes))

    # Identify the root of the subtree
    d = 0
    while (2**(d+1)) < len(nodes):
       d += 1
    R = 2**d - 1
    root = Node(nodes[R])
    root.left = subtree_root(nodes[:R])
    root.right = subtree_root(nodes[(R+1):])
    return root

             (Note that this is the same ordering of nodes as in the array-based tree representation
described in  .  The algorithms in that section may be used to
simplify decoding this extension into other representations.)
             For example, the following tree with six non-blank leaves would be represented
as an array of eleven elements,  [A, W, B, X, C, _, D, Y, E, Z, F].  The above
decoding procedure would identify the subtree roots as follows (using R to
represent a subtree root):
             
               Left-to-Right In-Order Traversal of a Six-Member Tree
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             The presence of a  ratchet_tree extension in a GroupInfo message does not
result in any changes to the GroupContext extensions for the group.  The ratchet
tree provided is simply stored by the client and used for MLS operations.
             If this extension is not provided in a Welcome message, then the client will
need to fetch the ratchet tree over some other channel before it can generate or
process Commit messages.  Applications should ensure that this out-of-band
channel is provided with security protections equivalent to the protections that
are afforded to Proposal and Commit messages.  For example, an application that
encrypts Proposal and Commit messages might distribute ratchet trees encrypted
using a key exchanged over the MLS channel.
             Regardless of how the client obtains the tree, the client  MUST verify that the
root hash of the ratchet tree matches the  tree_hash of the GroupContext before
using the tree for MLS operations.
          
        
      
    
     
       Extensibility
       The base MLS protocol can be extended in a few ways.  New cipher suites can be
added to enable the use of new cryptographic algorithms.  New types of proposals
can be used to perform new actions within an epoch.  Extension fields can be
used to add additional information to the protocol.  In this section, we discuss
some constraints on these extensibility mechanisms that are necessary to ensure
broad interoperability.
       
         Additional Cipher Suites
         As discussed in  , MLS allows the participants in a group to
negotiate the cryptographic algorithms used within the group.  This
extensibility is important for maintaining the security of the protocol over
time  .  It also creates a risk of interoperability failure due to
clients not supporting a common cipher suite.
         The cipher suite registry defined in   attempts to strike a
balance on this point.  On the one hand, the base policy for the registry is
Specification Required, a fairly low bar designed to avoid the need for
standards work in cases where different ciphers are needed for niche
applications.  On the other hand, there is a higher bar (Standards Action) for ciphers to set the
Recommended field in the registry.  This higher bar is there in part to ensure
that the interoperability implications of new cipher suites are considered.
         MLS cipher suites are defined independent of MLS versions, so that in principle,
the same cipher suite can be used across versions.  Standards work defining new
versions of MLS should consider whether it is desirable for the new version to
be compatible with existing cipher suites, or whether the new version should rule
out some cipher suites. For example, a new version could follow the example of
HTTP/2, which restricted the set of allowed TLS ciphers (see  ).
      
       
         Proposals
         Commit messages do not have an extension field because the set of proposals is
extensible.  As discussed in  , Proposals with a non-default proposal
type  MUST NOT be included in a commit unless the proposal type is supported by
all the members of the group that will process the Commit.
      
       
         Credential Extensibility
         In order to ensure that MLS provides meaningful authentication, it is important
that each member is able to authenticate some identity information for each
other member.  Identity information is encoded in Credentials, so this property
is provided by ensuring that members use compatible credential types.
         The only types of credential that may be used in a group are those that all
members of the group support, as specified by the  capabilities field of each
LeafNode in the ratchet tree. An application can introduce new credential types
by choosing an unallocated identifier from the registry in
  and indicating support for the credential type in
published LeafNodes, whether in Update proposals to existing groups or
KeyPackages that are added to new groups. Once all members in a group indicate
support for the credential type, members can start using LeafNodes with the new
credential. Application may enforce that certain credential types always remain
supported by adding a  required_capabilities extension to the group's
GroupContext, which would prevent any member from being added to the group that
doesn't support them.
         In future extensions to MLS, it may be useful to allow a member to present more
than one credential.  For example, such credentials might present different
attributes attested by different authorities.  To be consistent with the general
principle stated at the beginning of this section, such an extension would need
to ensure that each member can authenticate some identity for each other member.
For each pair of members (Alice, Bob), Alice would need to present at least one
credential of a type that Bob supports.
      
       
         Extensions
         This protocol includes a mechanism for negotiating extension parameters similar
to the one in TLS  .  In TLS, extension negotiation is one-to-one: The
client offers extensions in its ClientHello message, and the server expresses
its choices for the session with extensions in its ServerHello and
EncryptedExtensions messages.  In MLS, extensions appear in the following
places:
         
           In KeyPackages, to describe additional information related to the client
           In LeafNodes, to describe additional information about the client or its
participation in the group (once in the ratchet tree)
           In the GroupInfo, to tell new members of a group what parameters are
being used by the group, and to provide any additional details required to
join the group
           In the GroupContext object, to ensure that all members of the group have the
same view of the parameters in use
        
         In other words, an application can use GroupContext extensions to ensure that
all members of the group agree on a set of parameters. Clients indicate their
support for parameters in the  capabilities field of their LeafNode. New
members of a group are informed of the group's GroupContext extensions via the
 extensions field in the  group_context field of the GroupInfo object. The
 extensions field in a GroupInfo object (outside of the  group_context field)
can be used to provide additional parameters to new joiners that are used to
join the group.
         This extension mechanism is designed to allow for the secure and forward-compatible
negotiation of extensions.  For this to work, implementations  MUST correctly
handle extensible fields:
         
           A client that posts a KeyPackage  MUST support all parameters advertised in
it. Otherwise, another client might fail to interoperate by selecting one of
those parameters.
           A client processing a KeyPackage object  MUST ignore all unrecognized values
in the  capabilities field of the LeafNode and all unknown extensions in
the  extensions and  leaf_node.extensions fields.  Otherwise, it could fail
to interoperate with newer clients.
           A client processing a GroupInfo object  MUST ignore all unrecognized
extensions in the  extensions field.
           Any field containing a list of extensions  MUST NOT have more than one
extension of any given type.
           A client adding a new member to a group  MUST verify that the LeafNode for the
new member is compatible with the group's extensions.  The  capabilities
field  MUST indicate support for each extension in the GroupContext.
           A client joining a group  MUST verify that it supports every extension in the
GroupContext for the group.  Otherwise, it  MUST treat the enclosing
GroupInfo message as invalid and not join the group.
        
         Note that the latter two requirements mean that all MLS GroupContext extensions
are mandatory, in the sense that an extension in use by the group  MUST be
supported by all members of the group.
         The parameters of a group may be changed by sending a GroupContextExtensions
proposal to enable additional extensions ( ), or
by reinitializing the group ( ).
      
