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Sliding window protocols use finite sequence numbers to determine segment placement and
order. These sequence number spaces wrap around and are reused during the operation of such
protocols. This document describes a way to extend the size of these sequence numbers at the
endpoints to avoid the impact of that wrap and reuse without transmitting additional
information in the packet header. The resulting extended sequence numbers can be used at the
endpoints in encryption and authentication algorithms to ensure input bit patterns do not repeat
over the lifetime of a connection.
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1. Introduction 
Protocols use sequence numbers to maintain ordering and, in sliding window systems, to control
the amount of outstanding unacknowledged information. These sequence numbers are finite and
thus commonly wrap around during long connections, reusing past values.

It can be useful for protocols to keep track of this wrap around in a separate counter, such that
the sequence number and counter together form an equivalent number space that need not
wrap. This technique was introduced as "Sequence Number Extension" in the TCP Authentication
Option (TCP-AO) . The example provided there was intended to introduce the concept,
but the pseudocode provided is not complete.

This document presents the formal requirements for Sequence Number Extension (SNE), a code
example, and a check sequence that can be used to validate this and alternate implementations.
Sequence numbers are used in a variety of protocols to support loss detection, reordering, flow
control, and congestion control. Limitations in the size of a sequence number protocol field can
limit the ways in which these capabilities can be supported.

[RFC5925]
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Under certain conditions, it is possible for both endpoints of a protocol to keep track of sequence
number rollover and effectively extend the sequence number space without requiring
modification of the sequence number field used within protocol messages. These conditions
assume that the received sequence numbers never vary by more than half the size of the space of
the field used in messages, i.e., they never hop forward or backward by more than half that space.
This constraint is typical in sliding window protocols, such as TCP. However, although both ends
can track rollover unambiguously, doing so can be surprisingly complex. This document provides
examples and test cases to simplify that process.

This document is intended for protocol designers who seek to use larger sequence numbers at the
endpoints without needing to extend the sequence number field used in messages, such as for
authentication protocols, e.g., TCP-AO . Use of extended sequence numbers should be
part of a protocol specification so that both endpoints can ensure they comply with the
requirements needed to enable their use in both locations.

The remainder of this document describes how SNE can be supported and provides the
pseudocode to demonstrate how received messages can unambiguously determine the
appropriate extension value, as long as the reordering is constrained. Section 2 provides
background on the concept. Section 3 discusses currently known uses of SNE. Section 4 discusses
how SNE is used in protocol design and how it differs from in-band use of sequence numbers. 
Section 5 provides a framework for testing SNE implementations, including example code for the
SNE function, and Section 6 provides a sequence that can be used by that code for validation. 
Section 7 concludes with a discussion of security issues.

[RFC5925]

2. Background 
Protocols use sequence numbers to maintain message order. The transmitter typically
increments them either once per message or by the length of the message. The receiver uses them
to reorder messages and detect gaps due to inferred loss.

Sequence numbers are represented within those messages (e.g., in the headers) as values of a
finite, unsigned number space. This space is typically represented in a fixed-length bit string,
whose values range from 0..(2N)-1, inclusive.

The use of finite representations has repercussions on the use of these values at both the
transmitter and receiver. Without additional constraints, when the number space "wraps
around", it would be impossible for the receiver to distinguish between the uses of the same value.

As a consequence, additional constraints are required. Transmitters are typically required to
limit reuse until they can assume that receivers would successfully differentiate the two uses of
the same value. The receiver always interprets values it sees based on the assumption that
successive values never differ by just under half the number space. A receiver cannot detect an
error in that sequence, but it will incorrectly interpret numbers if reordering violates this
constraint.

The constraint requires that "forward" values advance the values by less than half the sequence
number space, ensuring that receivers never experience a series of values that violate that rule.
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We define a sequence space as follows:

An unsigned integer within the range of 0..(2N)-1, i.e., for N bits. 

An operation that increments values in that space by K, where K < 2(N-1), i.e., less than half the
range. This operation is used exclusively by the transmitter. 
An operation that compares two values in that space to determine their order, e.g., where
X < Y implies that X comes before Y. 

