5-
-
(1

ACPI Component Architecture

User Guide and Programmer
Reference

OS-Independent Subsystem, Debugger, and Utilities

Revision 4.09

May 24, 2011

ACPI Component Architecture User Guide and Programmer Reference

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The ACPI Component Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copyright © 2000 - 2010 Intel Corporation

*Other brands and names are the property of their respective owners.

Contents

ACPI Component Architecture User Guide and Programmer Reference

1

] 4 oo [UYox 1T] o RO PRSPPI 13
1.1 DOCUMENT SITUCTUIE ..o 13
1.2 Rationale and JUSHIfICAtIONcuevii i 13
1.3 Reference DOCUMENTSouuiiieiiiiie ettt ettt e e st e e e s bt e e e s nbreeeeanes 14
14 DOCUMENE HISTOMY....civviiiiiiiiie ettt sttt e e st e e st e e e s nebeeeeanes 14
15 Overview of the ACPI Component ArchiteCture...........oooouiieeiiieiiiniiiieeee s 15
ATCNITECTUIE OVEIVIBW ..eeiiiiiiiiiitieie ettt et e e e e e e e bbbt e e e e e e e e sneeeneeas 17
2.1 Overview of the ACPICA SUDSYSIEMccoiiiiiiiiiiiiee e e e 17
2.1.1 ACPICA COre SUDSYSIEMuuiiiiiiiiiiiiieieee e 17

2.1.2 Operating System ServiCes LaYErueeuieiiiiiiiiiieiae e eeiiiieieee e 18

2.1.3 Relationships Between Host OS, ACPICA, and Host OSL 19

2.1.3.1 General Architectural Model..........cccoooueeeiiiiiiiiie e, 19

2.1.3.2 Host Operating System Interactionccccccvvvvveeeeevicvvnnnn. 19

2.1.3.3 OS Services Layer Interactioncccccceeeeevvecivieeeee e, 19

2.1.3.4 ACPICA Core Subsystem Interactioncccccceeeeeeeniivnnnenn. 19

2.2 Architecture of the ACPICA Core SUDSYStEM........ccuvveeieeeiiiiiieieeee s ccieee e 20
2.2.1 ACPI Table Management..........cccueaiiiiiiiiiiiaaaiaaiiiieee e iiieee e e e e e 21

2.2.2 Early ACPI Table ACCESS......uuuuiiiiiaiiiiiiiiiee et 21

2.2.3 AML INTEIPIELEN ..ttt st s ee s s s sesssssesssssssnsnnnne 21

2.2.4 Namespace ManagemMENt...........uuuuuuruurererererernrernreeenennennnnnennnnerernnmnnnnnene 22

2.2.5 ReSOUrce ManagemMeENt.........uuuuuuuueuereeererereeereeenesneesennnneenennenrnnernnnnnnennnnnes 22

2.2.6 ACPI Hardware Management...........occcuvrrrrreeeiiiniiiirneeeeesssnnsnnneeseessennnnes 22

2.2.7 EVENtHANAING......cuiiiiiiiiiiie e 22

2.2.8 Requests from Host OS to ACPICA Subsystem........cccccoviiiiiiieieeennnnins 23

2.3 Architecture of the OS Services Layer (OSL)ccccvveeeveeeiiiiiieeree e csieee e 23
2.3. 1 Types Of OSL SEIVICES ...coiiiiiiiiiieeee ettt 24

2.3.2 Requests from ACPICA Subsystem t0 OS........cccuiieiiiiiiiiiiiiieeee e 24

DESIGN DELAIIS ...eeiiiiiiiiiiie ettt e e e e et e e e e e e e rnbb e e e e e e e e e e anne 26
3.1 ACPI Namespace FundamentalsS...........cccuvvereeeiiiiiiiiieiee e 26
G0 I A V- 4 =T I @] o] = o3 £ PR 26

Tt B S ToTo] o 12 S TP TP TP P PP PP PPUTPPPPPPPPPPIN 26

3.1.2.1 Example Namespace Scopes, Names, and Objects 26

3.1.3 Predefined ODJECEScoiiiiiiiiiiiie e 27

3.1.4 Logical Namespace LayOUL.........ccceeiiiiuiriiireeesiiiiiiineeeeessssiinneeeeeeesennnes 27

3.2 EXECULION MOUEL.....cciieiei e a e 28
3.2.1 INIANZALION .o 28

ICT072Z 2N |V [>T To T VA 2 | o Tox- o] o PR 29

3.2.2.1 Caller Allocates All BUFfErS.......coocoeeiiiiiie i 29

3.2.2.2 ACPI Allocates Return Bufferscccccceeieiiiiiiieiniiieiiie, 29

3.2.3 Parameter Validationc.uueiiiiiiiiii e 30

3.2.4 EXCeption HaNAliNgcoooiiiiiiiiiie e 30

3.2.5 Multitasking and REENLIANCYcccovviiiiiiiieee i e e 30

3.2.6 EVENtHANAING.......uviiiiieeie e e e e e e e 30

3.2.6.1 FIXEA EVENTS...cciiiiiiiiiiiiie ettt 31

3.2.6.2 General PUrpoSe EVENLScccoiiiiiiiiiiiiieieeeiiieee e 31

3.2.6.3 NOLify EVENLSeuiiiiiiiiiiiiieiie e 31

3.2.7 Address Spaces and Operation REgIiONS..........ocuuvireiiieeiiiiiiiiieeeee s 31

3.2.7.1 Installation of Address Space Handlers.........ccccccceeeevivinvnnnnn. 32

3.2.7.2 ACPI-Defined ADdress SPaces........ccccceeeeevicvvrieeeeeesessvnennnns 32

(inte!
ACPI Component Architecture User Guide and Programmer Reference

3.3 Policies and PhiloSOPRIEScocuiiiiiiiie e 33
3.3. 1 EXternal INterfaCeso 33

3.3. 1.1 EXCEPON COUES ...cceieiiiiiiiieteee ettt 33

3.3.1.2 MemOory BUFfErScoii it 33

3.3.2 Subsystem INitializationcccevveeiiiiiiiiiieee e 33

3.3.2.1 ACPI Table Validationcccuvueieiiiieie i 33

3.3.2.2 Required ACPI TabIEs.......cccevveeeiiiiiiieieee e 34

3.3.3 Major Design DECISIONSuuuiiiiieiiiiiiiiiiie et e e e 34

3.3.3.1 Performance versus Code/Data Size............ccouvveeeeeeiiiicinnnenn. 34

3.3.3.2 Object Management — No Garbage Collection 34

4 IMplementation DELAIISooi i 35
4.1 Required Host OS Initialization SEQUENCE........cceveeiiiiiiiiiiieee e 35
4.1.1 Bootload and Low Level Kernel Initializationcccccevviieiinieeennnnn. 35

4.1.2 ACPICA Subsystem Initializationccuueeeiiiiiiiiiiiiiieeeee e 35

4.1.3 Other OS INIaliZAtiONccoeiiiiiiiiieeee e 35

4.1.4 Device Enumeration, Configuration, and Initialization 36

4.1.5 Final OS INItIAlIZALIONccocvviiiiiiiiii e 36

4.2 Required ACPICA Initialization SEQUENCE..........ccccoiiiiiiiiiieaeee e 36
4.2.1 Global Initialization - AcpilnitializeSubsystem............cccccceevvviiiiiieeeeeenn. 36

4.2.2 ACPI Table and Namespace Initializationccccccvvveveeeeiiiiciiieeneeenn, 36

4.2.2.1 AcpilnitializeTables.........cccoccviiierie e 36

4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableBylndex.. 36

4.2.2.3 AcpiLoadTables.........ccooiiiiiiiiiiiieee e 37

4.2.2.4 Internal ACPI Namespace Initialization.............ccccveeeeeeeinnnnns 37

4.2.3 Hardware Initialization - AcpiEnableSubsystemccccccccvviciieeneeenn. 37

4.2.3.1 ACPI Hardware and Event Initializationc.cccccceeeviveeeennne 37

4.2.4 Handler INStallationcceeiiiiiiiii e 38

4241 HaNAIEr TYPES ..eiiiiiieiee ettt e e 38

4.2.5 Object Initialization — AcpilntializeObjJects ..., 39

4.2.5.1 ACPI Device Initializationccccccoiiiiiiiiiiiiiiiiiieeee e 39

4.2.5.2 Other ACPI Object Initialization...........c.ccccevveeeeiiiciiiieeee e 40

4.2.6 Other Operating System ACPI-related Initialization...............cccccvveveeenn. 40

4.2.7 Just-in-time Operation Region Initializationcccccceevveeiiiiiiiieeneeenn, 40

4.2.7.1 SystemMemory Region Initializationccoeciiieeiieinnnnns 41

4.2.7.2 PCIl_Config Region Initialization..............ccccciiiiiiiiiieneens 41

4.2.8 System Shutdown - ACPITErMINAteccuvviiieieiiiiiieeee e 42

4.3 MUItItreading SUPPOIT.....eeeiiiee it e e e e eeeeas 42
431 REENITANCY ... 42

4.3.2 Mutual Exclusion and Synchronization..........ccccccoeveccvieiieee e, 42

4.3.3 Control Method EXECULION.........uueiiiiiiiiei ittt 42

4.3.3.1 Control Method BIOCKINGuvvviiiieiiiiiiiiieee e 43

4.3.3.2 Control Method Execution RUIES...........ceeeeiiiiiiiiiiiiiiieeeee 43

4.3.3.3 A Simple Multithreading Modelccceeeiiiiiiiiiiiiis 43

4.3.3.4 A More Complex Multithreading Model ... 44

4.3.4 ACPI Global LOCK SUPPOI......cccuiiiiiieie ettt ee e ee e e 45

4.3.4.1 Obtaining The Global LOCK.........ccccccovvviiiiiiie e 46

4.3.4.2 Releasing the Global LOCKcccccovviiiiiiiiiieiiiiiiieeee e a7

4.3.4.3 Global Lock Interrupt Handlercccueeeeiiiiiiiiiiiiieeeeeee a7

4.3.5 Single Thread ENVIFONMENTS.........cooiiiiiiiiiiiiieieeee e a7

4.4 General Purpose Event (GPE) SUPPOI........ooccviiiiieee e esriiiiee e e e e s sssiveeeee e e e sennnes 48
4.4.1 Runtime and Wake GPES ... 48

