
RFC 9187
Sequence Number Extension for Windowed
Protocols

Abstract
Sliding window protocols use finite sequence numbers to determine segment placement and
order. These sequence number spaces wrap around and are reused during the operation of such
protocols. This document describes a way to extend the size of these sequence numbers at the
endpoints to avoid the impact of that wrap and reuse without transmitting additional
information in the packet header. The resulting extended sequence numbers can be used at the
endpoints in encryption and authentication algorithms to ensure input bit patterns do not repeat
over the lifetime of a connection.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Independent Submission
9187
Informational
January 2022
2070-1721

 J. Touch
Independent Consultant

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9187

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Touch Informational Page 1

https://www.rfc-editor.org/rfc/rfc9187
https://www.rfc-editor.org/info/rfc9187

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Background

3. Related Discussion

4. Using SNE in Protocol Design

5. Example Code

6. Validation Suite

7. Security Considerations

8. IANA Considerations

9. Informative References

Acknowledgments

Author's Address

1. Introduction
Protocols use sequence numbers to maintain ordering and, in sliding window systems, to control
the amount of outstanding unacknowledged information. These sequence numbers are finite and
thus commonly wrap around during long connections, reusing past values.

It can be useful for protocols to keep track of this wrap around in a separate counter, such that
the sequence number and counter together form an equivalent number space that need not
wrap. This technique was introduced as "Sequence Number Extension" in the TCP Authentication
Option (TCP-AO) . The example provided there was intended to introduce the concept,
but the pseudocode provided is not complete.

This document presents the formal requirements for Sequence Number Extension (SNE), a code
example, and a check sequence that can be used to validate this and alternate implementations.
Sequence numbers are used in a variety of protocols to support loss detection, reordering, flow
control, and congestion control. Limitations in the size of a sequence number protocol field can
limit the ways in which these capabilities can be supported.

[RFC5925]

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 2

https://trustee.ietf.org/license-info

Under certain conditions, it is possible for both endpoints of a protocol to keep track of sequence
number rollover and effectively extend the sequence number space without requiring
modification of the sequence number field used within protocol messages. These conditions
assume that the received sequence numbers never vary by more than half the size of the space of
the field used in messages, i.e., they never hop forward or backward by more than half that space.
This constraint is typical in sliding window protocols, such as TCP. However, although both ends
can track rollover unambiguously, doing so can be surprisingly complex. This document provides
examples and test cases to simplify that process.

This document is intended for protocol designers who seek to use larger sequence numbers at the
endpoints without needing to extend the sequence number field used in messages, such as for
authentication protocols, e.g., TCP-AO . Use of extended sequence numbers should be
part of a protocol specification so that both endpoints can ensure they comply with the
requirements needed to enable their use in both locations.

The remainder of this document describes how SNE can be supported and provides the
pseudocode to demonstrate how received messages can unambiguously determine the
appropriate extension value, as long as the reordering is constrained. Section 2 provides
background on the concept. Section 3 discusses currently known uses of SNE. Section 4 discusses
how SNE is used in protocol design and how it differs from in-band use of sequence numbers.
Section 5 provides a framework for testing SNE implementations, including example code for the
SNE function, and Section 6 provides a sequence that can be used by that code for validation.
Section 7 concludes with a discussion of security issues.

[RFC5925]

2. Background
Protocols use sequence numbers to maintain message order. The transmitter typically
increments them either once per message or by the length of the message. The receiver uses them
to reorder messages and detect gaps due to inferred loss.

Sequence numbers are represented within those messages (e.g., in the headers) as values of a
finite, unsigned number space. This space is typically represented in a fixed-length bit string,
whose values range from 0..(2N)-1, inclusive.

The use of finite representations has repercussions on the use of these values at both the
transmitter and receiver. Without additional constraints, when the number space "wraps
around", it would be impossible for the receiver to distinguish between the uses of the same value.

As a consequence, additional constraints are required. Transmitters are typically required to
limit reuse until they can assume that receivers would successfully differentiate the two uses of
the same value. The receiver always interprets values it sees based on the assumption that
successive values never differ by just under half the number space. A receiver cannot detect an
error in that sequence, but it will incorrectly interpret numbers if reordering violates this
constraint.

The constraint requires that "forward" values advance the values by less than half the sequence
number space, ensuring that receivers never experience a series of values that violate that rule.