       
         GREASE
         As described in  , clients are required to ignore unknown values
for certain parameters.  To help ensure that other clients implement this
behavior, a client can follow the "Generate Random Extensions And Sustain
Extensibility" or GREASE approach described in  .  In the context of
MLS, this means that a client generating a KeyPackage, LeafNode, or GroupInfo object includes
random values in certain fields which would be ignored by a
correctly implemented client processing the message.  A client that incorrectly
rejects unknown code points will fail to process such a message, providing a
signal to its implementer that the client needs to be fixed.
         When generating the following fields, an MLS client  SHOULD include a random
selection of values chosen from these GREASE values:
         
           
             LeafNode.capabilities.cipher_suites
          
           
             LeafNode.capabilities.extensions
          
           
             LeafNode.capabilities.proposals
          
           
             LeafNode.capabilities.credentials
          
           
             LeafNode.extensions
          
           
             KeyPackage.extensions
          
           
             GroupInfo.extensions
          
        
         For the KeyPackage and GroupInfo extensions, the  extension_data for GREASE
extensions  MAY have any contents selected by the sender, since they will be
ignored by a correctly implemented receiver.  For example, a sender might
populate these extensions with a randomly sized amount of random data.
         Note that any GREASE values added to  LeafNode.extensions need to be reflected
in  LeafNode.capabilities.extensions, since the LeafNode validation process
described in   requires that these two fields be
consistent.
         GREASE values  MUST NOT be sent in the following fields, because an unsupported
value in one these fields (including a GREASE value) will cause the enclosing
message to be rejected:
         
           
             Proposal.proposal_type
          
           
             Credential.credential_type
          
           
             GroupContext.extensions
          
           
             GroupContextExtensions.extensions
          
        
         Values reserved for GREASE have been registered in the various
registries in  .  This prevents conflict between GREASE
and real future values.  The following values are reserved in each registry:
 0x0A0A,  0x1A1A,  0x2A2A,  0x3A3A,  0x4A4A,  0x5A5A,  0x6A6A,  0x7A7A,
 0x8A8A,  0x9A9A,  0xAAAA,  0xBABA,  0xCACA,  0xDADA, and  0xEAEA.  (The
value  0xFAFA falls within the private use range.) These values  MUST only
appear in the fields listed above, and not, for example, in the  proposal_type
field of a Proposal.  Clients  MUST NOT implement any special processing rules
for how to handle these values when receiving them, since this negates their
utility for detecting extensibility failures.
         GREASE values  MUST be handled using normal logic for processing unsupported
values.  When comparing lists of capabilities to identify mutually supported
capabilities, clients  MUST represent their own capabilities with a list
containing only the capabilities actually supported, without any GREASE values.
In other words, lists including GREASE values are only sent to other clients;
representations of a client's own capabilities  MUST NOT contain GREASE values.
      
    
     
       Sequencing of State Changes
       Each Commit message is premised on a given starting state,
indicated by the  epoch field of the enclosing FramedContent.
If the changes implied by a Commit message are made
starting from a different state, the results will be incorrect.
       This need for sequencing is not a problem as long as each time a
group member sends a Commit message, it is based on the most
current state of the group.  In practice, however, there is a risk
that two members will generate Commit messages simultaneously
based on the same state.
       Applications  MUST have an established way to resolve conflicting Commit messages
for the same epoch. They can do this either by preventing conflicting messages
from occurring in the first place, or by developing rules for deciding which
Commit out of several sent in an epoch will be canonical. The approach chosen
 MUST minimize the amount of time that forked or previous group states are kept
in memory, and promptly delete them once they're no longer necessary to ensure
forward secrecy.
       The generation of Commit messages  MUST NOT modify a client's state, since the
client doesn't know at that time whether the changes implied by the Commit
message will conflict with another Commit or not. Similarly, the Welcome
message corresponding to a Commit  MUST NOT be delivered to a new
joiner until it's clear that the Commit has been accepted.
       Regardless of how messages are kept in sequence, there is a risk that
in a sufficiently busy group, a given member may never
be able to send a Commit message because they always lose to other
members. The degree to which this is a practical problem will depend
on the dynamics of the application.
    
     
       Application Messages
       The primary purpose of handshake messages is to provide an authenticated group
key exchange to clients. In order to protect application messages sent among the
members of a group, the  encryption_secret provided by the key schedule is used
to derive a sequence of nonces and keys for message encryption. Every epoch
moves the key schedule forward, which triggers the creation of a new secret
tree, as described in  , along with a new set of symmetric
ratchets of nonces and keys for each member.
       Each client maintains their own local copy of the key
schedule for each epoch during which they are a group member. They
derive new keys, nonces, and secrets as needed while deleting old
ones as soon as they have been used.
       The group identifier and epoch allow a recipient to know which group secrets
should be used and from which  epoch_secret to start computing other secrets.
The sender identifier and content type are used to identify which
symmetric ratchet to use from the secret tree. The
 generation counter determines how far into the ratchet to iterate in
order to produce the required nonce and key for encryption or decryption.
       
         Padding
         Application messages  MAY be padded to provide some resistance
against traffic analysis techniques over encrypted traffic
   .
While MLS might deliver the same payload less frequently across
a lot of ciphertexts than traditional web servers, it might still provide
the attacker enough information to mount an attack. If Alice asks Bob
"When are we going to the movie?", then the answer "Wednesday" could be leaked
to an adversary solely by the ciphertext length.
         The length of the  padding field in PrivateMessageContent can be
chosen by the sender at the time of message encryption. Senders may use padding
to reduce the ability of attackers outside the group to infer the size of the
encrypted content.  Note, however, that the transports used to carry MLS
messages may have maximum message sizes, so padding schemes  SHOULD avoid
increasing message size beyond any such limits that exist in a given
deployment scenario.
      
       
         Restrictions
         During each epoch, senders  MUST NOT encrypt more data than permitted by the
security bounds of the AEAD scheme used  .
         Note that each change to the group through a handshake message will also set a
new  encryption_secret. Hence this change  MUST be applied before encrypting
any new application message. This is required both to ensure that any users
removed from the group can no longer receive messages and to (potentially)
recover confidentiality and authenticity for future messages despite a past
state compromise.
      
       
         Delayed and Reordered Application Messages
         Since each application message contains the group identifier, the epoch, and a
generation counter, a client can receive messages out of order. When messages
are received out of order, the client moves the sender ratchet forward to match
the received generation counter. Any unused nonce and key pairs from the ratchet
are potentially stored so that they can be used to decrypt the messages that
were delayed or reordered.
         Applications  SHOULD define a policy on how long to keep unused nonce and key
pairs for a sender, and the maximum number to keep. This is in addition to
ensuring that these secrets are deleted according to the deletion schedule
defined in  . Applications  SHOULD also define a policy
limiting the maximum number of steps that clients will move the ratchet forward
in response to a new message.  Messages received with a generation counter
that is too much higher than the last message received would then be rejected.
This avoids causing a denial-of-service attack by requiring the recipient to
perform an excessive number of key derivations. For example, a malicious group
member could send a message with  generation = 0xffffffff at the beginning of a
new epoch, forcing recipients to perform billions of key derivations unless they
apply limits of the type discussed above.
      
    
     
       Security Considerations
       The security goals of MLS are described in  .
We describe here how the protocol achieves its goals at a high level,
though a complete security analysis is outside of the scope of this
document.  The Security Considerations section of  
provides some citations to detailed security analyses.
       
         Transport Security
         Because MLS messages are protected at the message level, the
confidentiality and integrity of the group state do not depend on
those messages being protected in transit. However, an attacker who
can observe those messages in transit will be able to learn about the
group state, including potentially the group membership (see
  below). Such an attacker might also be able to
mount denial-of-service attacks on the group or exclude new members by
selectively removing messages in transit. In order to prevent this
form of attack, it is  RECOMMENDED that all MLS messages be carried
over a secure transport such as TLS   or QUIC  .
      