4.4.1.1 Execution of PRW Methodsccccvvvvviiviiiiiniiiiiiiiiieinieinnnnns 48

4.4.1.2 Implicit NOtify SUPPOI ...ccoiiiieiieee e 49

4.4.2 Using the ACPICA GPE Support Codeceevveeeeiiiiiiieireee e cciiieeeaeeen 49

4.4.2.1 Host OS Initializationocceeeeiiiiieeiiiiiee e 50

ACPI Component Architecture User Guide and Programmer Reference

4.4.2.2 GPEHANAIEIS 50

4.4.2.3 GPE Handler EXeCULIONceiiiiiiiiiiiiiiiieeee e 50

4.4.2.4 Load and LoadTable ASL/AML Operators..........ccccuvveeeeeriinnnns 51

4425 GPE BIOCK DEVICES ...ccotviiieiiiiiee sttt 51

4.5 Miscellaneous ACPICA BEhAVIOF........ccooiiiiiiiiiii e 52
45.1 Dynamically Loaded ACPI TabIeSccccvuieieeeeiiiiieeee e 52
SUDSYSTEM FEALUIES ...t e e e e e e e e e ab e e e e e e as 53
5.1 AML Interpreter SIack MOUEeeiieieiiiieie e 53
5.2 AML Interpreter Math Mode (32-bit OF 64-Dit)ccoeveiiiiiieiiee e, 53
5.3 Predefined Control Method Validation ... 53
5.4 FL@ 3N o] A o (0] (=Tox 1 o o L TP 54
55 [D]=T o8 {e o Ta o TR TN o] olo] o AF U 54
5.5.1 Error and Warning MESSAQEScccevviiurrriiieeeeiiiiiiieeeeeeessssnnnnneeseessnnnnnes 54

5.5.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)ccccc.ceeuvue 55

5.5.3 Function Tracing (ACPI_FUNCTION_TRACE Macro)ccccccevveeerrnnns 55

5.5.4 ACPICA DEDUQGUET ...eiiiieeiiiiiiiie ettt et ee e e e e e 56

5.6 Environmental Support REQUIFEMENESuvvivveeeiiiiieeee e e e e 56
5.6.1 Resource ReqUIFEMENTSuiiiiiiiiiiiiiiieie et e e 56

5.6.2 C Library FUNCLONScooiiiiiiiiiiee ettt 57

5.6.3 Source Code OrganiZation.............coouiuuiiieieeeiaiiiiieeea e eeriiieee e e e e e 58

5.6.4 System INCIUAE FilES........coociiiiiiiee e 58

5.6.4.1 Customization to the Target Environment...........cccccccoevuvvnnnn. 59

Data Types and Interface Parameters........c..ueeeiiiiiiiiiie e 60
6.1 ACPICA Interface Parametersccueieiiiiiieiiiiie et 60
6.1.1 ACPI Names and Pathnames...........occuuiiiiiiiiiiiiiiiieee e 60

B.1.2 POINLEIS ...ttt e e e e e a e e e e e e aane 60

B.1.3 BUI OIS o 60

6.2 ACPICA BaSIC DAt@ TYPES ...ieiieiieiiee ittt ettt ettt e e e e eanbeeeeaaaeeas 61
6.2.1 UINT64 and COMPILER_DEPENDENT_UINT64cccccvviiiiiiienniieenn, 61

6.2.2 ACPI_PHYSICAL_ADDRESSocctiiii ittt 61

6.2.3 ACPI_IO_ADDRESSoiiiiiiiiiieiiiiiee et 61

B.2.4 ACPI_SIZE ..ottt ettt 61

6.2.5 ACPI_STRING — ASCI StHNQ ..eeveiiiiiieiiiiieessiiieessiiee e svee e snee e snneee s 61

6.2.6 ACPI_BUFFER — Input and Output Memory Buffers...........cccccceeeiiine 61

6.2.6.1 INPUL BUFfEI.....eeiiieeieee e 62

6.2.6.2 OULPUL BUFfEI ..eeiieiiiee e 62

6.2.7 ACPI_STATUS - Interface Exception Return Codes..........ccccccvveeevennnnns 62

6.2.8 ACPI_HANDLE — Object Handleccccveiiiiiieiiiiiie i 63

6.2.8.1 Predefined Handles.............cccceeiiiiiiiiiiiieeee e 63

6.2.9 ACPI_OBJECT_TYPE — Object Type Codes........ccccvveirrrereiiirieeiiiinnnn 64

6.2.10 ACPI_OBJECT — Method Parameters and Return Objects 64
6.2.10.1 Using the ACPI_OBJECT.....cciiviiiiiiiiieieee e e e 66

6.2.11 ACPI_OBJECT_LIST — List Of ODJECtS......cccvviiiiiiiiiiiiiiiieeiece e, 67

6.2.12 ACPI_EVENT_TYPE — Fixed Event Type COdeS.........ccoeviurrreereeeennnnns 67

6.2.13 ACPI_TABLE_HEADER — Common ACPI Table Header 67

6.3 ACPI RESOUICE Data TYPES ..o e i e i eeeeeee e 67
6.3.1 PCIIRQ Routing TabIesocoiiiiiiiiii e 67

6.3.2 DEVICE RESOUICESceiiiiiiiiitiiiie ettt e e e e e e e e aanes 68

6.3.2.1 ACPI_RESOURCE_TYPE - Resource Data Types............... 68

6.4 ACPICA EXCEPLION COUEBSieiiiiiiiee ettt e e e e e e s ennbeeeeaaaeeas 70
Subsystem CONfIQUIALIONcoiiiiiiiiie e e e 74
7.1 ConfigUration FlEScoiiciiiiiie e e e e e rer e e e e e e e eanes 74

(inte!
ACPI Component Architecture User Guide and Programmer Reference

7.2 (7] 191 o0] 0 1=1) RS =1 1= Tox 1To] o SRR 74
7.2.1 ACPI_DISASSEMBLER........ccctiiiiiiiite ettt 74
7.2.2 ACPI_DEBUGGERcoitiiie ettt 74
7.3 Configurable Data TYPESuvueeieeeieiiiiiieiee e e e e esere e e e e s e s saaeer e e e e e e s s snnreeeeeeeesannanes 75
7.3. 1 ACPI_SPINLOCKoviiiiiiiiie ittt sttt e s e siaee e stae e e s snaeeessnaeee s 75
7.3.2 ACPI_SEMAPHORE.......ccttt ittt ettt 75
7.3.3 ACPI_MUTEX ..titiiiiiiiiie ittt st e e e e snnaeee s 75
7.34 ACPI_CPU_FLAGS ...ttt 75
7.3.5 ACPI_THREAD_ID ..ootiiiiiiiie ittt 75
7.3.6 ACPI_CACHE T ..ottt ettt ettt et e e e e e snneee s 76
7.3.7 ACPI_UINTPTR_T cttiie ittt sttt ettt e sitee et e e seaee e sntae e e s snsneeessnnneees 76
7.4 SUDSYSIEM OPLIONS ...eei ittt e e e e e s e s e e e e e s s e snrre e e e eeesaannnes 76
7.4.1 ACPI_USE_SYSTEM_CLIBRARY ...ootiiiiiiiiiiiiiieeeiiiee s siiee e sitee e siaeee s 76
7.4.2 ACPI_USE_STANDARD _HEADERS........ccciiiiiiiiiiee e 76
7.4.3 ACPI_DEBUG_OUTPUT ..ottt ittt 76
7.4.4 ACPI_USE_LOCAL_CACHEccciiiiiiiiiiee et 76
7.45 ACPI_DBG_TRACK_ALLOCATIONSoottiiiiiiieiiiiiee e 77
7.4.6 ACPI_MUTEX _TYPE ...ttt iiiiiie ettt siee e siaee e sntaee e sasae e snaeee s 77
7.4.7 ACPI_MUTEX _DEBUGccoiiiiiiiiiiiie it see e saaee s 77
7.4.8 ACPI_SIMPLE_RETURN_MACROScccoiiiiiie it esieee e 77
7.4.9 ACPI_USE_DO_WHILE_O ..cocvviiiiiiiiie it 78
7.5 Per-Compiler Configurationeoeiii i 78
7.5.1 COMPILER_DEPENDENT _INTB4ccciiiiiiiiiiiieeiniieeeeniiee e 78
7.5.2 COMPILER_DEPENDENT_UINTB4ccutviiiiiiiiieiiiiiee e 78
7.5.3 ACPIINLINE ...oiiiiiitiite ettt 79
7.5.4 ACPI_USE_NATIVE_DIVIDEcccouiiiiiiiiiie sttt 79
7.5.5 ACPI_DIV_64 BY_32 (Short 64-bit Divide)...........cccvrerriurireiiiiieeeiiieen, 79
7.5.6 ACPI_SHIFT_RIGHT_64 (64-bit Shift)ccoociiiiiiiiie e, 79
7.5.7 ACPI_EXPORT_SYMBOL.....cutiiiiiiiiie it 80
7.5.8 ACPI_EXTERNAL_XFACE........ccitititieiiiiite it 80
7.5.9 ACPI_INTERNAL_XFACE ...ttt 80
7.5.10 ACPI_INTERNAL_VAR _XFACEc.cotiiiiiiieiiiiite s iiie e siee e 80
7.5.11 ACPI_SYSTEM_XFACEciiiiiieiiiiiie e iiiiee sttt siee e siaee e saaee e 81
7.5.12 ACPI_PRINTF_LIKEciiiiiieiiiiiie sttt snaeee s 81
7.5.13 ACPI_UNUSED_VAR ...ttt 81
7.6 Per-Machine Configurationeeoiii i 81
7.6.1 ACPI_MACHINE_WIDTH ...ccoiitiiiiiiiiiie e 81
7.6.2 ACPI_FLUSH_CPU_CACHE........occiiiiiiiiiie et 81
7.6.3 ACPI_OS_NAME ...ttt 82
7.6.4 ACPI_ACQUIRE_GLOBAL_LOCKcciiiiiieiiiiiiesiiieee e siiee e siiee e 82
7.6.5 ACPI_RELEASE_GLOBAL_LOCK......cciiiiiiiiiiiiieeiiiieessiieeessivaeeesnaeee s 83
7.7 Dynamic CoNfigUIatioN...........cciiiiciiiiieiee st e s s e e e e e e e e e e e e nnnenneees 83
7.7.1 Interpreter SIack MOOE.........c..uuuiiiiiiiiii e 83
7.7.2 ACPI Register Widthsccuuiiiiiiiiiie e 84
7.7.3 Serialized Control Methods..........coocuiiiiiiiiiiiii e 84
7.7.4 Output from the AML Debug ObJecCtcceeeviiiiiiiiiiiee e 84
7.7.5 Copy the System DSDT to Local MEMOrYccccuvvvveeeeeiiiiiiiieeeee e s 84
7.7.6 Creation Of OSI MEthOuvviiiiiiiiiiiiiiiiiiiieieiieeieeereeeeeeereeererrrererere—.. 85
7.8 Subsystem Configuration CONSIANTS..........ccoiiiiiiiiiiree e 85
7.8.1 ACPI_CHECKSUM_ABORT.....cttiiiiiiieiiiiiiessiieeessiieeesssreeesssneeessnaeees 85
7.8.2 ACPI_MAX_LOOP_INTERATIONSccctiiieiiiiite et siiee e etee e 85
7.8.3 ACPI_MAX_STATE_CACHE_DEPTHcccoviiiieiiiiie e 85
7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH......cccoiiiiiiiiiie e 85
7.85 ACPI_MAX_OBJECT_CACHE_DEPTH....ccciiiiiiiiiiie e 86
7.8.6 ACPI_MAX_WALK_CACHE_DEPTH.....cccceetiiiiieiiiiiee e 86