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 3

We define a sequence space as follows:

An unsigned integer within the range of 0..(2N)-1, i.e., for N bits.

An operation that increments values in that space by K, where K < 2(N-1), i.e., less than half the
range. This operation is used exclusively by the transmitter.
An operation that compares two values in that space to determine their order, e.g., where
X < Y implies that X comes before Y.

We assume that both sides begin with the same initial value, which can be anywhere in the space.
That value is either assumed (e.g., 0) before the protocol begins or coordinated before other
messages are exchanged (as with TCP Initial Sequence Numbers (ISNs)). It is assumed
that the receiver always receives values that are always within (2N)-1, but the successive received
values never jump forward or backward by more than 2(N-1)-1, i.e., just under half the range.

No other operations are supported. The transmitter is not permitted to "backup", such that values
are always used in "increment" order. The receiver cannot experience loss or gaps larger than
2(N-1)-1, which is typically enforced either by assumption or by explicit endpoint coordination.

An SNE is a separate number space that can be combined with the sequence number to create a
larger number space that need not wrap around during a connection.

On the transmit side, SNE is trivially accomplished by incrementing a local counter once each
time the sequence number increment "wraps" around or by keeping a larger local sequence
number whose least-significant part is the message sequence number and most-significant part
can be considered the SNE. The transmitter typically does not need to maintain an SNE except
when used in local computations, such as for Message Authentication Codes (MACs) in TCP-AO

.

The goal of this document is to demonstrate that SNE can be accomplished on the receiver side
without transmitting additional information in messages. It defines the stateful function
compute_sne() as follows:

SNE = compute_sne(seqno)

The compute_sne() function accepts the sequence number seen in a received message and
computes the corresponding SNE. The function includes persistent local state that tracks the
largest currently received SNE and seqno combination. The concatenation of SNE and seqno
emulates the equivalent larger sequence number space that can avoid wrap around.

Note that the function defined here is capable of receiving any series of seqno values and
computing their correct corresponding SNE, as long as the series never "jumps" more than half
the number space "backward" from the largest value seen "forward".

•

•

•

[RFC0793]

[RFC5925]

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 4

3. Related Discussion
The DNS uses sequence numbers to determine when a Start of Authority (SOA) serial number is
more recent than a previous one, even considering sequence space wrap . The
use of wrapped sequence numbers for sliding windows in network protocols was first described
as a sequence number space .

A more recent discussion describes this as "serial number arithmetic" and defines a comparison
operator it claimed was missing in IEN-74 . That document defines two operations:
addition (presumably shifting the window forward) and comparison (defining the order of two
values). Addition is defined in that document as limited to values within the range of
0..windowsize/2-1. Comparison is defined in that document by a set of equations therein, but that
document does not provide a way for a receiver to compute the correct equivalent SNE, especially
including the potential for sequence number reordering, as is demonstrated in this document.

[RFC1034][RFC1035]

[IEN74]

[RFC1982]

4. Using SNE in Protocol Design
As noted in the introduction, message sequence numbers enable reordering, loss detection, flow
control, and congestion control. They are also used to differentiate otherwise potentially
identical messages that might repeat as part of a sequence or stream.

The size of the sequence number field used within transferred messages defines the ability of a
protocol to tolerate reordering and gaps, notably limited to half the space of that field. For
example, a field of 8 bits can reorder and detect losses of smaller than 27, i.e., 127 messages. When
used for these purposes -- reordering, loss detection, flow control, and congestion control -- the
size of the field defines the limits of those capabilities.

Sequence numbers are also used to differentiate messages; when used this way, they can be
problematic if they repeat for otherwise identical messages. Protocols using sequence numbers
tolerate that repetition because they are aware of the rollover of these sequence number spaces
at both endpoints. In some cases, it can be useful to track this rollover and use the rollover count
as an extension to the sequence number, e.g., to differentiate authentication MACs. This SNE is
never transmitted in messages; the existing rules of sequence numbers ensure both ends can
keep track unambiguously -- both for new messages and reordered messages.

The constraints required to use SNE have already been presented as background in Section 2. The
transmitter must never send messages out of sequence beyond half the range of the sequence
number field used in messages. A receiver uses this assumption to interpret whether received
numbers are part of pre-wrap sequences or post-wrap sequences. Note that a receiver cannot
enforce or detect if the transmitter has violated these assumptions on its own; it relies on explicit
coordination to ensure this property is maintained, such as the exchange of acknowledgements.