       
         Confidentiality of Group Secrets
         Group secrets are partly derived from the output of a ratchet tree. Ratchet
trees work by assigning each member of the group to a leaf in the tree and
maintaining the following property: the private key of a node in the tree is
known only to members of the group that are assigned a leaf in the node's
subtree. This is called the  tree invariant, and it makes it possible to
encrypt to all group members except one, with a number of ciphertexts that is
logarithmic in the number of group members.
         The ability to efficiently encrypt to all members except one allows members to
be securely removed from a group. It also allows a member to rotate their
key pair such that the old private key can no longer be used to decrypt new
messages.
      
       
         Confidentiality of Sender Data
         The PrivateMessage framing encrypts "sender data" that identifies which group
member sent an encrypted message, as described in  .
As with the QUIC header protection scheme  , this scheme
is a variant of the HN1 construction analyzed in  .  A sample of the
ciphertext is combined with a  sender_data_secret to derive a key and nonce
that are used for AEAD encryption of the sender data.
         
(key, nonce) = PRF(sender_data_secret, sample)
encrypted_sender_data =
  AEAD.Seal(key, nonce, sender_data_aad, sender_data)

         The only differences between this construction and HN1 as described in  
are that it (1) uses authenticated encryption instead of unauthenticated
encryption and (2) protects information used to derive a nonce instead of the
nonce itself.
         Since the  sender_data_secret is distinct from the content encryption key, it
follows that the sender data encryption scheme achieves AE2 security as defined
in  , and therefore guarantees the confidentiality of the sender data.
         Use of the same  sender_data_secret and ciphertext sample more than once risks
compromising sender data protection by reusing an AEAD (key, nonce) pair.  For
example, in many AEAD schemes, reusing a key and nonce reveals the exclusive OR
of the two plaintexts. Assuming the ciphertext output of the AEAD algorithm is
indistinguishable from random data (i.e., the AEAD is AE1-secure in the phrasing
of  ), the odds of two ciphertext samples being identical is roughly
2 -L/2, i.e., the birthday bound.
         The AEAD algorithms for cipher suites defined in this document all provide this
property. The size of the sample depends on the cipher suite's hash function, but
in all cases, the probability of collision is no more than 2 -128.
Any future cipher suite  MUST use an AE1-secure AEAD algorithm.
      
       
         Confidentiality of Group Metadata
         MLS does not provide confidentiality protection to some messages and fields
within messages:
         
           KeyPackage messages
           GroupInfo messages
           The unencrypted portion of a Welcome message
           Any Proposal or Commit messages sent as PublicMessage messages
           The unencrypted header fields in PrivateMessage messages
           The lengths of encrypted Welcome and PrivateMessage messages
        
         The only mechanism MLS provides for confidentially distributing a group's
ratchet tree to new members is to send it in a Welcome message as a
 ratchet_tree extension.  If an application distributes the tree in some other
way, its security will depend on that application mechanism.
         A party observing these fields might be able to infer certain properties of the
group:
         
           Group ID
           Current epoch and frequency of epoch changes
           Frequency of messages within an epoch
           Group extensions
           Group membership
        
         The amount of metadata exposed to parties outside the group, and thus the
ability of these parties to infer the group's properties, depends on several
aspects of the DS design, such as:
         
           How KeyPackages are distributed
           How the ratchet tree is distributed
           How prospective external joiners get a GroupInfo object for the group
           Whether Proposal and Commit messages are sent as PublicMessage or PrivateMessage
        
         In the remainder of this section, we note the ways that the above properties of
the group are reflected in unprotected group messages, as a guide to
understanding how they might be exposed or protected in a given application.
         
           GroupID, Epoch, and Message Frequency
           MLS provides no mechanism to protect the group ID and epoch of a message from
the DS, so the group ID and the frequency of messages and epoch changes are not
protected against inspection by the DS. However, any modifications to these
will cause decryption failure.
        
         
           Group Extensions
           A group's extensions are first set by the group's creator and then updated by
GroupContextExtensions proposals.  A GroupContextExtensions proposal sent as
a PublicMessage leaks the group's extensions.
           A new member learns the group's extensions via a GroupInfo object.  When the new
member joins via a Welcome message, the Welcome message's encryption protects
the GroupInfo message.  When the new member joins via an external join, they
must be provided with a GroupInfo object.  Protection of this GroupInfo object
is up to the application -- if it is transmitted over a channel that is not
confidential to the group and the new joiner, then it will leak the group's
extensions.
        
         
           Group Membership
           The group's membership is represented directly by its ratchet tree, since each
member's LeafNode contains members' cryptographic keys, a credential that
contains information about the member's identity, and possibly other
identifiers.  Applications that expose the group's ratchet tree outside the
group also leak the group's membership.
           Changes to the group's membership are made by means of Add and Remove proposals.
If these proposals are sent as PublicMessage, then information will be leaked
about the corresponding changes to the group's membership.  A party that sees
all of these changes can reconstruct the group membership.
           Welcome messages contain a hash of each KeyPackage for which the Welcome message
is encrypted.  If a party has access to a pool of KeyPackages and observes a
Welcome message, then they can identify the KeyPackage representing the new
member.  If the party can also associate the Welcome with a group, then the
party can infer that the identified new member was added to that group.
           Note that these information leaks reveal the group's membership only to the degree
that membership is revealed by the contents of a member's LeafNode in the
ratchet tree.  In some cases, this may be quite direct, e.g., due to credentials
attesting to identifiers such as email addresses.  An application could
construct a member's leaf node to be less identifying, e.g., by using a
pseudonymous credential and frequently rotating encryption and signature keys.
        
      
       
         Authentication
         The first form of authentication we provide is that group members can verify a
message originated from one of the members of the group. For encrypted messages,
this is guaranteed because messages are encrypted with an AEAD under a key
derived from the group secrets. For plaintext messages, this is guaranteed by
the use of a  membership_tag, which constitutes a MAC over the message, under a
key derived from the group secrets.
         The second form of authentication is that group members can verify a message
originated from a particular member of the group. This is guaranteed by a
digital signature on each message from the sender's signature key.
         The signature keys held by group members are critical to the security of MLS
against active attacks.  If a member's signature key is compromised, then an
attacker can create LeafNodes and KeyPackages impersonating the member; depending on the
application, this can then allow the attacker to join the group with the
compromised member's identity.  For example, if a group has enabled external
parties to join via external commits, then an attacker that has compromised a
member's signature key could use an external Commit to insert themselves into
the group -- even using a "resync"-style external Commit to replace the
compromised member in the group.
         Applications can mitigate the risks of signature key compromise using pre-shared
keys.  If a group requires joiners to know a PSK in addition to authenticating
with a credential, then in order to mount an impersonation attack, the attacker
would need to compromise the relevant PSK as well as the victim's signature key.
The cost of this mitigation is that the application needs some external
arrangement that ensures that the legitimate members of the group have the
required PSKs.
      
       
         Forward Secrecy and Post-Compromise Security
         Forward secrecy and post-compromise security are important security notions for
long-lived MLS groups.  Forward secrecy means that messages sent at a certain
point in time are secure in the face of later compromise of a group member.
Post-compromise security means that messages are secure even if a group member
was compromised at some point in the past.
         