ACPI Component Architecture User Guide and Programmer Reference

8 ACPICA Core Subsystem - External Interface Definition........cccccccovvcciieenee i, 87
8.1 ACPICA Subsystem Initialization and Controlcccccoviiiiiiiieeeeen 87
8.1.1 AcpilnitialiZESUDSYSIEMuviiiiiieei i 87
8.1.2 AcpilnstallinitializationHandIerccvvvevee i 88
8.1.2.1 Interface to User Callback FUNCLIONcoociiiiiiiiiiiiiiineen. 88

8.1.3 ACPIENADIESUDSYSIEM ... 89
8.1.4 AcpPIlNitialiZEODJECEScceiiiiiiiieii e 90
8.1.5 ACPISUDSYSIEMSIALIUS ...t e e e 91
8.1.6 ACPITEIMUNALEuvvvieiieee e e e ettt e e e e e e s e e e e s s s e e e e e e s s snnreneeeeeeeeannes 91
8.1.7 AcCPIINStAllINtEIfACE. .. .ciiee i 92
8.1.7.1 Default Supported _OSI StriNgS........c.ueeveeeiiiiiiiiiieeeee e, 93

8.1.7.2 Why ACPICA responds TRUE to _OSI (Windows)................. 93

8.1.8 AcpiRemMOVEINtEIrfaCE. ... 94
8.1.9 AcpilnstallinterfaceHandlerooccviiiiieeeiiiiieee e 95
8.1.9.1 Interface to _OSl Interface Handlers............cccovvvvveeevevccvnnnnnn. 95

8.2 ACPI Table Management.............eeiiiiiiiiiieie et a e 96
8.2.1 AcpIlNitialiZETabIESccceoe i 96
8.2.2 AcpiReallocateROOtTabIEcevvveeiiiiiiiiiiee e 97
8.2.3 ACPIFINAROOtPOINTETcciiiiiiiiiiee e 98
8.2.4 ACPILOAATADIESuviiiiiiiiiieee e 98
8.2.5 AcpiGetTableHEadE ..o 100
8.2.6 ACPIGEITADIE ... 101
8.2.7 AcCPIGEetTabIEBYINAEXcccceveieeieee et e e 102
8.2.8 AcpilnstallTableHandIer...........cccceeviiiiiiiieee e 102
8.2.8.1 Interface to the Table Event Handlercccccceeiiiiiiinneen. 103

8.2.9 AcpiRemoveTableHandler ... 104
8.3 ACPI Namespace Managementccooeeeeeiiiiie e 105
8.3.1 ACPIEVAIUALEODJECT.....ccii it 105
8.3.2 AcpiEvaluateObjectTYPed.ccouii it 109
8.3.3 ACPIGEtODJECHINO....eiiieeei i 110
8.3.4 ACPIGENEXIODJECT ..uvvviee e 113
8.3.5 ACPIGEIPAIENL......uuiiiiiiee e i et e e e s e e e e e a e e e 115
8.3.6 ACPIGEITYPE ..ttt e e e e e 115
8.3.7 ACPIGEHANAIEeeeiiiiiiiiieee e 116
8.3.8 ACPIGEEINAME.ttt 118
8.3.9 ACPIGEIDEVICES ...uvtviiiiieeiiiiiiiieeiee e e s et r e e e e e s stare e e e e e s e s snrreareeaeeeannnne 119
SRS O JANo7 o 1VAN 1 =T 1] D - | - SO EERR 120
8.3.11 ACPIDEtaChDALAeuveiieei it 121
8.3.12 ACPIGEIDALA.ceeeieieeeee e a e 122
8.3.13 ACPIINSLAIIMEINOM.ciiiiiiiiiiiiee e 123
8.3.14 ACPIWAIKNAMESPACEcceeiiieiieee ettt e et a e e e eaees 125
8.3.14.1 Interface to User Callback Function............ccccccovvveeiininennnns 126

8.4 ACPI Hardware Managementcuuaa it eeiieieee e e e e siiree e e e e e s sneeeseeas 127
8.4.1 ACPIENADIE ... 127
8.4.2 ACPIDISADIE ... 127
8.4.3 ACPIRESEL...ciii i i ittt e 128
8.4.4 ACPIREAUBITREQISIErcci i 129
8.4.5 ACPIWIItEBItREGISIEN ...cceiiiiiiieiee e 130
8.4.6 ACPIREA....coii ittt a e 131
S S o o 1LYV =SSR 132
8.4.8 AcpIiACqUIreGIobalLoCK..........uuvvieeiiiiieiee e 132
8.4.9 AcpiReleaseGloballoCK.........ccccveeiiiiiiiiiiiee e 133
8.4.10 AcpiGetTimerReSOIULIONciiiiiiiiiiiieiiee e 134
8.4.11 AcpiGetTimerDUIatiONueeiiiiiiiiiiiieiee e e e 134
8.4.12 ACPIGEITIMEN ..ttt e e e e s sb e e e e e e e e anes 135

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.5 ACPI SIEEP/WaKE SUPPOIT.......c.ceevieiieeeeeiietiiieie e e e e e s st e e e e s s s snrrere e e e e e s s nnneeaeees 136
8.5.1 AcpiSetFirmwareWakingVeCtorueeiiiieiiiiiiiiiiiae e eeiiiieee e 136
8.5.2 AcpiSetFirmwareWakingVeCtorb4cceeouiiiuiirieeeeeniniiiiieeaae e 136
8.5.3 AcCpIGetSIEEPTYPEDALAueeveiieeeee et 137
8.5.4 ACPIENErSIEepStAtEPIEP . ..vvvieieee e e et 138
8.5.5 ACPIENErSIEEPSIALEcceiiceiieeeee e e 138
8.5.6 ACPIENterSIeepStateSABIOScvvveeiiiiiiiieiiee e 139
8.5.7 AcCPILeaVeSIEEPSIALE......oii it 140

8.6 ACPI Fixed EVENt Management.........ccooiicuviirireeeeesiiiiiieeeeeessssnreeeeeeeessssnsneneees 140
8.6.1 ACPIENADIEEVENL.......coiiiiiiieee e 140
8.6.2 ACPIDISADIEEVENLcoiiiiiiiiiei e 141
8.6.3 ACPICIEAIEVENLeeeiiiiii e 142
8.6.4 ACPIGEIEVENTSIALUScceiiiieiiieeie e e e s et e e e r e e e s s err e e e e e s e nnes 142
8.6.5 AcpilnstallFixedEventHaNdIErccuvviiiieeie e 143

8.6.5.1 Interface to Fixed Event Handlers............cccccceeviieiiiiinennnns 144
8.6.6 AcpiRemoveFixedEventHandler ... 145

8.7 ACPI General Purpose Event Management..........ccccvveeeeeeeeiecciinineneeeesssvneeeens 146
8.7.1 AcCPIUPAAtEAIIGPES ...ceiiiiiiiitiiee ettt e e e 146
8.7.2 ACPIENADIEGPE ...t 146
8.7.3 ACPIDISADIEGPEeeeiiiieiiieee e 148
8.7.4 ACPICIEAIGPE.......eeieiieee e e e ettt e e s e e e e e e e s s e e e e s e s sr e e e e e e e e nnne 149
A S T A or oI =Y (€ o= SRR 150
8.7.6 ACPIFINISNGPE......euiiiiiiie e 151
8.7.7 AcpiSetupGPEFOrWAKEueiiiiiiiiii e 152
8.7.8 AcpiSetGPEWAKEMASKuuiiiiiieiiiiiiiiiee e 153
8.7.9 ACPIGELGPESIALUSeeiieiiiiiiiieiiee ettt e ettt e e e e e e e e 154
8.7.10 ACPIGEIGPEDEVICE ...ovveeeiiiiiiiiiie e e e e ettt e e e e e s st e e e e s s s snnraee e e e e e e e nnnes 155
8.7.11 ACPIDISADIEAIIGPESeeeeeieiieeeiee et e 156
8.7.12 AcpPIiENableAIIRUNIIMEGPES.....civiieiiieiiieieee et e e e e 156
8.7.13 AcpPIINStallGPEBIOCKcoi ittt 157
8.7.14 AcpiREMOVEGPEBIOCKeuiiiiiiiiiiiieie e 158
8.7.15 AcpilnstallGpeHAaNIENuuiiiiiiiiiie e 159

8.7.15.1 Interface to General Purpose Event Handlers 160
8.7.16 AcpiRemMoveGPEHANMIETcovvviiiiieeee e 161
8.8 Miscellaneous Handler SUPPOIT.......ccii i 162
8.8.1 AcpilnstallGlobalEventHandlercccovvveeeiiiiciiee e 162
8.8.1.1 Interface to the Global Event Handlercccceeeviiiennnns 163
8.8.2 AcpilnstallNOtifyHaNdIErcooiiiiiiiiiiie e 164
8.8.2.1 Interface to Notification Event Handlers.............ccccccoonninnneen. 165
8.8.3 AcpiRemoveNotifyHandIer..........ccco i 166
8.8.4 AcpilnstallAddressSpaceHandlerccccceeeviiiiiiiiee e 167
8.8.4.1 Interface to Address Space Setup Handlers.............cccvveee. 168
8.8.4.2 Interface to Address Space Handlersccccccevveeeiiinnnnnn. 169
8.8.4.3 Context for the Default PCI Address Space Handler 170
8.8.5 AcpiRemoveAddressSpaceHandlerccccoooiiiiiiiiiiiiniiiiie s 170
8.8.6 AcpilnstallExceptionHaNAIESooouuiiiiiiiiiiiiiee e 171
8.8.6.1 Interface to Exception Handlers.........ccccccovevvvieeneeeei e, 172

8.9 ACPI Resource Managementooooiiiiiiiiiiii i 173
8.9.1 ACPIGEtCUITENIRESOUICESuviiieeeeiiiiiiieiiee e e e ssttee e e e e s e s srreer e e e e e e ennnes 173
8.9.2 ACPIGEtPOSSIDIERESOUICEScevviieiiiiiiieiiee e e e e e 174
8.9.3 ACPISEICUITENIRESOUITESuvviiieeeeiiiiiiieireeeeessiirriereeeessssnnennreeeeesaannne 175
8.9.4 AcpiGetIRQROULINGTADIEccoiiiiiiiiiiiiee e 176
8.9.5 AcCPIGEtVENUOIRESOUICEuveiiiiieiiiiiiiieie ettt a e e e e 177
8.9.6 ACPIRESOUICETOAAAIESSOAcoeeieiiiiiiieiee ettt 178
8.9.7 ACPIWAIKRESOUICES.......ccceiviiiiiiee e e e et ee e e e e e s st e e e e e s s e aner e e e e e e e nnnnes 178