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 5

SNEs are intended for use when it is helpful for both ends to unambiguously determine whether
the sequence number in a message has wrapped and whether a received message is pre-wrap or
post-wrap for each such wrap. This can be used by both endpoints to ensure all messages of
arbitrarily long sequences can be differentiated, e.g., ensuring unique MACs.

SNE does not extend the actual sequence space of a protocol or (thus) its tolerance to reordering
or gaps. It also cannot improve its dynamic range for flow control or congestion control,
although there are other somewhat related methods that can, such as window scaling
(which increases range at the expense of granularity).

SNE is not needed if messages are already unique over the entirety of a transfer sequence, e.g.,
either because the sequence number field used in its messages never wrap around or because
other fields provide that disambiguation, such as timestamps.

[RFC7323]

5. Example Code
The following C code is provided as a verified example of SNE from 16 to 32 bits. The code includes
both the framework used for validation and the compute_sne() function, the latter of which can
be used operationally.

A correct test will indicate "OK" for each test. An incorrect test will indicate "ERROR" where
applicable.

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 6

<CODE BEGINS> file "compute_sne.c"

#include <stdio.h>
#include <sys/param.h>

#define distance(x,y) (((x)<(y))?((y)-(x)):((x)-(y)))

#define SNEDEBUG 1

// This is the core code, stand-alone, to compute SNE from seqno
// >> replace this function with your own code to test alternates
unsigned long compute_sne(unsigned long seqno) {
 // INPUT: 32-bit unsigned sequence number (low bits)
 // OUTPUT: 32-bit unsigned SNE (high bits)

 // variables used in this code example to compute SNE:

 static unsigned long
 RCV_SNE = 0; // high-watermark SNE
 static int
 RCV_SNE_FLAG = 1; // set during first half rollover
 // (prevents re-rollover)
 static unsigned long
 RCV_PREV_SEQ = 0; // high-watermark SEQ
 unsigned long
 holdSNE; // temp copy of output

 holdSNE = RCV_SNE; // use current SNE to start
 if (distance(seqno,RCV_PREV_SEQ) < 0x80000000) {
 // both in same SNE range?
 if ((seqno >= 0x80000000) && (RCV_PREV_SEQ < 0x80000000)) {
 // jumps fwd over N/2?
 RCV_SNE_FLAG = 0; // reset wrap increment flag
 }
 RCV_PREV_SEQ = MAX(seqno,RCV_PREV_SEQ);
 // move prev forward if needed
 } else {
 // both in diff SNE ranges
 if (seqno < 0x80000000) {
 // jumps forward over zero?
 RCV_PREV_SEQ = seqno; // update prev
 if (RCV_SNE_FLAG == 0) {
 // first jump over zero? (wrap)
 RCV_SNE_FLAG = 1;
 // set flag so we increment once
 RCV_SNE = RCV_SNE + 1;
 // increment window
 holdSNE = RCV_SNE;
 // use updated SNE value
 }
 } else {
 // jump backward over zero
 holdSNE = RCV_SNE - 1;
 // use pre-rollover SNE value
 }
 }
 #ifdef SNEDEBUG

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 7

 fprintf(stderr,"state RCV_SNE_FLAG = %1d\n",
 RCV_SNE_FLAG);
 fprintf(stderr,"state RCV_SNE = %08lx\n", RCV_SNE);
 fprintf(stderr,"state RCV_PREV_SEQ = %08lx\n", RCV_PREV_SEQ);
 #endif
 return holdSNE;
}

int main() {
 // variables used as input and output:
 unsigned long SEG_SEQ; // input - received SEQ
 unsigned long SNE; // output - SNE corresponding
 // to received SEQ

 // variables used to validate the computed SNE:
 unsigned long SEG_HIGH; // input - xmitter side SNE
 // -> SNE should match this value
 unsigned long long BIG_PREV; // prev 64-bit total seqno
 unsigned long long BIG_THIS = 0; // current 64-bit total seqno
 // -> THIS, PREV should never jump
 // more than half the SEQ space

 char *prompt = "Input hex numbers only (0x is optional)\n\n")
 "\tHex input\n"
 "\t(2 hex numbers separated by whitespace,"
 "each with 8 or fewer digits)";

 fprintf(stderr,"%s\n",prompt);

 while (scanf("%lx %lx",&SEG_HIGH,&SEG_SEQ) == 2) {
 BIG_PREV = BIG_THIS;
 BIG_THIS = (((unsigned long long)SEG_HIGH) << 32)
 | ((unsigned long long)SEG_SEQ);