           Forward Secrecy and Post-Compromise Security
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         Post-compromise security is provided between epochs by members
regularly updating their leaf key in the ratchet tree. Updating their
leaf key prevents group secrets from continuing to be encrypted to
public keys whose private keys had previously been compromised. Note
that sending an Update proposal does not achieve PCS until another
member includes it in a Commit. Members can achieve immediate PCS by
sending their own Commit and populating the  path field, as described
in  . To be clear, in all these cases, the PCS guarantees
come into effect when the members of the group process the relevant
Commit, not when the sender creates it.
         Forward secrecy between epochs is provided by deleting private keys from past
versions of the ratchet tree, as this prevents old group secrets from being
re-derived. Forward secrecy  within an epoch is provided by deleting message
encryption keys once they've been used to encrypt or decrypt a message.
Note that group secrets and message encryption keys are shared by the
group.  There is thus a risk to forward secrecy as long as any
member has not deleted these keys. This is a particular risk if a member
is offline for a long period of time. Applications  SHOULD have mechanisms
for evicting group members that are offline for too long (i.e., have
not changed their key within some period).
         New groups are also at risk of using previously compromised keys (as with
post-compromise security) if a member is added to a new group via an old
KeyPackage whose corresponding private key has been compromised.  This risk can
be mitigated by having clients regularly generate new KeyPackages and upload
them to the Delivery Service.  This way, the key material used to add a member
to a new group is more likely to be fresh and less likely to be compromised.
      
       
         Uniqueness of Ratchet Tree Key Pairs
         The encryption and signature keys stored in the  encryption_key and
 signature_key fields of ratchet tree nodes  MUST be distinct from one another.
If two members' leaf nodes have the same signature key, for example, then the
data origin authentication properties afforded by signatures within the group
are degraded.
         Uniqueness of keys in leaf nodes is assured by explicitly checking each leaf node
as it is added to the tree, whether in an Add proposal, in an Update proposal, or in the  path field of a
Commit.  Details can be found in Sections  ,
 , and  .  Uniqueness of
encryption keys in parent nodes is assured by checking that the keys in an
UpdatePath are not found elsewhere in the tree (see  ).
      
       
         KeyPackage Reuse
         KeyPackages are intended to be used only once.  That is, once a KeyPackage
has been used to introduce the corresponding client to a group, it  SHOULD be
deleted from the KeyPackage publication system.  Reuse of KeyPackages can lead
to replay attacks.
         An application  MAY allow for reuse of a "last resort" KeyPackage in order to
prevent denial-of-service attacks.  Since a KeyPackage is needed to add a
client to a new group, an attacker could prevent a client from being added to new
groups by exhausting all available KeyPackages. To prevent such a denial-of-service
attack, the KeyPackage publication system  SHOULD rate-limit KeyPackage
requests, especially if not authenticated.
      
       
         Delivery Service Compromise
         MLS is designed to protect the confidentiality and integrity of
the group data even in the face of a compromised DS. However, a compromised
DS can still mount some attacks. While it cannot forge messages,
it can selectively delay or remove them. In some cases, this can be
observed by detecting gaps in the per-sender generation counter,
though it may not always be possible to distinguish an attack from message
loss. In addition, the DS can permanently block messages to and from
a group member. This will not always be detectable by other members.
If an application uses the DS to resolve conflicts between
simultaneous Commits (see  ), it is also possible for the
DS to influence which Commit is applied, even to the point of
preventing a member from ever having its Commits applied.
         When put together, these abilities potentially allow a DS to collude
with an attacker who has compromised a member's state to defeat PCS by
suppressing the valid Update and Commit messages from the member that
would lock out the attacker and update the member's leaf to a new,
uncompromised state. Aside from the SenderData.generation value, MLS
leaves loss detection up to the application.
      
       
         Authentication Service Compromise
         Authentication Service compromise is much more serious than compromise
of the Delivery Service. A compromised AS can assert a binding for a
signature key and identity pair of its choice, thus allowing
impersonation of a given user. This ability is sufficient to allow the
AS to join new groups as if it were that user. Depending on the
application architecture, it may also be sufficient to allow the
compromised AS to join the group as an existing user, for instance, as
if it were a new device associated with the same user. If
the application uses a transparency mechanism such as CONIKS
  or Key Transparency  , then it may be possible for end
users to detect this kind of misbehavior by the AS.  It is also possible to
construct schemes in which the various clients owned by a user vouch
for each other, e.g., by signing each others' keys.
      
       
         Additional Policy Enforcement
         The DS and AS may also apply additional policies to MLS operations to obtain
additional security properties. For example, MLS enables any participant to add
or remove members of a group; a DS could enforce a policy that only certain
members are allowed to perform these operations. MLS authenticates all members
of a group; a DS could help ensure that only clients with certain types of
credentials are admitted. MLS provides no inherent protection against denial of
service; a DS could also enforce rate limits in order to mitigate
these risks.
      
       
         Group Fragmentation by Malicious Insiders
         It is possible for a malicious member of a group to "fragment" the group by
crafting an invalid UpdatePath.  Recall that an UpdatePath encrypts a sequence
of path secrets to different subtrees of the group's ratchet trees.  These path
secrets should be derived in a sequence as described in
 , but the UpdatePath syntax allows the sender to
encrypt arbitrary, unrelated secrets.  The syntax also does not guarantee that
the encrypted path secret for a given node corresponds to the public
key provided for that node.
         Both of these types of corruption will cause processing of a Commit to fail for
some members of the group.  If the public key for a node does not match the path
secret, then the members that decrypt that path secret will reject the Commit
based on this mismatch.  If the path secret sequence is incorrect at some point,
then members that can decrypt nodes before that point will compute a different
public key for the mismatched node than the one in the UpdatePath, which also
causes the Commit to fail.  Applications  SHOULD provide mechanisms for failed
commits to be reported, so that group members who were not able to recognize the
error themselves can reinitialize the group if necessary.
         Even with such an error reporting mechanism in place, however, it is still
possible for members to get locked out of the group by a malformed Commit.
Since malformed Commits can only be recognized by certain members of the group,
in an asynchronous application, it may be the case that all members that could
detect a fault in a Commit are offline.  In such a case, the Commit will be
accepted by the group, and the resulting state will possibly be used as the basis for
further Commits.  When the affected members come back online, they will reject
the first Commit, and thus be unable to catch up with the group. These members
will need to either add themselves back with an external Commit or reinitialize
the group from scratch.
         Applications can address this risk by requiring certain members of the group to
acknowledge successful processing of a Commit before the group regards the
Commit as accepted.  The minimum set of acknowledgements necessary to verify
that a Commit is well-formed comprises an acknowledgement from one member per
node in the UpdatePath, that is, one member from each subtree rooted in the
copath node corresponding to the node in the UpdatePath. MLS does not
provide a built-in mechanism for such acknowledgements, but they can
be added at the application layer.
      
    
     
       IANA Considerations
       IANA has created the following registries:
       
         MLS Cipher Suites ( )
         MLS Wire Formats ( )
         MLS Extension Types ( )
         MLS Proposal Types ( )
         MLS Credential Types ( )
         MLS Signature Labels ( )
         MLS Public Key Encryption Labels ( )
         MLS Exporter Labels ( )
      
       All of these registries are under the "Messaging Layer Security" group registry heading,
and assignments are made via the Specification Required policy  . See
  for additional information about the MLS Designated Experts (DEs).
       