8.9.7.1 Interface to User Callback Function............ccccccovvveeiiiinennnns 179

ACPI Component Architecture User Guide and Programmer Reference

8.10 MemOry ManagQEMIENT........uuuuuuuuuueuerernenreeneennnnenesennneenenereserenensnennnnnessnnnnnnnennnnnnnes 180
8.10.1 ACPI_ALLOCATEutiti ittt ettt et snere e e 180
8.10.2 ACPI_ALLOCATE_ZEROED......ccciiiiitiiiiiie et esie e eae e 181
8.10.3 ACPI_FREE ...ttt s 181
8.11 FOrmMAatted OULPULeeiiiiiiiiiiiii ettt e e e e e et e e e e e e e nnbaeeeaaeeeas 182
8.11.1 Acpilnfo and ACPI_INFOcuiiviiiiiiiiieieeee e e e e sreee e e e e 182
8.11.2 AcpiWarning and ACPI_WARNING.........cccccceeiiiiviiieree e eeriiiiree e e 183
8.11.3 AcpiError and ACPl_ERROR........cciiiiiiiiiiee e 184
8.11.4 AcpiException and ACPI_EXCEPTIONcoiiiiiiiiiiiiaeiiiiiiiiee e 185
8.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINTcccccciveeviiiieeeiiiee e 186
8.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAWccccceevnee. 188
8.12 Miscellaneous ULIIItIESooeeeiiiiiieee e 188
8.12.1 ACPIFOrMAatEXCEPLIONci ittt 188
L0 D27 A Nox o 1T 1T o 18 o 1 I = Lo = SRR 189
8.12.3 ACPIGEtSYSIEMINTO ..vvvieeei i 190
8.12.4 ACPIGEtSIALISTICS ...vvvviereeeiiiiiiieiiie e e e s i r e e e e s e e e e s s s r e e e e e e e 191
8.12.5 AcpiPurgeCachedODbjECES.......cuiiiiiiiiiiiiiiiee e 192
8.13 GlObal VariADIES........eeiieiiieie e 192
8.13.1 AcpiDbgLevel & ACPIDDOLAYEcccuiiiiiieeeee et 192
8.13.2 ACPIGDI _FADT ..ottt 193
8.13.3 ACPICUITENtGPECOUNT......ceiiiiiieee ettt e e e e e e 193
8.13.4 AcpiGbl_SystemAwake ANdRUNNINGccuveeriiiiiiiiiiee e eeeriiieeee e 193
OS Services Layer - External Interface Definition ..., 194
9.1 Environmental and ACPI TabIeS........c..coiiiiiiiiiiii e 194
9.1.1 ACPIOSINILIANIZE ... 194
9.1.2 ACPIOSTEIMINALEeeiiiieiiiiitiiie ettt e e e ee e e e e e e e eaees 195
9.1.3 AcCPIOSGEtROOtPOINTETt 195
9.1.4 AcpiOsPredefinedOVEITIAEcceeeeiiiciiieieeee e 196
9.1.5 AcpIiOSTableOVEITIAE........cceeeeeeeeee e e e 196
9.2 Memory Management..........ooiiiiiiiiii 198
9.2.1 ACPIOSCreateCachecccuuviiiiiee e e e e e 198
9.2.2 ACPIOSDEIEtECACNE.ccc it 199
9.2.3 AcCPIOSPUrgeCaCheooiiiieie e 199
9.2.4 AcpPIiOSACQUIrEODJECT ... 200
9.2.5 AcpiOsReleaseODbjecCt...........uuiiiiiiiii e 200
9.2.6 ACPIOSMAPMEMOIY ..oeveeeiiiiiiieieieee et ietttie e e e e e e s strreeeeaeessssssrnareeaeesanannes 201
9.2.7 AcCPIOSUNMAPMEMOIYceiiieeeieee e s ettt ee e e e e e s strereee e e e s s s snneneeeeaeesannnnes 202
9.2.8 AcpPIiOSGetPhySICAIAAAIrESSuuviiee et 202
9.2.9 ACPIOSAIIOCALEuieeeiiee ettt 203
9.2.10 ACPIOSFIEE ...ttt e e a e 203
9.2.11 AcpIiOSREadaDbIEccccoiiiiii e 204
9.2.12 ACPIOSWILADBIEviieiiee e e e 204
9.3 Multithreading and Scheduling ServiCes..........cccciiiiiiiiiiiiie e 205
1S TRC T Yo7 o 1@ 2 €1 =1 i I] {=T= To | o 1SR 205
90.3.2 ACPIOSEXECULEevvviieieeeii e e e ettt e et e e e e e s s e snnrnae e e e e e e e nnnes 205
0.3.3 ACPIOSSIEEP ..ottt 206
9.3.4 ACPIOSSHAIL .. 207
9.4 Mutual Exclusion and Synchronizationcccccevvvivieieeee e 207
9.4.1 ACPIOSCrEAtEMULEXcceeiiiiitiiieee e e ettt e ettt a e e s e re e e e e e e e aanes 207
9.4.2 ACPIOSDEIELEMULEX ...coiiiiiiiiiiiiiie ettt e e 208
9.4.3 ACPIOSACUIrEMULEX ..ceeeiiiiiiiiiiiee ettt e e e e e 208
9.4.4 ACPIOSREIEASEMULEX ...cceieeeiiiiiiee e e s ettt e e e e s e e e e s e s srarr e e e e e e e nnnes 209
9.4.5 AcpiOSCreateSEMAPNOreuuviieie it e e e e e e 210
9.4.6 AcpiOsDeleteSEMAaPNOreccovveiiiiciiieiiie e 211

(inte!
ACPI Component Architecture User Guide and Programmer Reference

10

11

12

9.4.7 AcpiOSWaitSemMaphOre.coiiiii i 211

9.4.8 AcpiOsSignalSemMaphore ...t 212

9.4.9 ACPIOSCIEAtELOCKceiieiiiiiieit ettt 213

9.4.10 ACPIOSDEIELELOCK ...eevveeeiieiiiiiiiie e s e ee e e e e et e e e e s e s eee e e e e e e e nnnes 213

9.4.11 ACPIOSACUIrELOCK.....cccei it 214

9.4.12 ACPIOSREIEASELOCK.cci it 215

9.5 a1 (=14 0] 3 = T T | 1 T P 215
9.5.1 AcpiOsInstallinterruptHandler...........cccvuviieeeee i 215

9.5.1.1 Interface to OS-independent Interrupt Handlers.................... 216

9.5.2 AcpiOsRemovelnterruptHandler.............ooooiioiiiiiiiiieeee e 217

9.6 Memory Access and Memory Mapped /Ocoeeeiiiiiiiiieee e 217
9.6.1 ACPIOSREAAMEMOIYceiiiiiiiiieee ettt e e e e 218

9.6.2 ACPIOSWIIEMEIMOIY ..coiiiiiiiiiiiiie ettt e e e e e e e 218

9.7 POrt INPUL/OULPUL ...t e e e 219
9.7.1 ACPIOSREAUPOITeeiiiiiiiiiiiiiee e 219

9.7.2 ACPIOSWITEPOITvveieeee ettt e e r e e e e e s eee e e e e e e e nnnes 220

9.8 PCI Configuration SPac@ ACCESS.....ccuiiaiiiiiiiiieiae ettt e e e eereeeeas 220
9.8.1 AcpiOsReadPciConfigurationccccvereeeeriiiciiiiiee s sssiieeeee e e 221

9.8.2 AcpiOsSWIritePCiCoNfigUIatioN............ccuvieiiieeesiiiiiiiiee e e s e s e e e e 221

9.9 FOrmatted OULPUL ... e e e e 222
9.9.1 ACPIOSPIINtf ..o 222

9.9.2 ACPIOSVPIIN e 223

9.9.3 ACPIOSREIreCtOULPULeiiiiiiieee ettt e e 223

9.10 MISCEIANEOUSoiiiiiiiie ittt et e et e e st ee e s nbbeeeeane 224
9.10.1 ACPIOSGEITIMEN ...eveeiiiieeiiiiiiiiie e e e ettt e e e e et e e e e e e e sabbeeeeeaeeeaaanes 224

9.10.2 ACPIOSSIGNAL ...ttt 224

9.10.3 ACPIOSGEILINEeeieiiiiieei ittt 225
ACPICA Deployment GUIAEuuuiiiiieiiiiiieieee ettt eabee e e e e e e e eanes 227
10.1 Using the ACPICA Core Subsystem INterfaces........ccccoevvvvvvveeessiiiiinieeeeeesnninnns 227
10.1.1 Initialization SEQUENCEuvviieeiiiiiiieiee e e e sreee e e s er e e e enaneees 227

10.1.2 ACPICA Initialization EXamples ...t 227
10.1.2.1 Full ACPICA Initializationocccuvveeiiieiieiiiiieeee e 227

10.1.2.2 ACPICA Initialization With Early ACPI Table Access 228

10.1.3 ShutdOWN SEQUENCEuuiiiieeeeeeiiiiiieee e e e s e s seer e e e e e s s e e e e e e e e nnnnneees 229

10.1.4 Traversing the ACPI Namespace (Low Level).......cccoccvvieeveeeeiiicinnnnnn. 230

10.1.5 Traversing the ACPI Namespace (High Level).........cccovvvveeeiiiicinnnnnn. 232

10.2 Implementing the OS SEerviCeS LAYENccccciiiiviiiiieeee e s e sseee e e e e 233
10.2.1 Parameter Validationccceeiiiiiiieiiiiiieiiiee e 233

10.2.2 Memory Management........ccooiiiiiiiiiiii e 233

10.2.3 Scheduling SEIrVICESuuuiiiiiiiiiiiiiiie et 233

10.2.4 Mutual Exclusion and Synchronizationcccccooviiiiiniiiie, 233

10.2.5 Interrupt HANAING ..ooooooiiieeeee e 233

10.2.6 SrEAM /O .t 234

10.2.7 Hardware Abstraction (I/0, Memory, PCI Configuration) 234

TOOIS AN ULHTTIES ..eeiiiiiiiiie et e e snaeeee s 235
11,1 TASL COMPIIET .ttt e e e et e e e e e e e e snbbeaeeeaeeeaannes 235
11.2 AcpiExec — User Mode ACPI Execution/Simulationcccccccevvvviiviinnneeesinnnns 236
11.3 AcpiXtract — Extract ACPI TabIesScovviieiiiiiiieiice e 236
11.4 AcpiSrc — Convert ACPICA SoUrce COUEccuvvviiiieeeeiiiiiieee e e e s s ssvieeeee e e e e ennnes 237
11.5 AcpiNames — Example Namespace DUMP..........ceiiiariiiiiiiiieieeeaaiiiiiieee e e 238
ACPICA Debugger REfEIENCE ... 239