We assume that both sides begin with the same initial value, which can be anywhere in the space.
That value is either assumed (e.g., 0) before the protocol begins or coordinated before other
messages are exchanged (as with TCP Initial Sequence Numbers (ISNs) ). It is assumed
that the receiver always receives values that are always within (2N)-1, but the successive received
values never jump forward or backward by more than 2(N-1)-1, i.e., just under half the range.

No other operations are supported. The transmitter is not permitted to "backup", such that values
are always used in "increment" order. The receiver cannot experience loss or gaps larger than
2(N-1)-1, which is typically enforced either by assumption or by explicit endpoint coordination.

An SNE is a separate number space that can be combined with the sequence number to create a
larger number space that need not wrap around during a connection.

On the transmit side, SNE is trivially accomplished by incrementing a local counter once each
time the sequence number increment "wraps" around or by keeping a larger local sequence
number whose least-significant part is the message sequence number and most-significant part
can be considered the SNE. The transmitter typically does not need to maintain an SNE except
when used in local computations, such as for Message Authentication Codes (MACs) in TCP-AO 

.

The goal of this document is to demonstrate that SNE can be accomplished on the receiver side
without transmitting additional information in messages. It defines the stateful function
compute_sne() as follows:

SNE = compute_sne(seqno)

The compute_sne() function accepts the sequence number seen in a received message and
computes the corresponding SNE. The function includes persistent local state that tracks the
largest currently received SNE and seqno combination. The concatenation of SNE and seqno
emulates the equivalent larger sequence number space that can avoid wrap around.

Note that the function defined here is capable of receiving any series of seqno values and
computing their correct corresponding SNE, as long as the series never "jumps" more than half
the number space "backward" from the largest value seen "forward".

• 

• 

• 

[RFC0793]

[RFC5925]
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3. Related Discussion 
The DNS uses sequence numbers to determine when a Start of Authority (SOA) serial number is
more recent than a previous one, even considering sequence space wrap . The
use of wrapped sequence numbers for sliding windows in network protocols was first described
as a sequence number space .

A more recent discussion describes this as "serial number arithmetic" and defines a comparison
operator it claimed was missing in IEN-74 . That document defines two operations:
addition (presumably shifting the window forward) and comparison (defining the order of two
values). Addition is defined in that document as limited to values within the range of
0..windowsize/2-1. Comparison is defined in that document by a set of equations therein, but that
document does not provide a way for a receiver to compute the correct equivalent SNE, especially
including the potential for sequence number reordering, as is demonstrated in this document.

[RFC1034][RFC1035]

[IEN74]

[RFC1982]

4. Using SNE in Protocol Design 
As noted in the introduction, message sequence numbers enable reordering, loss detection, flow
control, and congestion control. They are also used to differentiate otherwise potentially
identical messages that might repeat as part of a sequence or stream.

The size of the sequence number field used within transferred messages defines the ability of a
protocol to tolerate reordering and gaps, notably limited to half the space of that field. For
example, a field of 8 bits can reorder and detect losses of smaller than 27, i.e., 127 messages. When
used for these purposes -- reordering, loss detection, flow control, and congestion control -- the
size of the field defines the limits of those capabilities.

Sequence numbers are also used to differentiate messages; when used this way, they can be
problematic if they repeat for otherwise identical messages. Protocols using sequence numbers
tolerate that repetition because they are aware of the rollover of these sequence number spaces
at both endpoints. In some cases, it can be useful to track this rollover and use the rollover count
as an extension to the sequence number, e.g., to differentiate authentication MACs. This SNE is
never transmitted in messages; the existing rules of sequence numbers ensure both ends can
keep track unambiguously -- both for new messages and reordered messages.

The constraints required to use SNE have already been presented as background in Section 2. The
transmitter must never send messages out of sequence beyond half the range of the sequence
number field used in messages. A receiver uses this assumption to interpret whether received
numbers are part of pre-wrap sequences or post-wrap sequences. Note that a receiver cannot
enforce or detect if the transmitter has violated these assumptions on its own; it relies on explicit
coordination to ensure this property is maintained, such as the exchange of acknowledgements.
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SNEs are intended for use when it is helpful for both ends to unambiguously determine whether
the sequence number in a message has wrapped and whether a received message is pre-wrap or
post-wrap for each such wrap. This can be used by both endpoints to ensure all messages of
arbitrarily long sequences can be differentiated, e.g., ensuring unique MACs.