         MLS Cipher Suites
         A cipher suite is a combination of a protocol version and the set of
cryptographic algorithms that should be used.
         Cipher suite names follow the naming convention:
         
CipherSuite MLS_LVL_KEM_AEAD_HASH_SIG = VALUE;

         Where VALUE is represented as a 16-bit integer:
         
uint16 CipherSuite;

         
           
             
               Component
               Contents
            
          
           
             
               LVL
               The security level (in bits)
            
             
               KEM
               The KEM algorithm used for HPKE in ratchet tree operations
            
             
               AEAD
               The AEAD algorithm used for HPKE and message protection
            
             
               HASH
               The hash algorithm used for HPKE and the MLS transcript hash
            
             
               SIG
               The signature algorithm used for message authentication
            
          
        
         The columns in the registry are as follows:
         
           Value: The numeric value of the cipher suite
           Name: The name of the cipher suite
           
             Recommended: Whether support for this cipher suite is recommended by the IETF.
Valid values are "Y", "N", and "D", as described below.  The default
value of the "Recommended" column is "N".  Setting the Recommended item to "Y"
or "D", or changing an item whose current value is "Y" or "D", requires
Standards Action  .  
             
               Y: Indicates that the IETF has consensus that the item is  RECOMMENDED. This
only means that the associated mechanism is fit for the purpose for which it
was defined. Careful reading of the documentation for the mechanism is
necessary to understand the applicability of that mechanism. The IETF could
recommend mechanisms that have limited applicability, but it will provide
applicability statements that describe any limitations of the mechanism or
necessary constraints on its use.
               N: Indicates that the item has not been evaluated by the IETF and that the
IETF has made no statement about the suitability of the associated
mechanism. This does not necessarily mean that the mechanism is flawed, only
that no consensus exists. The IETF might have consensus to leave an item
marked as "N" on the basis of it having limited applicability or usage
constraints.
               D: Indicates that the item is discouraged and  SHOULD NOT or  MUST NOT be
used. This marking could be used to identify mechanisms that might result in
problems if they are used, such as a weak cryptographic algorithm or a
mechanism that might cause interoperability problems in deployment.
            
          
           Reference: The document where this cipher suite is defined
        
         Initial contents:
         
           MLS Extension Types Registry
           
             
               Value
               Name
               R
               Ref
            
          
           
             
               0x0000
               RESERVED
               -
               RFC 9420
            
             
               0x0001
               MLS_128_DHKEMX25519_AES128GCM_SHA256_Ed25519
               Y
               RFC 9420
            
             
               0x0002
               MLS_128_DHKEMP256_AES128GCM_SHA256_P256
               Y
               RFC 9420
            
             
               0x0003
               MLS_128_DHKEMX25519_CHACHA20POLY1305_SHA256_Ed25519
               Y
               RFC 9420
            
             
               0x0004
               MLS_256_DHKEMX448_AES256GCM_SHA512_Ed448
               Y
               RFC 9420
            
             
               0x0005
               MLS_256_DHKEMP521_AES256GCM_SHA512_P521
               Y
               RFC 9420
            
             
               0x0006
               MLS_256_DHKEMX448_CHACHA20POLY1305_SHA512_Ed448
               Y
               RFC 9420
            
             
               0x0007
               MLS_256_DHKEMP384_AES256GCM_SHA384_P384
               Y
               RFC 9420
            
             
               0x0A0A
               GREASE
               Y
               RFC 9420
            
             
               0x1A1A
               GREASE
               Y
               RFC 9420
            
             
               0x2A2A
               GREASE
               Y
               RFC 9420
            
             
               0x3A3A
               GREASE
               Y
               RFC 9420
            
             
               0x4A4A
               GREASE
               Y
               RFC 9420
            
             
               0x5A5A
               GREASE
               Y
               RFC 9420
            
             
               0x6A6A
               GREASE
               Y
               RFC 9420
            
             
               0x7A7A
               GREASE
               Y
               RFC 9420
            
             
               0x8A8A
               GREASE
               Y
               RFC 9420
            
             
               0x9A9A
               GREASE
               Y
               RFC 9420
            
             
               0xAAAA
               GREASE
               Y
               RFC 9420
            
             
               0xBABA
               GREASE
               Y
               RFC 9420
            
             
               0xCACA
               GREASE
               Y
               RFC 9420
            
             
               0xDADA
               GREASE
               Y
               RFC 9420
            
             
               0xEAEA
               GREASE
               Y
               RFC 9420
            
             
               0xF000 - 0xFFFF
               Reserved for Private Use
               -
               RFC 9420
            
          
        
         All of the non-GREASE cipher suites use HMAC   as their MAC function, with
different hashes per cipher suite.  The mapping of cipher suites to HPKE
primitives  , HMAC hash functions, and TLS signature schemes
  is as follows:
         
           
             
               Value
               KEM
               KDF
               AEAD
               Hash
               Signature
            
          
           
             
               0x0001
               0x0020
               0x0001
               0x0001
               SHA256
               ed25519
            
             
               0x0002
               0x0010
               0x0001
               0x0001
               SHA256
               ecdsa_secp256r1_sha256
            
             
               0x0003
               0x0020
               0x0001
               0x0003
               SHA256
               ed25519
            
             
               0x0004
               0x0021
               0x0003
               0x0002
               SHA512
               ed448
            
             
               0x0005
               0x0012
               0x0003
               0x0002
               SHA512
               ecdsa_secp521r1_sha512
            
             
               0x0006
               0x0021
               0x0003
               0x0003
               SHA512
               ed448
            
             
               0x0007
               0x0011
               0x0002
               0x0002
               SHA384
               ecdsa_secp384r1_sha384
            
          
        
         The hash used for the MLS transcript hash is the one referenced in the
cipher suite name.  In the cipher suites defined above, "SHA256", "SHA384", and
"SHA512" refer, respectively, to the SHA-256, SHA-384, and SHA-512 functions
defined in  .
         In addition to the general requirements of  , future
cipher suites  MUST meet the requirements of  .
         It is advisable to keep the number of cipher suites low to increase the likelihood
that clients can interoperate in a federated environment. The cipher suites therefore
include only modern, yet well-established algorithms.  Depending on their
requirements, clients can choose between two security levels (roughly 128-bit
and 256-bit). Within the security levels, clients can choose between faster
X25519/X448 curves and curves compliant with FIPS 140-2 for Diffie-Hellman key
negotiations. Clients may also choose ChaCha20Poly1305 or AES-GCM, e.g., for
performance reasons. Since ChaCha20Poly1305 is not listed by FIPS 140-2, it is
not paired with curves compliant with FIPS 140-2. The security level of symmetric
encryption algorithms and hash functions is paired with the security level of
the curves.
         The mandatory-to-implement cipher suite for MLS 1.0 is
 MLS_128_DHKEMX25519_AES128GCM_SHA256_Ed25519, which uses
Curve25519 for key exchange, AES-128-GCM for HPKE, HKDF over SHA2-256, and
Ed25519 for signatures.  MLS clients  MUST implement this cipher suite.
      