10

12.1
12.2

12.3
12.4
125
12.6

12.7

12.8

ACPI Component Architecture User Guide and Programmer Reference

(@ 1T A= N 239
Supported ENVIFONMENESuiiiieiiiiiiiieieee e e e s et e e e e e e s snrrree e e e e s e s snnrnaeeeeeesennnes 239
12.2.1 The ACPIEXEC ULIlILY ... 239
[D=T 010 Te o T=T @Y (o] a1 (Yo (= 239
Configuration and INStallationeevveeiiiiicie e 240
COMMANA OVEIVIEBW ...ttt e ettt e e e e e e st e e e e e b s s s saa e sssbseesesaes 242
General PUrpose COMMANASoouuiiiiiiiieae ittt e e e e 242
2 T A AN | (o Yoz Ao o 242
G I 1 oo PR 242
2 TG T (| S 243
D S o 1|« PP 243
12.6.5 HiStOry (1 AN 1) oot 243
T2.68.6 LEVEL ... aaaes 243
2 T A o Tod <= 244
2 T8 S T 1= I 244
12.6.9 QUILcccciiiiiiiiiiiii 244
T O S = L £ TTTRR 245
A T 5 A =1 o] [T 245
T 22 0 [o1 [7= Vo NPT 245
Namespace ACCESS COMMANGScciiiiiiiiiiiiieiee et e e e e e ee e e e e enbeeeeeas 246
0 R 10 1= [0o T 246
12.7.2 DiSASSEMDBIE..... oo 246
2 A T V= o | 246
2 A S T o 246
D S] o L= PR 247
D T o= TP 247
2 O 101 =T o | 1Y RUT T ROT 247
A S T Y/ 1< 1 T Yo 247
e T P g 1= 2] o= Lo = PR 248
2 0 I N[113V 248
D B ©] o)1= Tox RPN 248
I 0 2 © 111V 1= 249
A R B = (= To (<Y 1 T=To T 249
B = Y 1 249
A A RS = Lo (=1 (=] (o1 T 249
A NS T = =TS0 10 o 250
o O S T=1 4 T RTTTRR 250
D I 1T o PP 250
O R T =11 0 1T = (< 250
A 0 R 1Y o = SRR 251
Control Method Execution COMMAaNASccuuniiiiiiiiiiiiie e e e eea s 251
D S T N o[8T = o) PR 251
D2 B Y Y- 174 o T 1| 251
< TRC T O | 251
D S T o 11 o PP 252
T12.8.5 EXECULE ..couiiii i e e e e e ra e aaas 252

12.8.5.1 Specifying Method Argumentscccceevviiiiiieeeeeeneniiieeee. 252
2 < T T T T 253
I T 101 (0140 0 F= L (o o [253
2 S < TN |] (o T 253
< T T I 1= SRR 254
2 S 0t KO T o Tor= 1 T 254
S 0 = LTS U] £ 254
R T Y= 254
D S 0 o] o PR 255

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Figures

Tables

12.8.04 TRIBAUeii ittt ettt se bbb e et e e e sbee e saneeen 255
12.8.15 TrACE ..o 255
I S 0 LT I =T T PO U PR UPRTOPPRPPRN 255
12.9 File 1/O COMMEANGS ...ocoiiiiiiiiiii ettt ettt e e et ee e e e e e s e s snbbeaeeeaeeeaannes 256
12,91 ClOSE ..eeiieteeitie ettt ettt ettt ettt ettt e ebb e e e e be e sabe e e br e e nareaan 256
I B o - Lo [PP UPRTPPRPRIN 256
12.9.3 OPBN it 256
Figure 1. The ACPI Component ArChitECIUIEcccoviiiiiiiiiee e 16
Figure 2. ACPICA Subsystem ArChiteCIUIEccooiiiiiiiiiiiiie i 18
Figure 3. Interaction between the Architectural Components............cccceeiiiiiiiiiieieeeinnins 20
Figure 4. Internal Modules of the ACPICA Core SUbSYStemMuueeevieiiiiiiiiiiieeee s 21
Figure 5. Operating System to ACPICA Subsystem Request FIOWccccccvvveeeiiinnnns 23
Figure 6. ACPICA Subsystem to Operating System Request FIOWcccccvvveeiiinnns 25
Figure 7. Internal NamesSpace StrUCIUMEuuviveeeiiiiiiiieee e et e e e e e s sieeee e e e e e s ennnes 28
Figure 8. Global LOCK ArChItECIUIE........ociiiiiiiieiie e 46
Figure 9. ACPICA Debugger ArchiteCtUre ..o 240
Table 1. C Library Functions Used within the Subsystemcccccoiiici e, 57
Table 2. ACPI ODbjJect TYPE COUEBScoiiiiiiieeee ettt 64
Table 3. EXCeption COdE VaAlUES..........cocuiiiiiieie et e e e e e e e e e s e nneeeae s 70

12

1

1.1

1.2

ACPI Component Architecture User Guide and Programmer Reference

Introduction

Document Structure

This document consists of these major sections:

Introduction: Contains a brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the Core Subsystem and OS Services Layers.

Architecture Overview: Overview of the main architectural components and interface to the host
operating system. Summary of the computational and architectural model that isimplemented
by the ACPI component architecture.

Design Details: Details concerning design decisions and execution model.

I mplementation Details: Details concerning implementation specifics.

Data Types and | nterface Parameters: Descriptions of the major data types and data structures
that are exposed via the external interfaces. Other related information required to use the
ACPICA subsystems and interfaces.

Subsystem Configuration: Description of the available configuration options to tailor the
subsystem to different compilers and machines, as well as run-time tuning options.

ACPICA Core Subsystem I nterfaces: Detailed description of the programmatic interfaces that are
implemented by the core component of the ACPI Component Architecture.

OS Services Layer Interfaces: Detailed description of the programmatic interfaces that must be
implemented by operating system vendorsin the layer that interfaces the ACPICA Core
Subsystem to the host operating system.

ACPICA Deployment Guide: Tips and techniques on how to use the Core Subsystem interfaces,
and how to implement the OSL interfaces to host a new operating system.

Tools and Utilities: A brief overview of the miscellaneous tools and utilities that are part of the
ACPICA package.

ACPI CA Debugger Reference: Overview, installation and configuration, and detailed
descriptions of the command set.

Rationale and Justification

The complexity of the ACPI specification leads to alengthy and difficult implementation in
operating system software. The purpose of the ACPI component architectureisto simplify ACPI
implementations for operating system vendors (OSV's) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating system.

The ACPICA software can be hosted on any operating system by writing a small and relatively
simple trand ation service between the ACPICA subsystem and the host operating system (This
service is known as the OS Services Layer).

13

(inte!
ACPI Component Architecture User Guide and Programmer Reference

1.3 Reference Documents

ACPI documents are available at http://www.acpi.info
Advanced Configuration and Power Interface Specification, Revision 1.0, December 1, 1996

Advanced Configuration and Power |nterface Specification, Revision 1.0a, July 1, 1998
Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999
Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000

Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002
Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002
Advanced Configuration and Power Interface Specification, Revision 2.0c, August 23, 2003
Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004
Advanced Configuration and Power |nterface Specification, Revision 3.0a, December 30, 2005
Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006
Advanced Configuration and Power Interface Specification, Revision 4.0, June 16, 2009
Advanced Configuration and Power Interface Specification, Revision 4.0a, April 5, 2010

ACPICA documents are available at http://www.acpica.org/documentation/
iASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

1.4 Document History

January 2000: Original version.
09 July 2005: Added example and description of OS initialization sequence.
26 November 2008: Major update and overhaul. Update all interfaces and text to match reality

18 March 2009: Removed AcpiOsV alidateAddress. Added section for feature descriptions. Added
description of 1/O port protection.

14 May 2009: Add new AcpilnstallMethod function.

03 November 2009: Changes to AcpiWakNamespace. Added documentation of ACPICA source
code tree.

21 January 2009: Removed obsolete ACPI_INTEGER data type.

04 March 2009: Add new global for the AML debug object. Clarify use of the ACPI_OBJECT data
type.

30 March 2010: Update for GPE interface changes. Added DSDT copy option.
04 April 2010: Add description of GPE support for LoadTable.

05 August 2010: Add new host_OSlI interface functions, Acpilnstalllnterface,
AcpiRemovel nterface, AcpilnstalllnterfaceHandler. Add new debugger command, “OSI”.

17 August 2010: Remove obsolete AcpiOsDerivePcild OSL function. This function has been
implemented within ACPICA in an OS-independent manner.

14

http://www.acpi.info/
http://www.acpica.org/documentation/

1.5

ACPI Component Architecture User Guide and Programmer Reference

21 September 2010: Fix/clarify theinitialization sequence for installation of user/host address space
handlers. This can only happen after AcpiEnableSubsystem is called.

December 2010: Support for new GPE handling features. Full description of GPE support in
ACPICA as well as updated descriptions for GPE interfaces.

May 2011: Debugger: Add description of new mechanism to pass complex arguments to control
methods (Integer, Strings, Buffers, and Packages.)

Overview of the ACPI Component Architecture

The ACPI Component Architecture (also referred to by the term “ACPICA” in this document)
defines and implements a group of software components that together create an implementation of
the ACPI specification. A major goal of the architecture isto isolate all operating system
dependenciesto arelatively small trandation or conversion layer (the OS Services Layer) so that the
bulk of the ACPICA code isindependent of any individual operating system. Therefore, hosting the
ACPICA code on new operating systems requires no source changes within the ACPICA codeitself.
The components of the architecture include:

e An OS-independent ACPICA Core Subsystem component that provides the fundamental
ACPI services such asthe AML interpreter and namespace management.

e An OSd(Ce:pendent OS Services Layer for each host operating system to provide OS support
for the ACPICA Core Subsystem.

e AnASL compiler-disassembler for translating ASL codeto AML byte code and for
disassembling existing binary ACPI tables back to ASL source code.

e Several ACPI utilities for executing the interpreter in ring 3 user space, extracti n%bi nary
ACPI tables from the output of the AcpiDump utility, and trandating the ACPICA source
code to Linux/Unix format.

This document describes the ACPICA Subsystem, OS services layer, and utilities. TheiASL
compiler is documented in the iIASL: ACPI Source Language Optimizing Compiler and
Disassembler User Guide.

In the diagram below, the ACPICA subsystem is shown in relation to the host operating system,
device driver, OSPM software, and the ACPI hardware.

15

ACPI Component Architecture User Guide and Programmer Reference

Figure 1. The ACPI Component Architecture

User Interface

Host Operating System

OSPM / Policy

Manager

ACPICA Subsystem

e

ACPI —
Related
Hardware

16

21.1

ACPI Component Architecture User Guide and Programmer Reference

Architecture Overview

Overview of the ACPICA Subsystem

The ACPICA Subsystem implements the low level or fundamental aspects of the ACPI
specification. Included are an AML parser/interpreter, ACPI namespace management, ACPI table
and device support, and event handling. Since the ACPICA core provides low-level system services,
it also requires low-level operating system services such as memory management, synchronization,
scheduling, and I/O.

To alow the Core Subsystem to easily interface to any operating system that provides such services,
an Operating System Services Layer trandates ACPICA-to-OS requests into the system calls
provided by the host operating system. The OS Services Layer isthe only component of the
ACPICA that contains code that is specific to a host operating system.

Thus, the ACPICA Subsystem consists of two major software components:

1. The ACPICA Core Subsystem provides the fundamental ACPI services that are independent
of any particular operating system.

2. The OS Services Layer (OSL) provides the conversion layer that interfaces the ACPICA Core
Subsystem to a particular host operating system.

When combined into a single static or loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPICA Subsystem. Throughout this document,
the term “ACPICA Subsystem” refers to the combination of the ACPICA Core Subsystem with the
OS Services Layer componentsinto asingle module, driver, or load unit.

ACPICA Core Subsystem

The ACPICA Core Subsystem supplies the major building blocks or subcomponents that are
required for all ACPI implementations— including an AML interpreter, a namespace manager,
ACPI event and resource management, and ACPI hardware support.