SNE does not extend the actual sequence space of a protocol or (thus) its tolerance to reordering
or gaps. It also cannot improve its dynamic range for flow control or congestion control,
although there are other somewhat related methods that can, such as window scaling 
(which increases range at the expense of granularity).

SNE is not needed if messages are already unique over the entirety of a transfer sequence, e.g.,
either because the sequence number field used in its messages never wrap around or because
other fields provide that disambiguation, such as timestamps.

[RFC7323]

5. Example Code 
The following C code is provided as a verified example of SNE from 16 to 32 bits. The code includes
both the framework used for validation and the compute_sne() function, the latter of which can
be used operationally.

A correct test will indicate "OK" for each test. An incorrect test will indicate "ERROR" where
applicable.
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<CODE BEGINS> file "compute_sne.c"

#include <stdio.h>
#include <sys/param.h>

#define distance(x,y)   (((x)<(y))?((y)-(x)):((x)-(y)))

#define SNEDEBUG 1

// This is the core code, stand-alone, to compute SNE from seqno
// >> replace this function with your own code to test alternates
unsigned long compute_sne(unsigned long seqno) {
    // INPUT: 32-bit unsigned sequence number (low bits)
    // OUTPUT: 32-bit unsigned SNE (high bits)

    // variables used in this code example to compute SNE:

    static unsigned long
      RCV_SNE = 0;        // high-watermark SNE
    static int
      RCV_SNE_FLAG = 1;   // set during first half rollover
                          // (prevents re-rollover)
    static unsigned long
      RCV_PREV_SEQ = 0;   // high-watermark SEQ
    unsigned long
      holdSNE;            // temp copy of output

    holdSNE = RCV_SNE;                // use current SNE to start
    if (distance(seqno,RCV_PREV_SEQ) < 0x80000000) {
        // both in same SNE range?
        if ((seqno >= 0x80000000) && (RCV_PREV_SEQ < 0x80000000)) {
            // jumps fwd over N/2?
            RCV_SNE_FLAG = 0;         // reset wrap increment flag
        }
        RCV_PREV_SEQ = MAX(seqno,RCV_PREV_SEQ);
                                      // move prev forward if needed
    } else {
            // both in diff SNE ranges
            if (seqno < 0x80000000) {
                // jumps forward over zero?
                RCV_PREV_SEQ = seqno; // update prev
                if (RCV_SNE_FLAG == 0) {
                    // first jump over zero? (wrap)
                    RCV_SNE_FLAG = 1;
                              // set flag so we increment once
                    RCV_SNE = RCV_SNE + 1;
                              // increment window
                    holdSNE = RCV_SNE;
                              // use updated SNE value
                }
            } else {
                // jump backward over zero
                holdSNE = RCV_SNE - 1;
                              // use pre-rollover SNE value
            }
    }
    #ifdef SNEDEBUG
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    fprintf(stderr,"state RCV_SNE_FLAG =        %1d\n",
      RCV_SNE_FLAG);
    fprintf(stderr,"state      RCV_SNE = %08lx\n", RCV_SNE);
    fprintf(stderr,"state RCV_PREV_SEQ = %08lx\n", RCV_PREV_SEQ);
    #endif
    return holdSNE;
}

int main() {
    // variables used as input and output:
    unsigned long SEG_SEQ;        // input - received SEQ
    unsigned long SNE;            // output - SNE corresponding
                                  // to received SEQ