 // given SEG_SEQ, compute SNE
 SNE = compute_sne(SEG_SEQ);

 fprintf(stderr," SEG_SEQ = %08lx\n", SEG_SEQ);
 fprintf(stderr," SNE = %08lx\n", SNE);
 fprintf(stderr," SEG_HIGH = %08lx %s\n",SEG_HIGH,
 (SEG_HIGH == SNE)? " - OK" : " - ERROR !!!!!!!");
 fprintf(stderr,"\t\tthe jump was %16llx %s %s\n",
 distance(BIG_PREV,BIG_THIS),
 ((BIG_PREV < BIG_THIS)?"+":"-"),
 (((distance(BIG_PREV,BIG_THIS)) > 0x7FFFFFFF)
 ? "ILLEGAL JUMP" : "."));
 fprintf(stderr,"\n");
 fprintf(stderr,"\n");

 fprintf(stderr,"%s\n",prompt);

 }
}

<CODE ENDS>

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 8

6. Validation Suite
The following numbers are used to validate SNE variants and are shown in the order they
legitimately could be received. Each line represents a single 64-bit number, represented as two
hexadecimal 32-bit numbers with a space between. The numbers are formatted for use in the
example code provided in Section 5.

A correctly operating extended sequence number system can receive the least-significant half
(the right side) and compute the correct most-significant half (the left side) correctly. It
specifically tests both forward and backward jumps in received values that represent legitimate
reordering.

00000000 00000000
00000000 30000000
00000000 90000000
00000000 70000000
00000000 a0000000
00000001 00000001
00000000 e0000000
00000001 00000000
00000001 7fffffff
00000001 00000000
00000001 50000000
00000001 80000000
00000001 00000001
00000001 40000000
00000001 90000000
00000001 b0000000
00000002 0fffffff
00000002 20000000
00000002 90000000
00000002 70000000
00000002 A0000000
00000003 00004000
00000002 D0000000
00000003 20000000
00000003 90000000
00000003 70000000
00000003 A0000000
00000004 00004000
00000003 D0000000

7. Security Considerations
Sequence numbers and their extensions can be useful in a variety of security contexts. Because
the extension part (most-significant half) is determined by the previously exchanged sequence
values (least-significant half), the extension should not be considered as adding entropy for the
purposes of message authentication or encryption.

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 9

[IEN74]

[RFC0793]

[RFC1034]

[RFC1035]

[RFC1982]

[RFC5925]

[RFC7323]

9. Informative References
, , , September 1978.

, , , , ,
September 1981, .

, , , ,
, November 1987, .

, , ,
, , November 1987,

.

 and , , , ,
August 1996, .

, , and , , ,
, June 2010, .

, , , and ,
, , , September 2014,

.

8. IANA Considerations
This document has no IANA actions.

Plummmer, W. "Sequence Number Arithmetic" IEN-74

Postel, J. "Transmission Control Protocol" STD 7 RFC 793 DOI 10.17487/RFC0793
<https://www.rfc-editor.org/info/rfc793>

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI
10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13
RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/
info/rfc1035>

Elz, R. R. Bush "Serial Number Arithmetic" RFC 1982 DOI 10.17487/RFC1982
<https://www.rfc-editor.org/info/rfc1982>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Borman, D. Braden, B. Jacobson, V. R. Scheffenegger, Ed. "TCP Extensions
for High Performance" RFC 7323 DOI 10.17487/RFC7323 <https://
www.rfc-editor.org/info/rfc7323>

Acknowledgments
The need for this document was first noted by in April 2020 during
discussions of the pseudocode in RFC 5925.