One of the goals of the ACPICA Core Subsystem is to provide an abstraction level high enough
such that the host operating system does not need to understand or know about the very low-level
ACPI details. For example, all AML code is hidden from the host. Also, the details of the ACPI
hardware are abstracted to higher-level software interfaces.

The Core Subsystem implementation makes no assumptions about the host operating system or
environment. The only way it can request operating system servicesis viainterfaces provided by the
OS Services Layer.

The primary user of the services provided by the ACPICA Core Subsystem are the host OS device
drivers and power/thermal management software.

17

ACPI Component Architecture User Guide and Programmer Reference

2.1.2 Operating System Services Layer

The OS Services Layer (or OSL) operates as a trand ation service for requests from the ACPICA
core subsystem back to the host OS. The OSL implements a generic set of OS service interfaces by
using the primitives available from the host OS.

Because of its nature, the OS Services Layer must be implemented anew for each supported host
operating system. There isasingle ACPICA Core Subsystem, but there must be an OS Services
Layer for each operating system supported by the ACPI component architecture.

The primary function of the OSL in the ACPI Component Architectureisto be the small glue layer
that binds the much larger ACPICA Core Subsystem to the host operating system. Because of the
nature of ACPI itself — such as the requirement for an AML interpreter and management of alarge
namespace data structure — most of the implementation of the ACPI specification isindependent of
any operating system services. Therefore, the Core Subsystem is the larger of the two components.

The overall ACPI Component Architecture in relation to the host operating system is diagrammed
below.

Figure 2. ACPICA Subsystem Architecture

GOperating System

ACPICA Subsystem Module

ACPICA Core Subsystem

OS Services Layer

18

2.1.3.2

2.1.3.3

2.1.3.4

ACPI Component Architecture User Guide and Programmer Reference

Relationships Between Host OS, ACPICA, and Host OSL

General Architectural Model

The model employed can be described in two parts, the ACPICA-to-host interaction, and the host-
to-ACPICA interaction.

1) Thehost OSL implements all OS services required by ACPICA. All ACPICA-to-host
interactions pass through the OSL viadirect callsto the AcpiOs* interfaces from ACPICA.

2) There are two types of host-to-ACPICA interactions, synchronous and asynchronous:

Synchronous: These are host-initiated interactions that are performed by the host making
direct callsto the various public Acpi* interfaces.

Asynchronous: These are host-requested interactions that happen in response to various
asynchronous events such as ACPI general purpose and fixed events. For these interactions,
the host calls ACPICA to install an appropriate handler at initialization time. This handler is
then invoked by ACPICA whenever the requested event occurs. Typically, the handlers are
optional, and these are optional interactions.

Host Operating System Interaction

The Host Operating System makes direct calls to the Acpi* interfaces within the ACPICA Core
Subsystem to request ACPI services.

Whenever the ACPICA Core Subsystem requires operating system services, it makes calls the OS
Services Layer. The OSL component “calls up” to the host operating system whenever operating
system services are required, either for the OSL itself, or on behalf of the Core Subsystem
component. All native (OS-dependent) calls made directly to the host are confined to the OS
Services Layer. The core ACPICA code contains no operating system-specific code.

OS Services Layer Interaction

The OS Services Layer provides operating system dependent implementations of the predefined
AcpiOs* interfaces. These interfaces provide common operating system services to the Core
Subsystem such as memory allocation, mutual exclusion, hardware access, and 1/0. The Core
Subsystem component uses these interfaces to gain access to OS services in an OS-independent
manner. Therefore, the OSL component makes calls to the host operating system to implement the
AcpiOs* interfaces.

ACPICA Core Subsystem Interaction

The ACPICA Core Subsystem implements a set of external interfaces that can be directly called
from the host OS. These Acpi* interfaces provide the actual ACPI services for the host. When
operating system services are required during the servicing of an ACPI request, the Core Subsystem
makes requests to the host OS indirectly viathe fixed AcpiOs* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the Core Subsystem never calls
the host directly -- instead it makes callsto the AcpiOs* interfacesin the OSL. This providesthe
ACPICA code with OS-independence.

19

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Figure 3. Interaction between the Architectural Components

2.2

ACPICA Subsystem

ACPICA Core Components

K

Implements

Host

Acpi*

Interfaces OS Services Layer Operating

System

Implements
AcpiOs*
Interfaces

y

) 4

Architecture of the ACPICA Core Subsystem

The Core Subsystem is divided into several logical modules or sub-components. Each module
implements a service or group of related services. This section describes each sub-component and
identifies the classes of external interfaces to the components, the mapping of these classes to the
individual components, and the interface names.

These ACPICA modules are the OS-independent parts of an ACPI implementation that can share

common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into an OS-specific ACPI driver or
subsystem (or whatever packaging is appropriate for the host OS.)

The diagram below shows the various internal modules of the ACPICA Core Subsystem and their
relationship to each other. The AML interpreter forms the foundation of the component, with
additional services built upon this foundation.

20

ACPI Component Architecture User Guide and Programmer Reference

Figure 4. Internal Modules of the ACPICA Core Subsystem

221

2.2.2

2.2.3

Resource
Management
Namespace

Management

Event
Management
ACPI Table ACPI Hardware
Management Management

AML Interpreter

ACPI Table Management

This component manages all ACPI tables such asthe RSDT/XSDT, FADT, FACS, DSDT, SSDT,
etc. The tables may be loaded from the firmware or directly from a buffer provided by the host
operating system. Servicesinclude;

e ACPI Table Verification
e ACPI Tableinstallation and removal
e Accessto dl available ACPI tables

Early ACPI Table Access

In many cases, certain ACPI tables are required by the host OS very early during system/kernel
initialization. For example, the ECDT (Embedded Controller Boot Resources Table) and MADT
(Multiple APIC Description Table) may be required before hardware elements can be initialized
properly. Thisinitialization and thus these ACPI tables may be required before the kernel dynamic
memory (and virtual memory) is available.

To support this need, the ACPICA Table Manager component is designed as a standal one service
that can be initialized and used independently from the rest of the ACPICA core subsystem. It can
be executed with no need for any dynamic memory, and only the need for a single memory mapping
at any giventime.

AML Interpreter

The AML interpreter isresponsible for the parsing and execution of the AML byte code that is
provided by the computer system vendor. Most of the other services are built upon the AML
interpreter. Therefore, there are no direct external interfaces to the interpreter. The services that the
interpreter provides to the other services include:

21

(inte!
ACPI Component Architecture User Guide and Programmer Reference

ACPI Table Parsing
AML Control Method Execution
Evaluation of Namespace Objects

2.2.4 Namespace Management

The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

Namespace Initialization from ACPI tables

Device Enumeration

Namespace Access

Accessto ACPI data and tables

2.2.5 Resource Management

The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

Getting and Setting Current Resources

Getting Possible Resources

Getting IRQ Routing Tables

Getting Power Dependencies

2.2.6 ACPI Hardware Management

The hardware manager controls access to the ACPI registers, timers, and other ACPI-related
hardware. Servicesinclude:

ACPI Status register and Enable register access

ACPI Register access (generic read and write)

Power Management Timer access

ACPI mode enable/disable

Global Lock support

Sleep Transitions support (S-states)

2.2.7 Event Handling

The Event Handling component manages the ACPI System Control Interrupt (SCI). The single SCI
multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPESs). This component
also manages dispatch of notification and Address Space/Operation Region events. Services
include:

22

intel
b ACPI Component Architecture User Guide and Programmer Reference

ACPI event enable/disable (Fixed Events, GPES)
Fixed Event Handlers (Installation, removal, and dispatch)

General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)
Notify Handlers (Installation, removal, and dispatch)

Address Space and Operation Region Handlers (Installation, removal, and dispatch)

2.2.8 Requests from Host OS to ACPICA Subsystem

The host operating system can make direct callsto the Acpi* externa interfacesto request ACPI
services.

The exact ACPI services required (and the requests made to those services) will vary from OSto
OS. However, it can be expected that most OS requests will fit into the broad categories of the

functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OSto ACPICA requestsis shown in the diagram below.

Figure 5. Operating System to ACPICA Subsystem Request Flow

Other ACPI —
Related Drivers

OSPM Code

PCl and Plug n Play
Drivers

Battery Drivers
SMBus Driver

Embedded
Controller
Driver

ACPICA Subsystem

2.3 Architecture of the OS Services Layer (OSL)

The OS Services Layer component of the architecture enables the rehosting or retargeting of the
ACPICA components to execute under different operating systems, or to even execute in
environments where there is no host operating system. In other words, the OSL component provides
the glue that joins ACPICA to a particular operating system and/or environment. The OSL
implements interfaces and services using the system calls and utilities that are available from the
host OS. Therefore, an OS Services Layer must be written for each target operating system.

23

ACPI Component Architecture User Guide and Programmer Reference

2.3.1

2.3.2

The OSL component implements a standard set of interfaces that perform OS dependent functions
(such as memory allocation and hardware access) on behalf of the Core Subsystem component.
These interfaces are themsel ves OS-independent because they are constant across all OSL
implementations. It is the implementations of these interfaces that are OS-dependent, because they
must use the native services and interfaces of the host operating system.

These standard interfaces (defined in this document as the AcpiOs* interfaces) include functions
such as memory management and thread scheduling, and must be implemented using the available
services of the host operating system.

Types of OSL Services

The services provided for the ACPICA Core Subystem by the OS Services Layer can be categorized
into the following groups:

e Environmental — global initialization and environment setup.

e Memory Management — dynamic memory allocation and memory mapping.

e Multitasking Support — scheduling and asynchronous execution.

e Mutual Exclusion and Synchronization — Mutexes, Semaphores, and Spin Locks.
e Interrupt handling —interrupt handlers.

e Address Spaces— memory, 1/0O port, and PCI configuration space access.

e Stream I/O —support for console I/O with printf-like functions. This provides error,
warning, debug, and trace output from the subsystem.

Requests from ACPICA Subsystem to OS

ACPI to OS requests are requests for OS services made by the ACPICA subsystem. These requests
must be serviced (and therefore implemented) in a manner that is appropriate to the host operating
system. These requests include calls for OS dependent functions such as /O, resource alocation,
error logging, and user interaction. The ACPI Component Architecture defines interfaces to the OS
Services Layer for this purpose. These interfaces are constant (i.e. they are OS-independent), but
they must be implemented uniquely for each target OS.

The flow of ACPI to OS requests is shown in the diagram below.

24

ACPI Component Architecture User Guide and Programmer Reference

Figure 6. ACPICA Subsystem to Operating System Request Flow

to4ot

Requests to Host OS

OS Services Layer

ACPICA Core Subsystem

ACPICA Subsystem

25

(intel,
ACPI Component Architecture User Guide and Programmer Reference

3

3.1

3.1.1

3.1.2

3.1.21

Design Detalls

This section contains information about concepts, data types, and data structures that are common to
both the Core Subsystem and OSL components of the ACPICA Subsystem.