    // variables used to validate the computed SNE:
    unsigned long SEG_HIGH;       // input - xmitter side SNE
                                  // -> SNE should match this value
    unsigned long long BIG_PREV;  // prev 64-bit total seqno
    unsigned long long BIG_THIS = 0;  // current 64-bit total seqno
                                  // -> THIS, PREV should never jump
                                  //    more than half the SEQ space

   char *prompt = "Input hex numbers only (0x is optional)\n\n")
                  "\tHex input\n"
                  "\t(2 hex numbers separated by whitespace,"
                  "each with 8 or fewer digits)";

    fprintf(stderr,"%s\n",prompt);

    while (scanf("%lx %lx",&SEG_HIGH,&SEG_SEQ) == 2) {
        BIG_PREV = BIG_THIS;
        BIG_THIS = (((unsigned long long)SEG_HIGH) << 32)
                  | ((unsigned long long)SEG_SEQ);

        // given SEG_SEQ, compute SNE
        SNE = compute_sne(SEG_SEQ);

        fprintf(stderr,"           SEG_SEQ = %08lx\n", SEG_SEQ);
        fprintf(stderr,"               SNE = %08lx\n", SNE);
        fprintf(stderr,"          SEG_HIGH = %08lx %s\n",SEG_HIGH,
                (SEG_HIGH == SNE)? " - OK" : " - ERROR !!!!!!!");
        fprintf(stderr,"\t\tthe jump was %16llx %s %s\n",
                distance(BIG_PREV,BIG_THIS),
                ((BIG_PREV < BIG_THIS)?"+":"-"),
                (((distance(BIG_PREV,BIG_THIS)) > 0x7FFFFFFF)
                 ? "ILLEGAL JUMP" : "."));
        fprintf(stderr,"\n");
        fprintf(stderr,"\n");

        fprintf(stderr,"%s\n",prompt);

    }
}

<CODE ENDS>
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6. Validation Suite 
The following numbers are used to validate SNE variants and are shown in the order they
legitimately could be received. Each line represents a single 64-bit number, represented as two
hexadecimal 32-bit numbers with a space between. The numbers are formatted for use in the
example code provided in Section 5.

A correctly operating extended sequence number system can receive the least-significant half
(the right side) and compute the correct most-significant half (the left side) correctly. It
specifically tests both forward and backward jumps in received values that represent legitimate
reordering.

00000000 00000000
00000000 30000000
00000000 90000000
00000000 70000000
00000000 a0000000
00000001 00000001
00000000 e0000000
00000001 00000000
00000001 7fffffff
00000001 00000000
00000001 50000000
00000001 80000000
00000001 00000001
00000001 40000000
00000001 90000000
00000001 b0000000
00000002 0fffffff
00000002 20000000
00000002 90000000
00000002 70000000
00000002 A0000000
00000003 00004000
00000002 D0000000
00000003 20000000
00000003 90000000
00000003 70000000
00000003 A0000000
00000004 00004000
00000003 D0000000

7. Security Considerations 
Sequence numbers and their extensions can be useful in a variety of security contexts. Because
the extension part (most-significant half) is determined by the previously exchanged sequence
values (least-significant half), the extension should not be considered as adding entropy for the
purposes of message authentication or encryption.
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       Introduction
       
   Protocols use sequence numbers to maintain ordering and, in sliding
   window systems, to control the amount of outstanding unacknowledged
   information. These sequence numbers are finite and thus commonly
   wrap around during long connections, reusing past values.
       
   It can be useful for protocols to keep track of this wrap around in
   a separate counter, such that the sequence number and counter
   together form an equivalent number space that need not wrap. This
   technique was introduced as "Sequence Number Extension" in the TCP Authentication Option (TCP-AO)
    . The example provided there was intended to introduce the
   concept, but the pseudocode provided is not complete.
       
   This document presents the formal requirements for Sequence Number
   Extension (SNE), a code example, and a check sequence that can be
   used to validate this and alternate implementations. Sequence
   numbers are used in a variety of protocols to support loss
   detection, reordering, flow control, and congestion control.
   Limitations in the size of a sequence number protocol field can
   limit the ways in which these capabilities can be supported.
       
   Under certain conditions, it is possible for both endpoints of a
   protocol to keep track of sequence number rollover and effectively
   extend the sequence number space without requiring modification of
   the sequence number field used within protocol messages. These
   conditions assume that the received sequence numbers never vary by
   more than half the size of the space of the field used in messages,
   i.e., they never hop forward or backward by more than half that
   space. This constraint is typical in sliding window protocols, such
   as TCP. However, although both ends can track rollover
   unambiguously, doing so can be surprisingly complex. This document
   provides examples and test cases to simplify that process.
       