Juhamatti Kuusisaari

Author's Address
Joe Touch

, Manhattan Beach CA 90266
United States of America

 +1 (310) 560-0334 Phone:
 touch@strayalpha.com Email:

RFC 9187 Sequence Number Extension January 2022

Touch Informational Page 10

https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7323
tel:+1%20(310)%20560-0334
mailto:touch@strayalpha.com

	RFC 9187
	Sequence Number Extension for Windowed Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Background
	3. Related Discussion
	4. Using SNE in Protocol Design
	5. Example Code
	6. Validation Suite
	7. Security Considerations
	8. IANA Considerations
	9. Informative References
	Acknowledgments
	Author's Address

 Sequence Number Extension for Windowed Protocols

 Manhattan Beach
 CA
 90266
 United States of America

 +1 (310) 560-0334
 touch@strayalpha.com

 ISE Stream
 TCP-AO
 TCP

 Sliding window protocols use finite sequence numbers to determine
 segment placement and order. These sequence number spaces wrap
 around and are reused during the operation of such protocols. This
 document describes a way to extend the size of these sequence
 numbers at the endpoints to avoid the impact of that wrap and reuse
 without transmitting additional information in the packet header.
 The resulting extended sequence numbers can be used at the endpoints
 in encryption and authentication algorithms to ensure input bit
 patterns do not repeat over the lifetime of a connection.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Background

 . Related Discussion

 . Using SNE in Protocol Design

 . Example Code

 . Validation Suite

 . Security Considerations

 . IANA Considerations

 . Informative References

 Acknowledgments

 Author's Address

 Introduction

 Protocols use sequence numbers to maintain ordering and, in sliding
 window systems, to control the amount of outstanding unacknowledged
 information. These sequence numbers are finite and thus commonly
 wrap around during long connections, reusing past values.

 It can be useful for protocols to keep track of this wrap around in
 a separate counter, such that the sequence number and counter
 together form an equivalent number space that need not wrap. This
 technique was introduced as "Sequence Number Extension" in the TCP Authentication Option (TCP-AO)
 . The example provided there was intended to introduce the
 concept, but the pseudocode provided is not complete.

 This document presents the formal requirements for Sequence Number
 Extension (SNE), a code example, and a check sequence that can be
 used to validate this and alternate implementations. Sequence
 numbers are used in a variety of protocols to support loss
 detection, reordering, flow control, and congestion control.
 Limitations in the size of a sequence number protocol field can
 limit the ways in which these capabilities can be supported.

 Under certain conditions, it is possible for both endpoints of a
 protocol to keep track of sequence number rollover and effectively
 extend the sequence number space without requiring modification of
 the sequence number field used within protocol messages. These
 conditions assume that the received sequence numbers never vary by
 more than half the size of the space of the field used in messages,
 i.e., they never hop forward or backward by more than half that
 space. This constraint is typical in sliding window protocols, such
 as TCP. However, although both ends can track rollover
 unambiguously, doing so can be surprisingly complex. This document
 provides examples and test cases to simplify that process.

 This document is intended for protocol designers who seek to use
 larger sequence numbers at the endpoints without needing to extend
 the sequence number field used in messages, such as for
 authentication protocols, e.g., TCP-AO . Use of extended
 sequence numbers should be part of a protocol specification so that
 both endpoints can ensure they comply with the requirements needed
 to enable their use in both locations.

	The remainder of this document describes how SNE can be supported and provides the
	pseudocode to
 demonstrate how received messages can unambiguously determine the
 appropriate extension value, as long as the reordering is
 constrained. provides background on the concept. discusses currently known uses of SNE. discusses how SNE
 is used in protocol design and how it differs from in-band use of
 sequence numbers. provides a framework for testing SNE
 implementations, including example code for the SNE function, and
 provides a sequence that can be used by that code for
 validation. concludes with a discussion of security
 issues.

 Background

 Protocols use sequence numbers to maintain message order. The
 transmitter typically increments them either once per message or by
 the length of the message. The receiver uses them to reorder
 messages and detect gaps due to inferred loss.

 Sequence numbers are represented within those messages (e.g., in the
 headers) as values of a finite, unsigned number space. This space is
 typically represented in a fixed-length bit string, whose values
 range from 0..(2 N)-1, inclusive.

 The use of finite representations has repercussions on the use of
 these values at both the transmitter and receiver. Without
 additional constraints, when the number space "wraps around", it
 would be impossible for the receiver to distinguish between the uses
 of the same value.

 As a consequence, additional constraints are required. Transmitters
 are typically required to limit reuse until they can assume that
 receivers would successfully differentiate the two uses of the same
 value. The receiver always interprets values it sees based on the
 assumption that successive values never differ by just under half
 the number space. A receiver cannot detect an error in that
 sequence, but it will incorrectly interpret numbers if reordering
 violates this constraint.

 The constraint requires that "forward" values advance the values by
 less than half the sequence number space, ensuring that receivers
 never experience a series of values that violate that rule.