ACPI Namespace Fundamentals

The ACPI Namespace is a large data structure that is constructed and maintained by the Core
Subsystem component. Constructed primarily from the AML defined within an ACPI Differentiated
System Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

Named Objects

Each object in the namespace has a fixed 4-character name (32-bits) associated with it. The root
object isreferenced by the backslash as the first character in a pathname. Pathnames are constructed
by concatenating multiple 4-character object names with a period as the name separator.

Scopes

The concept of an object scope relates directly to the original source ASL that describes and defines
an object. An object’s scope is defined as all objects that appear between the pair of open and close
brackets immediately after the object. In other words, the scope of an object is the container for all
of the children of that object.

In some of the ACPICA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when converting an ACPI name into an object handle, the two
parameters required to resolve the name are the name itself, and a containing scope where the name
can be found. When the object that matches the name is found within the scope, a handle to that
object can be returned.

Example Namespace Scopes, Names, and Objects
In the ASL code below, the scope of the object GPE containsthe objects L08 and _LOA.
Scope (_GPE)
Met hod (_LO8)
{ Notify (_SB.PCl 0. DOCK, 1)
I}\/Et hod (_LOA)
Store (0, _SB.PCl0.|SA ECO. DCS)
}

In this example, there are three ACPI namespace objects, about which we can observe the
following:

The names of the three objectsare GPE, L 08, and _LOA.
The child objects of parent object GPE are_L08 and _L OA.

26

ACPI Component Architecture User Guide and Programmer Reference

The absolute pathname (or fully-qualified pathname) of object L08is“\ GPE._L08".

The scope of object _GPE contains both the 1. 08 and _L OA objects.

The scope of control methods L08 and _LOA contain executable AML code.

The containing scope of object L 08 isthe scope owned by the object GPE.
The parent of both objects L.08 and LOA isobject GPE.
The type of both objects 1 08 and _LOA isACPI _TYPE_METHOD.

The next object (or peer object) after object L08 isobject L OA. In the example _GPE scope,
there are no additional objects after object L OA.

Since _GPE is a namespace object at the root level (as indicated by the preceding backslash in the
name), its parent is the root object, and its containing scope is the root scope.

3.1.3 Predefined Objects

During initialization of the internal namespace within Core Subsystem component, there are several
predefined objects that are always created and installed in the namespace, regardless of whether they
appear in any of the loaded ACPI tables. These objects and their associated types are shown below.

" _GPE", ACPI _TYPE_ANY /1 CGeneral Purpose Event bl ock
" PR ", ACPI _TYPE_ANY /'l Processor bl ock
" SB ", ACPI _TYPE_ANY /1 System Bus bl ock
| ACPI _TYPE_ANY /1 System I ndicators bl ock
" TZ ", ACPI _TYPE_ANY /1 Thermal Zone bl ock
" REV", ACPI _TYPE_NUMBER // Supported ACPI specification revision
"_0s ", ACPI _TYPE_STRING // OS Nane
R ACPI _TYPE_MJTEX [/ G obal Lock
oSt ACPlI _TYPE_METHOD // Query OS Interfaces
3.14 Logical Namespace Layout

The diagram below shows the logical namespace after the predefined objects and the _ GPE scope
has been entered.

27

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Figure 7. Internal Namespace Structure

3.2

3.2.1

ACPI_ROOT_OBJECT

ACPI_ROOT_SCOPE

_GPE Scope
_GPE

LO8

_LOA

Execution Model

Initialization

Theinitialization of the ACPICA Subsystem must be driven entirely by the host operating system.
Since it may be appropriate (depending on the requirements of the host OS) to initialize different
parts of the ACPICA Subsystem at different times, thisinitialization is split into a multi-step
process. The four main steps are outlined below.

1. Performaglobal initialization of the ACPICA Subsystem —thisinitializes the global data
and other items within the subsystem.

2. Initiaize the table manager and load the ACPI tables— The FADT, FACS, DSDT, and
SSDTs must be acquired and mapped before the internal namespace can be constructed.
The tables may be loaded from the firmware, loaded from an input buffer, or some
combination of both. The minimum set of ACPI tablesincludes an RSDT/XSDT, FADT,
FACS, and aDSDT. Any SSDTsare optional. All other ACPI tables defined by the ACPI
specification are not directly used by the ACPICA subsystem, but they are available to
ACPI-related device drivers via the table manager external interfaces. These tablesinclude
the MADT, ECDT, etc.

3. Build the internal namespace — this causes ACPICA to parse the DSDT and any SSDTs and
build an internal namespace from the objects found therein.

4. Enable ACPI mode of the machine. Before ACPI events can occur, the machine must be
put into ACPI mode. The ACPICA Subsystem installs an interrupt handler for the System
Control Interrupts (SCls), and transitions the hardware from legacy mode to ACPI mode.

28

3.2.2.1

3.2.2.2

ACPI Component Architecture User Guide and Programmer Reference

Memory Allocation

There are two models of memory allocation that can be used. In the first model, the caller to the
ACPICA subsystem pre-allocates any required memory. This alows maximum flexibility for the
caler since only the caller knows what is the appropriate memory pool to allocate from, whether to
statically or dynamically allocate the memory, etc. In the second model, the caller can choose to
have the ACPICA subsystem allocate memory via the AcpiOsAllocate interface. Although this
model islessflexible, it isfar easier to use and is sufficient for most environments.

Each memory allocation model is described below.

Caller Allocates All Buffers

In this model, the caller preallocates buffers of alarge enough size and posts them to the ACPICA
subsystem viathe ACPI_BUFFER data type.

It is often the case that the required buffer size is not known by even the ACPICA subsystem until
after the evaluation of an object or the execution of a control method has been completed. Therefore,
the “get size” model of a separate interface to obtain the required buffer sizeisinsufficient. Instead,
amodel that allows the caller to pre-post a buffer of alarge enough size has been chosen. This
model is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of alocal
buffer that isthought to be large enough for the data.

2. Cadll the Acpi interface.

3. If thereturn exception codeis AE_ BUFFER_OVERFLOW, the buffer length field has been
set by the interface to the buffer length that is actually required.

4. Allocate a buffer of thislength and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Cadll the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size required, a buffer can be posted in the
original call. If this call fails, only then isalarger buffer allocated. See Section 6.2.6 -
“ACPI_BUFFER — Input and Output Memory Buffers’ for additional discussion on using the
ACPI_BUFFER data type.

ACPI Allocates Return Buffers

In this model, the caller letsthe ACPICA subsystem allocate return buffers. It is the responsibility of
the caller to delete these returned buffers.

For the ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol is used to allow the ACPICA subsystem to alocate return buffers:

1. Set the buffer length field of the ACPI_BUFFER structure ACPI_ALLOCATE_BUFFER.
2. Call the Acpi interface.

3. If thereturn exception codeis AE_OK, the interface completed successfully and a buffer
was allocated. The length of the buffer is contained in the ACPI_BUFFER structure.

29

ACPI Component Architecture User Guide and Programmer Reference

3.2.3

3.24

3.2.5

3.2.6

4. Delete the buffer by calling AcpiOsFree with the pointer contained in the ACPI_BUFFER
structure.

Parameter Validation

Only limited parameter validation is performed on all input parameters passed to the ACPICA Core
Subsystem. Therefore, the host OS should perform all limit and range checks on buffer pointers,
strings, and other input parameters before passing them down to the Core Subsystem code.

The limited parameter validation consists of sanity checking input parameters for null pointers and
out-of-range values and nothing more. Any additional parameter validation (such as buffer length
validation) must occur before the host calls the ACPICA code.

Exception Handling

All exceptions that occur during the processing of arequest to the ACPICA Core Subsystem are
returned in an ACPI_STATUS return code and bubbled up to the original caller. Names for the
ACPICA exceptions are all prefixed with “AE_". For example, AE_OK indicates successful
completion of arequest.

All exception handling is performed inline by the caller to the Core Subsystem interfaces. There are
no exception handlers associated with either the Acpi* or AcpiOs* calls.

Multitasking and Reentrancy

All components of the ACPICA subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSL interfaces that must be
properly implemented with the native host OS primitives to ensure that mutual exclusion and
synchronization can be performed correctly. Although dependent on the correct implementation of
these interfaces, the ACPICA Core Subsystem is otherwise fully reentrant and supports multiple
threads throughout the component, with the exception of the AML interpreter, as explained below.

Because of the constraints of the ACPI specification, thereis amajor limitation on the concurrency
that can be achieved within the AML interpreter portion of the subsystem. The specification states
that at most one control method can be actually executing AML code at any given time. If a control
method blocks (an event that can occur only under afew limited conditions), another method may
begin execution. However, it can be said that the specification precludes the concurrent execution of
control methods. Therefore, the AML interpreter itself is essentially a single-threaded component of
the ACPICA subsystem. Serialization of both internal and external requests for execution of control
methods is performed and managed by the front-end of the interpreter.

Event Handling

The term Event Handling is used somewhat 1oosely to describe the class of asynchronous events that
can occur during the execution of the ACPICA subsystem. These eventsinclude:

e System Control Interrupts (SCls) that are generated by both the ACPI Fixed and General
Purpose Events.

e Notify eventsthat are generated via the execution of the ASL Notify keyword in a control
method.

30

3.2.6.1

3.2.6.2

3.2.6.3

3.2.7

ACPI Component Architecture User Guide and Programmer Reference

e Eventsthat are caused by accesses to an address space or operation region during the
execution of a control method.

Each of these events and the support for them in the ACPICA subsystem are described in more
detail below.

Fixed Events

Incoming Fixed Events can be handled by the default ACPICA subsystem event handlers, or
individual handlers can be installed for each event. Only device drivers or system services should
install such handlers.

General Purpose Events

Incoming General Purpose Events (GPEs) are usually handled by executing a control method that is
associated with a particular GPE. According to the ACPI specification, each GPE level may have a
method associated with it whose name is of the form _Exx for edge-triggered or _L xx for level-
triggered. xx isthe GPE level in hexadecimal (See the ACPI specification for complete details.)
This control method is never executed in the context of the SCI interrupt handler, but isinstead
gueued for later execution by the host operating system.

In addition to this mechanism, individual handlers for GPE levels may be installed. It is not required
that ahandler be installed for a GPE level, and in fact, currently the only device that requires a
dedicated GPE handler isthe ACPI Embedded Controller. A device driver for the Embedded
Controller would install a handler for the GPE that is dedicated to the EC.

If a GPE handler isinstalled for agiven GPE, the handler takes priority and any _Exx/_Lxx method
for that GPE is no longer invoked.

GPE Block Devices are also supported. These GPE blocks may be installed and removed
dynamically as necessary. The ACPICA Core Subsystem provides centralized GPE handling and
dispatch, and provides the necessary interfacesto install and remove GPE Block Devices.

Notify Events

An ACPI Notify Event occurs as aresult of the execution of a Notify opcode during the execution of
acontrol method. A notify event occurs on a particular ACPI object, and this object must be a
device or thermal zone. If a handler isinstalled for notifications on a particular device, this handler
isinvoked during the execution of the Notify opcode, in the context of the thread that is executing
the control method.

Notify handlers should be installed by device drivers and other system services that know about the
particular device or thermal zone on which notifications will be received.