       
         MLS Wire Formats
         The "MLS Wire Formats" registry lists identifiers for the types of messages that can be sent in
MLS.  The wire format field is two bytes wide, so the valid wire format values
are in the range 0x0000 to 0xFFFF.
         Template:
         
           Value: The numeric value of the wire format
           Name: The name of the wire format
           Recommended: Same as in  
           Reference: The document where this wire format is defined
        
         Initial contents:
         
           MLS Wire Formats Registry
           
             
               Value
               Name
               R
               Ref
            
          
           
             
               0x0000
               RESERVED
               -
               RFC 9420
            
             
               0x0001
               mls_public_message
               Y
               RFC 9420
            
             
               0x0002
               mls_private_message
               Y
               RFC 9420
            
             
               0x0003
               mls_welcome
               Y
               RFC 9420
            
             
               0x0004
               mls_group_info
               Y
               RFC 9420
            
             
               0x0005
               mls_key_package
               Y
               RFC 9420
            
             
               0xF000 - 0xFFFF
               Reserved for Private Use
               -
               RFC 9420
            
          
        
      
       
         MLS Extension Types
         The "MLS Extension Types" registry lists identifiers for extensions to the MLS protocol.  The
extension type field is two bytes wide, so valid extension type values are in
the range 0x0000 to 0xFFFF.
         Template:
         
           Value: The numeric value of the extension type
           Name: The name of the extension type
           
             Message(s): The messages in which the extension may appear, drawn from the following
list:  
             
               KP: KeyPackage objects
               LN: LeafNode objects
               GC: GroupContext objects
               GI: GroupInfo objects
            
          
           Recommended: Same as in  
           Reference: The document where this extension is defined
        
         Initial contents:
         
           MLS Extension Types Registry
           
             
               Value
               Name
               Message(s)
               R
               Ref
            
          
           
             
               0x0000
               RESERVED
               N/A
               -
               RFC 9420
            
             
               0x0001
               application_id
               LN
               Y
               RFC 9420
            
             
               0x0002
               ratchet_tree
               GI
               Y
               RFC 9420
            
             
               0x0003
               required_capabilities
               GC
               Y
               RFC 9420
            
             
               0x0004
               external_pub
               GI
               Y
               RFC 9420
            
             
               0x0005
               external_senders
               GC
               Y
               RFC 9420
            
             
               0x0A0A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x1A1A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x2A2A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x3A3A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x4A4A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x5A5A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x6A6A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x7A7A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x8A8A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0x9A9A
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xAAAA
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xBABA
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xCACA
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xDADA
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xEAEA
               GREASE
               KP, GI, LN
               Y
               RFC 9420
            
             
               0xF000  - 0xFFFF
               Reserved for Private Use
               N/A
               -
               RFC 9420
            
          
        
      
       
         MLS Proposal Types
         The "MLS Proposal Types" registry lists identifiers for types of proposals that can be made for
changes to an MLS group.  The extension type field is two bytes wide, so valid
extension type values are in the range 0x0000 to 0xFFFF.
         Template:
         
           Value: The numeric value of the proposal type
           Name: The name of the proposal type
           Recommended: Same as in  
           External: Whether a proposal of this type may be sent by an  external sender
(see  )
           Path Required: Whether a Commit covering a proposal of this type is required
to have its  path field populated (see  )
           Reference: The document where this extension is defined
        
         Initial contents:
         
           MLS Proposal Types Registry
           
             
               Value
               Name
               R
               Ext
               Path
               Ref
            
          
           
             
               0x0000
               RESERVED
               -
               -
               -
               RFC 9420
            
             
               0x0001
               add
               Y
               Y
               N
               RFC 9420
            
             
               0x0002
               update
               Y
               N
               Y
               RFC 9420
            
             
               0x0003
               remove
               Y
               Y
               Y
               RFC 9420
            
             
               0x0004
               psk
               Y
               Y
               N
               RFC 9420
            
             
               0x0005
               reinit
               Y
               Y
               N
               RFC 9420
            
             
               0x0006
               external_init
               Y
               N
               Y
               RFC 9420
            
             
               0x0007
               group_context_extensions
               Y
               Y
               Y
               RFC 9420
            
             
               0x0A0A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x1A1A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x2A2A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x3A3A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x4A4A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x5A5A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x6A6A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x7A7A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x8A8A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0x9A9A
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xAAAA
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xBABA
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xCACA
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xDADA
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xEAEA
               GREASE
               Y
               -
               -
               RFC 9420
            
             
               0xF000  - 0xFFFF
               Reserved for Private Use
               -
               -
               -
               RFC 9420
            
          
        
      
       
         MLS Credential Types
         The "MLS Credential Types" registry lists identifiers for types of credentials that can be used for
authentication in the MLS protocol.  The credential type field is two bytes wide,
so valid credential type values are in the range 0x0000 to 0xFFFF.
         Template:
         
           Value: The numeric value of the credential type
           Name: The name of the credential type
           Recommended: Same as in  
           Reference: The document where this credential is defined
        
         Initial contents:
         
           MLS Credential Types Registry
           
             
               Value
               Name
               R
               Ref
            
          
           
             
               0x0000
               RESERVED
               -
               RFC 9420
            
             
               0x0001
               basic
               Y
               RFC 9420
            
             
               0x0002
               x509
               Y
               RFC 9420
            
             
               0x0A0A
               GREASE
               Y
               RFC 9420
            
             
               0x1A1A
               GREASE
               Y
               RFC 9420
            
             
               0x2A2A
               GREASE
               Y
               RFC 9420
            
             
               0x3A3A
               GREASE
               Y
               RFC 9420
            
             
               0x4A4A
               GREASE
               Y
               RFC 9420
            
             
               0x5A5A
               GREASE
               Y
               RFC 9420
            
             
               0x6A6A
               GREASE
               Y
               RFC 9420
            
             
               0x7A7A
               GREASE
               Y
               RFC 9420
            
             
               0x8A8A
               GREASE
               Y
               RFC 9420
            
             
               0x9A9A
               GREASE
               Y
               RFC 9420
            
             
               0xAAAA
               GREASE
               Y
               RFC 9420
            
             
               0xBABA
               GREASE
               Y
               RFC 9420
            
             
               0xCACA
               GREASE
               Y
               RFC 9420
            
             
               0xDADA
               GREASE
               Y
               RFC 9420
            
             
               0xEAEA
               GREASE
               Y
               RFC 9420
            
             
               0xF000  - 0xFFFF
               Reserved for Private Use
               -
               RFC 9420
            
          
        
      
       
         MLS Signature Labels
         The  SignWithLabel function defined in   avoids the risk of
confusion between signatures in different contexts.  Each context is assigned a
distinct label that is incorporated into the signature.  The "MLS Signature Labels" registry records
the labels defined in this document and allows additional labels to be
registered in case extensions add other types of signatures using the same
signature keys used elsewhere in MLS.
         Template:
         
           Label: The string to be used as the  Label parameter to  SignWithLabel
           Recommended: Same as in  
           Reference: The document where this label is defined
        
         Initial contents:
         
           MLS Signature Labels Registry
           
             
               Label
               R
               Ref
            
          
           
             
               "FramedContentTBS"
               Y
               RFC 9420
            
             
               "LeafNodeTBS"
               Y
               RFC 9420
            
             
               "KeyPackageTBS"
               Y
               RFC 9420
            
             
               "GroupInfoTBS"
               Y
               RFC 9420
            
          
        
      
       
         MLS Public Key Encryption Labels
         The  EncryptWithLabel function defined in   avoids the
risk of confusion between ciphertexts produced for different purposes in
different contexts.  Each context is assigned a distinct label that is
incorporated into the signature.  The "MLS Public Key Encryption Labels" registry records the labels defined in
this document and allows additional labels to be registered in case extensions
add other types of public key encryption using the same HPKE keys used elsewhere
in MLS.
         Template:
         
           Label: The string to be used as the  Label parameter to  EncryptWithLabel
           Recommended: Same as in  
           Reference: The document where this label is defined
        
         Initial contents:
         
           MLS Public Key Encryption Labels Registry
           
             
               Label
               R
               Ref
            
          
           
             
               "UpdatePathNode"
               Y
               RFC 9420
            
             
               "Welcome"
               Y
               RFC 9420
            
          
        
      
       
         MLS Exporter Labels
         The exporter function defined in   allows applications to derive key
material from the MLS key schedule.  Like the TLS exporter  , the MLS
exporter uses a label to distinguish between different applications' use of the
exporter.  The "MLS Exporter Labels" registry allows applications to register their usage to avoid
collisions.
         Template:
         
           Label: The string to be used as the  Label parameter to  MLS-Exporter
           Recommended: Same as in  
           Reference: The document where this label is defined
        
         The registry has no initial contents, since it is intended to be used by
applications, not the core protocol.  The table below is intended only to show
the column layout of the registry.
         