   This document is intended for protocol designers who seek to use
   larger sequence numbers at the endpoints without needing to extend
   the sequence number field used in messages, such as for
   authentication protocols, e.g., TCP-AO  . Use of extended
   sequence numbers should be part of a protocol specification so that
   both endpoints can ensure they comply with the requirements needed
   to enable their use in both locations.
       
	The remainder of this document describes how SNE can be supported and provides the
	pseudocode to
   demonstrate how received messages can unambiguously determine the
   appropriate extension value, as long as the reordering is
   constrained.    provides background on the concept.   discusses currently known uses of SNE.   discusses how SNE
   is used in protocol design and how it differs from in-band use of
   sequence numbers.   provides a framework for testing SNE
   implementations, including example code for the SNE function, and 
     provides a sequence that can be used by that code for
   validation.   concludes with a discussion of security
   issues.
    
     
       Background
       
   Protocols use sequence numbers to maintain message order. The
   transmitter typically increments them either once per message or by
   the length of the message. The receiver uses them to reorder
   messages and detect gaps due to inferred loss.
       
   Sequence numbers are represented within those messages (e.g., in the
   headers) as values of a finite, unsigned number space. This space is
   typically represented in a fixed-length bit string, whose values
   range from 0..(2 N)-1, inclusive.
       
   The use of finite representations has repercussions on the use of
   these values at both the transmitter and receiver. Without
   additional constraints, when the number space "wraps around", it
   would be impossible for the receiver to distinguish between the uses
   of the same value.
       
   As a consequence, additional constraints are required. Transmitters
   are typically required to limit reuse until they can assume that
   receivers would successfully differentiate the two uses of the same
   value. The receiver always interprets values it sees based on the
   assumption that successive values never differ by just under half
   the number space. A receiver cannot detect an error in that
   sequence, but it will incorrectly interpret numbers if reordering
   violates this constraint.
       
   The constraint requires that "forward" values advance the values by
   less than half the sequence number space, ensuring that receivers
   never experience a series of values that violate that rule.
       
   We define a sequence space as follows:
       
         An unsigned integer within the range of 0..(2 N)-1, i.e., for N bits.
         An operation that increments values in that space by K, where K < 2 (N-1), i.e., less than half the range. This operation is used exclusively by the transmitter.
         An operation that compares two values in that space to determine
     their order, e.g., where X < Y implies that X comes before Y.
      
       
   We assume that both sides begin with the same initial value, which can be
   anywhere in the space. That value is either assumed (e.g., 0) before the
   protocol begins or coordinated before other messages are exchanged (as
   with TCP Initial Sequence Numbers (ISNs)  ). It is assumed that the receiver always receives values that
   are always within (2 N)-1, but the successive received values never jump
   forward or backward by more than 2 (N-1)-1, i.e., just under half the
   range.
       
   No other operations are supported. The transmitter is not permitted
   to "backup", such that values are always used in "increment" order.
   The receiver cannot experience loss or gaps larger than 2 (N-1)-1,
   which is typically enforced either by assumption or by explicit
   endpoint coordination.
       
   An SNE is a separate number space that
   can be combined with the sequence number to create a larger number
   space that need not wrap around during a connection.
       
   On the transmit side, SNE is trivially accomplished by incrementing a local
   counter once each time the sequence number increment "wraps" around or by
   keeping a larger local sequence number whose least-significant part is the
   message sequence number and most-significant part can be considered the
   SNE. The transmitter typically does not need to maintain an SNE except when
   used in local computations, such as for Message Authentication Codes (MACs) in TCP-AO  .
       
   The goal of this document is to demonstrate that SNE can be
   accomplished on the receiver side without transmitting additional
   information in messages. It defines the stateful function
   compute_sne() as follows:
       SNE = compute_sne(seqno)
       The compute_sne() function accepts the sequence number seen in a
   received message
   and computes the corresponding SNE. The function includes persistent
   local state that tracks the largest currently received SNE and seqno
   combination. The concatenation of SNE and seqno emulates the
   equivalent larger sequence number space that can avoid wrap around.
       