 We define a sequence space as follows:

 An unsigned integer within the range of 0..(2 N)-1, i.e., for N bits.
 An operation that increments values in that space by K, where K < 2 (N-1), i.e., less than half the range. This operation is used exclusively by the transmitter.
 An operation that compares two values in that space to determine
 their order, e.g., where X < Y implies that X comes before Y.

 We assume that both sides begin with the same initial value, which can be
 anywhere in the space. That value is either assumed (e.g., 0) before the
 protocol begins or coordinated before other messages are exchanged (as
 with TCP Initial Sequence Numbers (ISNs)). It is assumed that the receiver always receives values that
 are always within (2 N)-1, but the successive received values never jump
 forward or backward by more than 2 (N-1)-1, i.e., just under half the
 range.

 No other operations are supported. The transmitter is not permitted
 to "backup", such that values are always used in "increment" order.
 The receiver cannot experience loss or gaps larger than 2 (N-1)-1,
 which is typically enforced either by assumption or by explicit
 endpoint coordination.

 An SNE is a separate number space that
 can be combined with the sequence number to create a larger number
 space that need not wrap around during a connection.

 On the transmit side, SNE is trivially accomplished by incrementing a local
 counter once each time the sequence number increment "wraps" around or by
 keeping a larger local sequence number whose least-significant part is the
 message sequence number and most-significant part can be considered the
 SNE. The transmitter typically does not need to maintain an SNE except when
 used in local computations, such as for Message Authentication Codes (MACs) in TCP-AO .

 The goal of this document is to demonstrate that SNE can be
 accomplished on the receiver side without transmitting additional
 information in messages. It defines the stateful function
 compute_sne() as follows:
 SNE = compute_sne(seqno)
 The compute_sne() function accepts the sequence number seen in a
 received message
 and computes the corresponding SNE. The function includes persistent
 local state that tracks the largest currently received SNE and seqno
 combination. The concatenation of SNE and seqno emulates the
 equivalent larger sequence number space that can avoid wrap around.

 Note that the function defined here is capable of receiving any
 series of seqno values and computing their correct corresponding
 SNE, as long as the series never "jumps" more than half the number
 space "backward" from the largest value seen "forward".

 Related Discussion

 The DNS uses sequence numbers to determine when a Start of Authority
 (SOA) serial number is more recent than a previous one, even
 considering sequence space wrap . The use of
 wrapped sequence numbers for sliding windows in network protocols
 was first described as a sequence number space .

 A more recent discussion describes this as "serial number arithmetic" and defines a comparison operator it claimed was missing
 in IEN-74 . That document defines two operations: addition
 (presumably shifting the window forward) and comparison (defining
 the order of two values). Addition is defined in that document as
 limited to values within the range of 0..windowsize/2-1. Comparison is
 defined in that
 document by a set of equations therein, but that document does not
 provide a way for a receiver to compute the correct equivalent SNE,
 especially including the potential for sequence number reordering,
 as is demonstrated in this document.

 Using SNE in Protocol Design

 As noted in the introduction, message sequence numbers enable
 reordering, loss detection, flow control, and congestion control.
 They are also used to differentiate otherwise potentially identical
 messages that might repeat as part of a sequence or stream.

 The size of the sequence number field used within transferred messages
 defines the ability of a protocol to tolerate reordering and gaps,
 notably limited to half the space of that field. For example, a field of 8
 bits can reorder and detect losses of smaller than 2 7, i.e., 127
 messages. When used for these purposes -- reordering, loss detection,
 flow control, and congestion control -- the size of the field defines
 the limits of those capabilities.

 Sequence numbers are also used to differentiate messages; when used
 this way, they can be problematic if they repeat for otherwise
 identical messages. Protocols using sequence numbers tolerate that
 repetition because they are aware of the rollover of these sequence
 number spaces at both endpoints. In some cases, it can be useful to
 track this rollover and use the rollover count as an extension to
 the sequence number, e.g., to differentiate authentication MACs.
 This SNE is never transmitted in
 messages; the existing rules of sequence numbers ensure both ends can
 keep track unambiguously -- both for new messages and reordered
 messages.

 The constraints required to use SNE have already been presented as
 background in . The transmitter must never send messages
 out of sequence beyond half the range of the sequence number field
 used in messages. A receiver uses this assumption to interpret
 whether received numbers are part of pre-wrap sequences or post-wrap
 sequences. Note that a receiver cannot enforce or detect if the
 transmitter has violated these assumptions on its own; it relies on
 explicit coordination to ensure this property is maintained, such as
 the exchange of acknowledgements.