           MLS Exporter Labels Registry
           
             
               Label
               Recommended
               Reference
            
          
           
             
               (N/A)
               (N/A)
               (N/A)
            
          
        
      
       
         MLS Designated Expert Pool
         Specification Required   registry requests are registered
after a three-week review period on the MLS Designated Expert (DE) mailing list
  on the advice of one or more of the MLS DEs. However,
to allow for the allocation of values prior to publication, the MLS
DEs may approve registration once they are satisfied that such a
specification will be published.
         Registration requests sent to the MLS DEs' mailing list for review
 SHOULD use an appropriate subject (e.g., "Request to register value
in MLS Bar registry").
         Within the review period, the MLS DEs will either approve or deny
the registration request, communicating this decision to the MLS DEs'
mailing list and IANA. Denials  SHOULD include an explanation and, if
applicable, suggestions as to how to make the request successful.
Registration requests that are undetermined for a period longer than
21 days can be brought to the IESG's attention for resolution using
the   mailing list.
         Criteria that  SHOULD be applied by the MLS DEs includes determining
whether the proposed registration duplicates existing functionality,
whether it is likely to be of general applicability or useful only
for a single application, and whether the registration description
is clear. For example, for cipher suite registrations, the MLS DEs will apply the
advisory found in  .
         IANA  MUST only accept registry updates from the MLS DEs and  SHOULD
direct all requests for registration to the MLS DEs' mailing list.
         It is suggested that multiple MLS DEs who are able to
represent the perspectives of different applications using this
specification be appointed, in order to enable a broadly informed review of
registration decisions. In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
MLS DE, that MLS DE  SHOULD defer to the judgment of the other MLS DEs.
      
       
         The "message/mls" Media Type
         This document registers the "message/mls" media type in the "message" registry in order to allow other
protocols (e.g., HTTP  ) to convey MLS messages.
         
           Type name:
           message
           Subtype name:
           mls
           Required parameters:
           none
           Optional parameters:
           
             
               version
               
                 version:
               The MLS protocol version expressed as a string
   <major>.<minor>.  If omitted, the version is "1.0", which
  corresponds to MLS ProtocolVersion mls10. If for some reason
  the version number in the media type parameter differs from the
  ProtocolVersion embedded in the protocol, the protocol takes
  precedence.
            
          
           Encoding considerations:
           MLS messages are represented using the TLS
presentation language  . Therefore, MLS messages need to be
treated as binary data.
           Security considerations:
           MLS is an encrypted messaging layer designed
to be transmitted over arbitrary lower-layer protocols. The
security considerations in this document (RFC 9420) also apply.
           Interoperability considerations:
           N/A
           Published specification:
           RFC 9420
           Applications that use this media type:
           MLS-based messaging applications
           Fragment identifier considerations:
           N/A
           Additional information:
           
             
               
            
             
               Deprecated alias names for this type:
               N/A
               Magic number(s):
               N/A
               File extension(s):
               N/A
               Macintosh file type code(s):
               N/A
            
          
        
         
           Person & email address to contact for further information:
           
             IETF MLS Working Group  
          
           Intended usage:
           
             COMMON
          
           Restrictions on usage:
           
             N/A
          
           Author:
           
             IETF MLS Working Group
          
           Change controller:
           
             IETF
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       Protocol Origins of Example Trees
       Protocol operations in MLS give rise to specific forms of ratchet tree,
typically affecting a whole direct path at once.  In this section, we describe
the protocol operations that could have given rise to the various example trees
in this document.
       To construct the tree in  :
       
         A creates a group with B, ..., G
         F sends an empty Commit, setting X, Y, and W
         G removes C and D, blanking V, U, and setting Y and W
         B sends an empty Commit, setting T and W
      
       To construct the tree in  :
       
         A creates a group with B, ..., H, as well as some members outside this subtree
         F sends an empty Commit, setting Y and its ancestors
         
           D removes B and C, with the following effects:
          
           
             Blank the direct paths of B and C
             Set X, the top node, and any further nodes in the direct path of D
          
        
         Someone outside this subtree removes G, blanking the direct path of G
         A adds a new member at B with a partial Commit, adding B as unmerged at X
      
       To construct the tree in  :
       
         A creates a group with B, C, and D
         B sends a full Commit, setting X and Y
         D removes C, setting Z and Y
         
           B adds a new member at C with a full Commit
          
           
             The Add proposal adds C as unmerged at Z and Y
             The path in the Commit resets X and Y, clearing Y's unmerged leaves
          
        
      
       To construct the tree in  :
       
         A creates a group with B, ..., G
         A removes F in a full Commit, setting T, U, and W
         E sends an empty Commit, setting Y and W
         A adds a new member at F in a partial Commit, adding F as unmerged at Y and W
      
    
     
       Evolution of Parent Hashes
       To better understand how parent hashes are maintained, let's look in detail at
how they evolve in a small group.  Consider the following sequence of
operations:
       
         A initializes a new group
         A adds B to the group with a full Commit
         B adds C and D to the group with a full Commit
         C sends an empty Commit
      
       
         Building a Four-Member Tree to Illustrate Parent Hashes
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       Then the parent hashes associated to the nodes will be updated as follows (where
we use the shorthand  ph for parent hash,  th for tree hash, and  osth for
original sibling tree hash):
       
         
           A adds B: set X  
           
             
               A.parent_hash = ph(X) = H(X, ph="", osth=th(B))
            
          
        
         
           B adds C, D: set B', X', and Y  
           
             
               X'.parent_hash = ph(Y)  = H(Y, ph="", osth=th(Z)),
where  th(Z) covers  (C, _, D)
             
               B'.parent_hash = ph(X') = H(X', ph=X'.parent_hash, osth=th(A))
            
          
        
         
           C sends empty Commit: set C', Z', Y'  
           
             
               Z'.parent_hash = ph(Y') = H(Y', ph="", osth=th(X')), where
 th(X') covers  (A, X', B')
             
               C'.parent_hash = ph(Z') = H(Z', ph=Z'.parent_hash, osth=th(D))
            
          
        
      
       When a new member joins, they will receive a tree that has the following parent
hash values and compute the indicated parent hash validity relationships:
       
         
           
             Node
             Parent Hash Value
             Valid?
          