   Note that the function defined here is capable of receiving any
   series of seqno values and computing their correct corresponding
   SNE, as long as the series never "jumps" more than half the number
   space "backward" from the largest value seen "forward".
    
     
       Related Discussion
       
   The DNS uses sequence numbers to determine when a Start of Authority
   (SOA) serial number is more recent than a previous one, even
   considering sequence space wrap   . The use of
   wrapped sequence numbers for sliding windows in network protocols
   was first described as a sequence number space  .
       
   A more recent discussion describes this as "serial number arithmetic" and defines a comparison operator it claimed was missing
   in IEN-74  . That document defines two operations: addition
   (presumably shifting the window forward) and comparison (defining
   the order of two values). Addition is defined in that document as
   limited to values within the range of 0..windowsize/2-1. Comparison is
   defined in that
   document by a set of equations therein, but that document does not
   provide a way for a receiver to compute the correct equivalent SNE,
   especially including the potential for sequence number reordering,
   as is demonstrated in this document.
    
     
       Using SNE in Protocol Design
       
   As noted in the introduction, message sequence numbers enable
   reordering, loss detection, flow control, and congestion control.
   They are also used to differentiate otherwise potentially identical
   messages that might repeat as part of a sequence or stream.
       
   The size of the sequence number field used within transferred messages
   defines the ability of a protocol to tolerate reordering and gaps,
   notably limited to half the space of that field. For example, a field of 8
   bits can reorder and detect losses of smaller than 2 7, i.e., 127
   messages. When used for these purposes -- reordering, loss detection,
   flow control, and congestion control -- the size of the field defines
   the limits of those capabilities.
       
   Sequence numbers are also used to differentiate messages; when used
   this way, they can be problematic if they repeat for otherwise
   identical messages. Protocols using sequence numbers tolerate that
   repetition because they are aware of the rollover of these sequence
   number spaces at both endpoints. In some cases, it can be useful to
   track this rollover and use the rollover count as an extension to
   the sequence number, e.g., to differentiate authentication MACs.
   This SNE is never transmitted in
   messages; the existing rules of sequence numbers ensure both ends can
   keep track unambiguously -- both for new messages and reordered
   messages.
       
   The constraints required to use SNE have already been presented as
   background in  . The transmitter must never send messages
   out of sequence beyond half the range of the sequence number field
   used in messages. A receiver uses this assumption to interpret
   whether received numbers are part of pre-wrap sequences or post-wrap
   sequences. Note that a receiver cannot enforce or detect if the
   transmitter has violated these assumptions on its own; it relies on
   explicit coordination to ensure this property is maintained, such as
   the exchange of acknowledgements.
       
   SNEs are intended for use when it is helpful for both ends to
   unambiguously determine whether the sequence number in a message has
   wrapped and whether a received message is pre-wrap or post-wrap for
   each such wrap. This can be used by both endpoints to ensure all
   messages of arbitrarily long sequences can be differentiated, e.g.,
   ensuring unique MACs.
       
   SNE does not extend the actual sequence space of a protocol or
   (thus) its tolerance to reordering or gaps. It also cannot improve
   its dynamic range for flow control or congestion control, although
   there are other somewhat related methods that can, such as window
   scaling   (which increases range at the expense of
   granularity).
       
   SNE is not needed if messages are already unique over the entirety
   of a transfer sequence, e.g., either because the sequence number
   field used in its messages never wrap around or because other fields
   provide that disambiguation, such as timestamps.
    
     
       Example Code
       
   The following C code is provided as a verified example of SNE
   from 16 to 32 bits. The code includes both the
   framework used for validation and the compute_sne() function, the
   latter of which can be used operationally.
       
   A correct test will indicate "OK" for each test. An incorrect test
      will indicate "ERROR" where applicable.
       