 SNEs are intended for use when it is helpful for both ends to
 unambiguously determine whether the sequence number in a message has
 wrapped and whether a received message is pre-wrap or post-wrap for
 each such wrap. This can be used by both endpoints to ensure all
 messages of arbitrarily long sequences can be differentiated, e.g.,
 ensuring unique MACs.

 SNE does not extend the actual sequence space of a protocol or
 (thus) its tolerance to reordering or gaps. It also cannot improve
 its dynamic range for flow control or congestion control, although
 there are other somewhat related methods that can, such as window
 scaling (which increases range at the expense of
 granularity).

 SNE is not needed if messages are already unique over the entirety
 of a transfer sequence, e.g., either because the sequence number
 field used in its messages never wrap around or because other fields
 provide that disambiguation, such as timestamps.

 Example Code

 The following C code is provided as a verified example of SNE
 from 16 to 32 bits. The code includes both the
 framework used for validation and the compute_sne() function, the
 latter of which can be used operationally.

 A correct test will indicate "OK" for each test. An incorrect test
 will indicate "ERROR" where applicable.

#include <stdio.h>
#include <sys/param.h>

#define distance(x,y) (((x)<(y))?((y)-(x)):((x)-(y)))

#define SNEDEBUG 1

// This is the core code, stand-alone, to compute SNE from seqno
// >> replace this function with your own code to test alternates
unsigned long compute_sne(unsigned long seqno) {
 // INPUT: 32-bit unsigned sequence number (low bits)
 // OUTPUT: 32-bit unsigned SNE (high bits)

 // variables used in this code example to compute SNE:

 static unsigned long
 RCV_SNE = 0; // high-watermark SNE
 static int
 RCV_SNE_FLAG = 1; // set during first half rollover
 // (prevents re-rollover)
 static unsigned long
 RCV_PREV_SEQ = 0; // high-watermark SEQ
 unsigned long
 holdSNE; // temp copy of output

 holdSNE = RCV_SNE; // use current SNE to start
 if (distance(seqno,RCV_PREV_SEQ) < 0x80000000) {
 // both in same SNE range?
 if ((seqno >= 0x80000000) && (RCV_PREV_SEQ < 0x80000000)) {
 // jumps fwd over N/2?
 RCV_SNE_FLAG = 0; // reset wrap increment flag
 }
 RCV_PREV_SEQ = MAX(seqno,RCV_PREV_SEQ);
 // move prev forward if needed
 } else {
 // both in diff SNE ranges
 if (seqno < 0x80000000) {
 // jumps forward over zero?
 RCV_PREV_SEQ = seqno; // update prev
 if (RCV_SNE_FLAG == 0) {
 // first jump over zero? (wrap)
 RCV_SNE_FLAG = 1;
 // set flag so we increment once
 RCV_SNE = RCV_SNE + 1;
 // increment window
 holdSNE = RCV_SNE;
 // use updated SNE value
 }
 } else {
 // jump backward over zero
 holdSNE = RCV_SNE - 1;
 // use pre-rollover SNE value
 }
 }
 #ifdef SNEDEBUG
 fprintf(stderr,"state RCV_SNE_FLAG = %1d\n",
 RCV_SNE_FLAG);
 fprintf(stderr,"state RCV_SNE = %08lx\n", RCV_SNE);
 fprintf(stderr,"state RCV_PREV_SEQ = %08lx\n", RCV_PREV_SEQ);
 #endif
 return holdSNE;
}

int main() {
 // variables used as input and output:
 unsigned long SEG_SEQ; // input - received SEQ
 unsigned long SNE; // output - SNE corresponding
 // to received SEQ

 // variables used to validate the computed SNE:
 unsigned long SEG_HIGH; // input - xmitter side SNE
 // -> SNE should match this value
 unsigned long long BIG_PREV; // prev 64-bit total seqno
 unsigned long long BIG_THIS = 0; // current 64-bit total seqno
 // -> THIS, PREV should never jump
 // more than half the SEQ space

 char *prompt = "Input hex numbers only (0x is optional)\n\n")
 "\tHex input\n"
 "\t(2 hex numbers separated by whitespace,"
 "each with 8 or fewer digits)";

 fprintf(stderr,"%s\n",prompt);

 while (scanf("%lx %lx",&SEG_HIGH,&SEG_SEQ) == 2) {
 BIG_PREV = BIG_THIS;
 BIG_THIS = (((unsigned long long)SEG_HIGH) << 32)
 | ((unsigned long long)SEG_SEQ);