        
         
           
             A
             H(X, ph="", osth=th(B))
             No, B changed
          
           
             B'
             H(X', ph=X'.parent_hash, osth=th(A))
             Yes
          
           
             C'
             H(Z', ph=Z'.parent_hash, osth=th(D))
             Yes
          
           
             D
             (none, never sent an UpdatePath)
             N/A
          
           
             X'
             H(Y, ph="", osth=th(Z))
             No, Y and Z changed
          
           
             Z'
             H(Y', ph="", osth=th(X'))
             Yes
          
        
      
       In other words, the joiner will find the following path-hash links in the tree:
       
         Parent-hash links connect all non-empty parent nodes to leaves
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       Since these chains collectively cover all non-blank parent nodes in the tree,
the tree is parent-hash valid.
       Note that this tree, though valid, contains invalid parent-hash links. If a
client were checking parent hashes top-down from Y', for example, they would
find that X' has an invalid parent hash relative to Y', but that Z' has a valid
parent hash.  Likewise, if the client were checking bottom-up, they would find
that the chain from B' ends in an invalid link from X' to Y'.  These invalid
links are the natural result of multiple clients having committed.
       Note also the way the tree hash and the parent hash interact.  The parent hash
of node C' includes the tree hash of node D.  The parent hash of node Z'
includes the tree hash of X', which covers nodes A and B' (including the parent
hash of B').  Although the tree hash and the parent hash depend on each other,
the dependency relationships are structured so that there is never a circular
dependency.
       In the particular case where a new member first receives the tree for a group
(e.g., in a ratchet tree GroupInfo extension  ), the
parent hashes will be expressed in the tree representation, but the tree hash
need not be.  Instead, the new member will recompute the tree hashes for all the
nodes in the tree, verifying that this matches the tree hash in the GroupInfo
object.  If the tree is valid, then the subtree hashes computed in this
way will align with the inputs needed for parent hash validation (except where
recomputation is needed to account for unmerged leaves).
    
     
       Array-Based Trees
       One benefit of using complete balanced trees is that they admit a simple
flat array representation.  In this representation, leaf nodes are
even-numbered nodes, with the  n-th leaf at  2*n.  Intermediate nodes
are held in odd-numbered nodes.  For example, the tree with 8 leaves has
the following structure:
       
         An Eight-Member Tree Represented as an Array
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                           X
                           |
                 .---------+---------.
                /                     \
               X                       X
               |                       |
           .---+---.               .---+---.
          /         \             /         \
         X           X           X           X
        / \         / \         / \         / \
       /   \       /   \       /   \       /   \
      X     X     X     X     X     X     X     X

Node: 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

Leaf: 0     1     2     3     4     5     6     7

        
      
       This allows us to compute relationships between tree nodes simply by
manipulating indices, rather than having to maintain complicated structures in
memory. The basic rule is that the high-order bits of parent and child nodes
indices have the following relation (where  x is an arbitrary bit string):
       
parent=01x => left=00x, right=10x

       Since node relationships are implicit, the algorithms for adding and removing
nodes at the right edge of the tree are quite simple.  If there are  N nodes in
the array:
       
         Add: Append  N + 1 blank values to the end of the array.
         Remove: Truncate the array to its first  (N-1) / 2 entries.
      
       The following python code demonstrates the tree computations necessary to use an
array-based tree for MLS.
       
# The exponent of the largest power of 2 less than x. Equivalent to:
#   int(math.floor(math.log(x, 2)))
def log2(x):
    if x == 0:
        return 0

    k = 0
    while (x >> k) > 0:
        k += 1
    return k-1

# The level of a node in the tree. Leaves are level 0, their parents
# are level 1, etc. If a node's children are at different levels,
# then its level is the max level of its children plus one.
def level(x):
    if x & 0x01 == 0:
        return 0

    k = 0
    while ((x >> k) & 0x01) == 1:
        k += 1
    return k

# The number of nodes needed to represent a tree with n leaves.
def node_width(n):
    if n == 0:
        return 0
    else:
        return 2*(n - 1) + 1

# The index of the root node of a tree with n leaves.
def root(n):
    w = node_width(n)
    return (1 << log2(w)) - 1

# The left child of an intermediate node.
def left(x):
    k = level(x)
    if k == 0:
        raise Exception('leaf node has no children')

    return x ^ (0x01 << (k - 1))

# The right child of an intermediate node.
def right(x):
    k = level(x)
    if k == 0:
        raise Exception('leaf node has no children')

    return x ^ (0x03 << (k - 1))

# The parent of a node.
def parent(x, n):
    if x == root(n):
        raise Exception('root node has no parent')

    k = level(x)
    b = (x >> (k + 1)) & 0x01
    return (x | (1 << k)) ^ (b << (k + 1))

# The other child of the node's parent.
def sibling(x, n):
    p = parent(x, n)
    if x < p:
        return right(p)
    else:
        return left(p)

# The direct path of a node, ordered from leaf to root.
def direct_path(x, n):
    r = root(n)
    if x == r:
        return []

    d = []
    while x != r:
        x = parent(x, n)
        d.append(x)
    return d

# The copath of a node, ordered from leaf to root.
def copath(x, n):
    if x == root(n):
        return []

    d = direct_path(x, n)
    d.insert(0, x)
    d.pop()
    return [sibling(y, n) for y in d]

# The common ancestor of two nodes is the lowest node that is in the
# direct paths of both leaves.
def common_ancestor_semantic(x, y, n):
    dx = set([x]) | set(direct_path(x, n))
    dy = set([y]) | set(direct_path(y, n))
    dxy = dx & dy
    if len(dxy) == 0:
        raise Exception('failed to find common ancestor')

    return min(dxy, key=level)

# The common ancestor of two nodes is the lowest node that is in the
# direct paths of both leaves.
def common_ancestor_direct(x, y, _):
    # Handle cases where one is an ancestor of the other
    lx, ly = level(x)+1, level(y)+1
    if (lx <= ly) and (x>>ly == y>>ly):
      return y
    elif (ly <= lx) and (x>>lx == y>>lx):
      return x

    # Handle other cases
    xn, yn = x, y
    k = 0
    while xn != yn:
       xn, yn = xn >> 1, yn >> 1
       k += 1
    return (xn << k) + (1 << (k-1)) - 1

    
     
       Link-Based Trees
       An implementation may choose to store ratchet trees in a "link-based"
representation, where each node stores references to its parents and/or
children (as opposed to the array-based representation suggested above, where
these relationships are computed from relationships between nodes' indices in
the array). Such an implementation needs to update these links to maintain the
balanced structure of the tree as the tree is extended to add new members
or truncated when members are removed.
       The following code snippet shows how these algorithms could be implemented in
Python.
       
class Node:
    def __init__(self, value, left=None, right=None):
        self.value = value    # Value of the node
        self.left = left      # Left child node
        self.right = right    # Right child node

    @staticmethod
    def blank_subtree(depth):
        if depth == 1:
            return Node(None)

        L = Node.blank_subtree(depth-1)
        R = Node.blank_subtree(depth-1)
        return Node(None, left=L, right=R)

    def empty(self):
        L_empty = (self.left == None) or self.left.empty()
        R_empty = (self.right == None) or self.right.empty()
        return (self.value == None) and L_empty and R_empty

class Tree:
    def __init__(self):
        self.depth = 0    # Depth of the tree
        self.root = None  # Root node of the tree, initially empty

    # Add a blank subtree to the right
    def extend(self):
        if self.depth == 0:
            self.depth = 1
            self.root = Node(None)

        L = self.root
        R = Node.blank_subtree(self.depth)
        self.root = Node(None, left=L, right=R)
        self.depth += 1

    # Truncate the right subtree
    def truncate(self):
        if self.root == None:
            return

        if not self.root.right.empty():
            raise Exception("Cannot truncate non-blank subtree")

        self.depth -= 1
        self.root = self.root.left
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