#include <stdio.h>
#include <sys/param.h>

#define distance(x,y)   (((x)<(y))?((y)-(x)):((x)-(y)))

#define SNEDEBUG 1

// This is the core code, stand-alone, to compute SNE from seqno
// >> replace this function with your own code to test alternates
unsigned long compute_sne(unsigned long seqno) {
    // INPUT: 32-bit unsigned sequence number (low bits)
    // OUTPUT: 32-bit unsigned SNE (high bits)

    // variables used in this code example to compute SNE:

    static unsigned long
      RCV_SNE = 0;        // high-watermark SNE
    static int
      RCV_SNE_FLAG = 1;   // set during first half rollover
                          // (prevents re-rollover)
    static unsigned long
      RCV_PREV_SEQ = 0;   // high-watermark SEQ
    unsigned long
      holdSNE;            // temp copy of output

    holdSNE = RCV_SNE;                // use current SNE to start
    if (distance(seqno,RCV_PREV_SEQ) < 0x80000000) {
        // both in same SNE range?
        if ((seqno >= 0x80000000) && (RCV_PREV_SEQ < 0x80000000)) {
            // jumps fwd over N/2?
            RCV_SNE_FLAG = 0;         // reset wrap increment flag
        }
        RCV_PREV_SEQ = MAX(seqno,RCV_PREV_SEQ);
                                      // move prev forward if needed
    } else {
            // both in diff SNE ranges
            if (seqno < 0x80000000) {
                // jumps forward over zero?
                RCV_PREV_SEQ = seqno; // update prev
                if (RCV_SNE_FLAG == 0) {
                    // first jump over zero? (wrap)
                    RCV_SNE_FLAG = 1;
                              // set flag so we increment once
                    RCV_SNE = RCV_SNE + 1;
                              // increment window
                    holdSNE = RCV_SNE;
                              // use updated SNE value
                }
            } else {
                // jump backward over zero
                holdSNE = RCV_SNE - 1;
                              // use pre-rollover SNE value
            }
    }
    #ifdef SNEDEBUG
    fprintf(stderr,"state RCV_SNE_FLAG =        %1d\n",
      RCV_SNE_FLAG);
    fprintf(stderr,"state      RCV_SNE = %08lx\n", RCV_SNE);
    fprintf(stderr,"state RCV_PREV_SEQ = %08lx\n", RCV_PREV_SEQ);
    #endif
    return holdSNE;
}

int main() {
    // variables used as input and output:
    unsigned long SEG_SEQ;        // input - received SEQ
    unsigned long SNE;            // output - SNE corresponding
                                  // to received SEQ

    // variables used to validate the computed SNE:
    unsigned long SEG_HIGH;       // input - xmitter side SNE
                                  // -> SNE should match this value
    unsigned long long BIG_PREV;  // prev 64-bit total seqno
    unsigned long long BIG_THIS = 0;  // current 64-bit total seqno
                                  // -> THIS, PREV should never jump
                                  //    more than half the SEQ space

   char *prompt = "Input hex numbers only (0x is optional)\n\n")
                  "\tHex input\n"
                  "\t(2 hex numbers separated by whitespace,"
                  "each with 8 or fewer digits)";

    fprintf(stderr,"%s\n",prompt);

    while (scanf("%lx %lx",&SEG_HIGH,&SEG_SEQ) == 2) {
        BIG_PREV = BIG_THIS;
        BIG_THIS = (((unsigned long long)SEG_HIGH) << 32)
                  | ((unsigned long long)SEG_SEQ);

        // given SEG_SEQ, compute SNE
        SNE = compute_sne(SEG_SEQ);

        fprintf(stderr,"           SEG_SEQ = %08lx\n", SEG_SEQ);
        fprintf(stderr,"               SNE = %08lx\n", SNE);
        fprintf(stderr,"          SEG_HIGH = %08lx %s\n",SEG_HIGH,
                (SEG_HIGH == SNE)? " - OK" : " - ERROR !!!!!!!");
        fprintf(stderr,"\t\tthe jump was %16llx %s %s\n",
                distance(BIG_PREV,BIG_THIS),
                ((BIG_PREV < BIG_THIS)?"+":"-"),
                (((distance(BIG_PREV,BIG_THIS)) > 0x7FFFFFFF)
                 ? "ILLEGAL JUMP" : "."));
        fprintf(stderr,"\n");
        fprintf(stderr,"\n");

        fprintf(stderr,"%s\n",prompt);

    }
}

    
     
       Validation Suite
       
   The following numbers are used to validate SNE
   variants and are shown in the order they legitimately could be
   received. Each line represents a single 64-bit number, represented
   as two hexadecimal 32-bit numbers with a space between. The numbers
   are formatted for use in the example code provided in  .
       