 // given SEG_SEQ, compute SNE
 SNE = compute_sne(SEG_SEQ);

 fprintf(stderr," SEG_SEQ = %08lx\n", SEG_SEQ);
 fprintf(stderr," SNE = %08lx\n", SNE);
 fprintf(stderr," SEG_HIGH = %08lx %s\n",SEG_HIGH,
 (SEG_HIGH == SNE)? " - OK" : " - ERROR !!!!!!!");
 fprintf(stderr,"\t\tthe jump was %16llx %s %s\n",
 distance(BIG_PREV,BIG_THIS),
 ((BIG_PREV < BIG_THIS)?"+":"-"),
 (((distance(BIG_PREV,BIG_THIS)) > 0x7FFFFFFF)
 ? "ILLEGAL JUMP" : "."));
 fprintf(stderr,"\n");
 fprintf(stderr,"\n");

 fprintf(stderr,"%s\n",prompt);

 }
}

 Validation Suite

 The following numbers are used to validate SNE
 variants and are shown in the order they legitimately could be
 received. Each line represents a single 64-bit number, represented
 as two hexadecimal 32-bit numbers with a space between. The numbers
 are formatted for use in the example code provided in .

 A correctly operating extended sequence number system can receive
 the least-significant half (the right side) and compute the correct
 most-significant half (the left side) correctly. It specifically
 tests both forward and backward jumps in received values that
 represent legitimate reordering.

00000000 00000000
00000000 30000000
00000000 90000000
00000000 70000000
00000000 a0000000
00000001 00000001
00000000 e0000000
00000001 00000000
00000001 7fffffff
00000001 00000000
00000001 50000000
00000001 80000000
00000001 00000001
00000001 40000000
00000001 90000000
00000001 b0000000
00000002 0fffffff
00000002 20000000
00000002 90000000
00000002 70000000
00000002 A0000000
00000003 00004000
00000002 D0000000
00000003 20000000
00000003 90000000
00000003 70000000
00000003 A0000000
00000004 00004000
00000003 D0000000

 Security Considerations

 Sequence numbers and their extensions can be useful in a variety of
 security contexts. Because the extension part (most-significant
 half) is determined by the previously exchanged sequence values
 (least-significant half), the extension should not be considered as
 adding entropy for the purposes of message authentication or
 encryption.

 IANA Considerations
 This document has no IANA actions.

 Informative References

 Sequence Number Arithmetic

	

 IEN-74

 Transmission Control Protocol

 Domain names - concepts and facilities

 This RFC is the revised basic definition of The Domain Name System. It obsoletes RFC-882. This memo describes the domain style names and their used for host address look up and electronic mail forwarding. It discusses the clients and servers in the domain name system and the protocol used between them.

 Domain names - implementation and specification

 This RFC is the revised specification of the protocol and format used in the implementation of the Domain Name System. It obsoletes RFC-883. This memo documents the details of the domain name client - server communication.

 Serial Number Arithmetic

 The DNS has long relied upon serial number arithmetic, a concept which has never really been defined, certainly not in an IETF document, though which has been widely understood. This memo supplies the missing definition. It is intended to update RFC1034 and RFC1035. [STANDARDS-TRACK]

 The TCP Authentication Option

 This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]

 TCP Extensions for High Performance

 This document specifies a set of TCP extensions to improve performance over paths with a large bandwidth * delay product and to provide reliable operation over very high-speed paths. It defines the TCP Window Scale (WS) option and the TCP Timestamps (TS) option and their semantics. The Window Scale option is used to support larger receive windows, while the Timestamps option can be used for at least two distinct mechanisms, Protection Against Wrapped Sequences (PAWS) and Round-Trip Time Measurement (RTTM), that are also described herein.
 This document obsoletes RFC 1323 and describes changes from it.

 Acknowledgments

 The need for this document was first noted by
 in April 2020 during discussions of the pseudocode in RFC 5925.

 Author's Address

 Manhattan Beach
 CA
 90266
 United States of America

 +1 (310) 560-0334
 touch@strayalpha.com