   A correctly operating extended sequence number system can receive
   the least-significant half (the right side) and compute the correct
   most-significant half (the left side) correctly. It specifically
   tests both forward and backward jumps in received values that
   represent legitimate reordering.
       
00000000 00000000
00000000 30000000
00000000 90000000
00000000 70000000
00000000 a0000000
00000001 00000001
00000000 e0000000
00000001 00000000
00000001 7fffffff
00000001 00000000
00000001 50000000
00000001 80000000
00000001 00000001
00000001 40000000
00000001 90000000
00000001 b0000000
00000002 0fffffff
00000002 20000000
00000002 90000000
00000002 70000000
00000002 A0000000
00000003 00004000
00000002 D0000000
00000003 20000000
00000003 90000000
00000003 70000000
00000003 A0000000
00000004 00004000
00000003 D0000000

    
     
       Security Considerations
       
   Sequence numbers and their extensions can be useful in a variety of
   security contexts. Because the extension part (most-significant
   half) is determined by the previously exchanged sequence values
   (least-significant half), the extension should not be considered as
   adding entropy for the purposes of message authentication or
   encryption.
    
     
       IANA Considerations
       This document has no IANA actions.
    
  
   
     
       Informative References
       
         
           Sequence Number Arithmetic
           
	
           
        
         IEN-74
      
       
         
           Transmission Control Protocol
           
             
          
           
        
         
         
         
      
       
         
           Domain names - concepts and facilities
           
             
          
           
           
             This RFC is the revised basic definition of The Domain Name System.  It obsoletes RFC-882.  This memo describes the domain style names and their used for host address look up and electronic mail forwarding.  It discusses the clients and servers in the domain name system and the protocol used between them.
          
        
         
         
         
      
       
         
           Domain names - implementation and specification
           
             
          
           
           
             This RFC is the revised specification of the protocol and format used in the implementation of the Domain Name System.  It obsoletes RFC-883. This memo documents the details of the domain name client - server communication.
          
        
         
         
         
      
       
         
           Serial Number Arithmetic
           
             
          
           
             
          
           
           
             The DNS has long relied upon serial number arithmetic, a concept which has never really been defined, certainly not in an IETF document, though which has been widely understood.  This memo supplies the missing definition.  It is intended to update RFC1034 and RFC1035.  [STANDARDS-TRACK]
          
        
         
         
      
       
         
           The TCP Authentication Option
           
             
          
           
             
          
           
             
          
           
           
             This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5).  TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5.  TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints.  The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes.  TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously.  TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5.  [STANDARDS-TRACK]
          
        
         
         
      
       
         
           TCP Extensions for High Performance
           
             
          
           
             
          
           
             
          
           
             
          
           
           
             This document specifies a set of TCP extensions to improve performance over paths with a large bandwidth * delay product and to provide reliable operation over very high-speed paths.  It defines the TCP Window Scale (WS) option and the TCP Timestamps (TS) option and their semantics.  The Window Scale option is used to support larger receive windows, while the Timestamps option can be used for at least two distinct mechanisms, Protection Against Wrapped Sequences (PAWS) and Round-Trip Time Measurement (RTTM), that are also described herein.
             This document obsoletes RFC 1323 and describes changes from it.
          
        
         
         
      
    
     
       Acknowledgments
       
   The need for this document was first noted by  
   in April 2020 during discussions of the pseudocode in RFC 5925.
    
     
       Author's Address
       
         
         
           
             
             Manhattan Beach
             CA
             90266
             United States of America
          
           +1 (310) 560-0334
           touch@strayalpha.com
        
      
    
  