Address Spaces and Operation Regions

ASL source code and the corresponding AML code use the Address Space mechanism to access
datathat is out of the direct scope of the ASL. For example, Address Spaces are used to access the
CMOS RAM and the ACPI Embedded Controller. There are several pre-defined Address Spaces
that may be accessed and user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the various
address spaces viathe ASL Operation Region (OpRegion) construct. An OpRegion is a named
window into an address space. During the creation of an OpRegion, the ASL programmer defines

31

ACPI Component Architecture User Guide and Programmer Reference

3.2.7.1

3.2.7.2

both the boundaries (window size) and the address space to be accessed by the OpRegion. Specific
addresses within the access window can then be defined as named fields to simplify their use.

The AML Interpreter is responsible for trandating ASL/AML references to named Fields into
accesses to the appropriate Address Space. The interpreter resolves locations within an address
space using the fields' address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space handler who is responsible for performing the actual physical access of
the address space.

Installation of Address Space Handlers

At runtime, the ASL/AML code cannot access an address space until a handler has been installed for
that address space. An ACPICA user can either install the default address space handlers or install
user defined address space handlers using the Acpilnstall AddressSpaceHandler interface.

Each Address Space is “owned” by a particular device such that all references to that address space
within the scope of the device will be handled by that devices address space handler. This
mechanism allows multiple address space/operation region handlersto be installed for the same type
of address space, each mutually exclusive by virtue of being governed by the ACPI address space
scoping rules. For example, picture a platform with two SMBus devices, one an embedded
controller based SMBus; the other a PCl based SMBus. Each SMBus must expose its own address
space to the ASL without disrupting the function of the other. In this case, there may be two device
drivers and two distinctly different address space handlers, one for each type of SMBus. This
mechanism can be employed in asimilar manner for the other predefined address spaces. For
example, the PCI Configuration space for each PCI busis unique to that bus. Creation of aregion
within the scope of a PCl bus must refer only to that bus.

Address space handlers must be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. Thisisrequired to maintain the scoping rules of address
space access. Address handlers are installed for the namespace object representing the device that
“owns’ that address space. Per ASL rules, regions that access that address space must be declared in
the ASL within the scope of that namespace object.

It isthe responsibility of the ACPICA user to enumerate the namespace and install address handlers
as needed.

ACPI-Defined Address Spaces
The ACPI specification defines address spaces for:
e System Memory
e Systeml/O
e PCI Configuration Space
e System Management Bus (SMBuS)
e Embedded Controller
e CMOS
e PCIl Bar Target
e IPMI (ACPI 4.0)

32

3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.2

3.3.21

ACPI Component Architecture User Guide and Programmer Reference

The ACPICA subsystem implements default address space handlers for the following ACPI defined
address spaces:

e System Memory
e Systeml/O
e PCI Configuration Space

Default address space handlers can be installed by supplying the special value
ACPI_DEFAULT_HANDLER asthe handler address when calling the
Acpilnstall AddressSpaceHandler interface.

The other predefined address spaces (such as Embedded Controller and SMBus) have no default
handlers and will not be accessible without OS provided handlers. Thisistypically the role of the
Embedded Controller, SMBus, and other ACPI-related device drivers.

Policies and Philosophies

This section provides insight into the policies and philosophies that were used during the design and
implementation of the ACPICA Core Subsystem. Many of these policies are adirect interpretation
of the ACPI specification. Others are adirect or indirect result of policies and procedures dictated
by the ACPI specification. Still others are simply standards that have been agreed upon during the
design of the subsystem.

External Interfaces

Exception Codes

All external interfaces (Acpi*) return an exception code as the function return. Any other return
values are returned via pointer(s) passed as parameters. This provides a consistent and simple
synchronous exception-handling model.

Since the ACPICA Core Subsystem is reentrant and supports multiple threads on multiple operating
systems, a model where an exception code is stored in the task descriptor (such asthe errno
mechanism) was purposefully avoided to improve portability.

Memory Buffers

Memory for return objects, buffers, etc. that is returned via the external interfacesisrarely allocated
by the subsystem itself. The model chosen isto force the caller to always pre-allocate memory. This
forces the calling software to manage both the creation and deletion of its own buffers — hopefully
minimizing memory fragmentation and avoiding memory leaks. The exception to thisisthe
ACPI_BUFFER type, where the caller can direct the ACPICA subsystem to allocate return buffers.

Subsystem Initialization

ACPI Table Validation

All ACPI tables that are examined by the ACPICA Core Subsystem undergo some minimal
validation before they are accepted. Thisincludes al tables found in the RSDT regardless of
whether the signature is recognized, and all tables loaded from user buffers. The following

33

ACPI Component Architecture User Guide and Programmer Reference

3.3.2.2

3.3.3

3.3.3.1

3.3.3.2

validations are performed on each table. A warning isissued for tables that do not pass one or more
of these tests:

1. TheTable pointer must point to valid physical memory

2. Thesignature (in the table header) must be 4 ASCII chars, even if the name is not
recognized.

The table must be readable for length specified in the header
The table checksum must be valid (with the exception of the FACS, which has no
checksum).

Other than this validation, tables that are not recognized by their table header signature are simply
ignored.

Required ACPI Tables

At the very minimum, the ACPICA Core Subsystem requires the following ACPI tables:

1. OneFixed ACPI Description Table (FADT — signature “FACP”). Thistable contains
configuration information about the ACPI hardware and pointers to the FACSand DSDT
tables.

2. One Firmware ACPI Control Sructure (FACS). Thistable contains the OS-to-firmware
interface including the firmware waking vector and the Global Lock.

3. One Differentiated System Description Table (DSDT). This table contains the primary
AML code for the system.

4. Optional are one or more Secondary System Description Tables (SSDTs) that contain
additional AML code. All SSDTsfound inthe RSDT/XSDT root table are loaded during
the table/namespace initialization. Other SSDTs and OEM tables can be loaded at runtime
viathe Load or LoadTable AML operators.

Major Design Decisions

Performance versus Code/Data Size

The ACPICA subsystem is optimized to minimize code and data size at the expense of performance.
Therelatively static internal namespace data structure has been optimized to minimize non-paged
kernel memory use, and control method execution parse trees are freed immediately upon method
termination.

Object Management — No Garbage Collection

Creation and deletion of all internal objects are managed such that garbage collection is never
required or performed. Objects are deleted deterministicatlly when they are no longer needed. This
is achieved through the use of object reference counts and object trees.

Internal object caches allow the reuse of commonly used objects without burdening the OS free
space manager. This greatly improves the performance of the entire subsystem.

34

4.1.1

4.1.2

4.1.3

ACPI Component Architecture User Guide and Programmer Reference

Implementation Detalils

Required Host OS Initialization Sequence

This section describes a generic operating system initialization sequence that includes the ACPICA
subsystem. The ACPICA subsystem must be loaded very early in the kernel initialization. In fact,
ACPI support must be considered to be one of the fundamental startup modules of the kernel. The
basic OS requirements of the ACPICA subsystem include memory management, synchronization
primitives, and interrupt support. As soon as these services are available, ACPICA should be
initialized. Only after ACPI is available can motherboard device enumeration and configuration

begin.

In summary, ACPI Tables are descriptions of the hardware, therefore must be loaded into the OS
very early.

Bootload and Low Level Kernel Initialization
e OSisloaded into memory via bootloader or downloader
e Initialize OS data structures, objects and run-time environment
e Initiaizelow-level kernel subsystems
e Initiadlize ACPI Table Manager if early ACPI table accessis required
e Initialize and enable free space manager
e Initialize and enable synchronization primitives
e Initiaize basic interrupt mechanism and hardware

e Initialize and start system timer

ACPICA Subsystem Initialization
e Initiadlize ACPICA Table Manager and Load ACPI Tables
e Initialize Namespace
e Initialize ACPI Hardware and install SCI interrupt handler
e Initialize ACPI Address Spaces (Default handlers and user handlers)
e Initialize ACPI Objects (_STA, _INI)
e Find PCl Root Bus(es) and install PCI config space handlers

Other OS Initialization
e Remaining non-ACPI Kernel initialization
e Initialize and start System Resource Manager

e Determine processor configuration

35

ACPI Component Architecture User Guide and Programmer Reference

4.1.4

4.1.5

4.2

4.2.1

4.2.2

42.2.1

4.2.2.2

Device Enumeration, Configuration, and Initialization
e Match motherboard devicesto driversvia_HID

e Initialize PCI subsystem: Obtain _PRT interrupt routing table and Initialize PCI routing.
PCI driver enumerates PCI bus and loads appropriate drivers.

e Initialize Embedded Controller support/driver
e Initialize SM Bus support/driver

e Load andinitiaize drivers for any other motherboard devices

Final OS Initialization
e Load andinitialize any remaining device drivers
e Initiaize upper layers of the OS
e Activate user interface

Required ACPICA Initialization Sequence

This section presents a detailed description of the initialization process for the ACPICA subsystem.
Theinitialization interfaces are provided at a sufficient granularity to allow customization of the
initialization sequence for each host operating system and host environment.

Global Initialization - AcpilnitializeSubsystem

This mandatory step begins the initialization process and must be first. It initializes the ACPICA
Subsystem software, including all global variables, tables, and data structures. All components of
the ACPICA Subsystem are initialized, including the OSL interface layer and the OSPM layer. The
interface provided is AcpilnitializeSubsystem.

ACPI Table and Namespace Initialization

Thisrequired phase loads the ACPI tables from the BIOS and initializes the internal ACPI
namespace.

AcpilnitializeTables

Thisfunction initializes the ACPICA Table Manager. This component is independent of the rest of
the ACPICA core subsystem and may be initialized and executed at any time during kernel
initialization, even before dynamic/virtual memory is available. This alowsthe ACPI tablesto be
acquired very early in the kernel initialization process. Some ACPI tables are required during early
kernel initialization/configuration -- such asthe SLIT (System Locality Distance Information
Table), SRAT (System Resource Affinity Table), and MADT (Multiple APIC Description Table)

AcpiGetTable, AcpiGetTableHeader, AcpiGetTableBylndex

These functions may be used by the host OS and device driversto obtain individual ACPI tables as
necessary. The only ACPI tables that are consumed by the ACPICA subsystem are the FADT,
FACS, DSDT, and any SSDTs. All other ACPI tables present on the platform must be consumed by

36

4.2.2.3

4.2.2.4

4.2.3

4.2.3.1

ACPI Component Architecture User Guide and Programmer Reference

the host OS and device drivers. For example, the ECDT (Embedded Controller Boot Resources
Table) is used by the host-dependent Embedded Controller device driver.

AcpiLoadTables

Thisinterface creates the internal ACPI namespace data structure from the DSDT and SSDTs found
inthe RSDT/XSDT root table. All SSDTsfound in the root table are loaded. Other SSDTs may be
loaded by AML code at runtime viathe AML Load operator. OEM tables that appear in the
RSDT/XSDT can only be loaded viathe AML LoadTable operator.

Internal ACPI Namespace Initialization

Asthe various ACPI tables are loaded (installed into the internal data structures of the CA
subsystem), the internal ACPI Namespace (database of named ACPI objects) is constructed from
those tables. As each tableisloaded, the following tasks are automatically performed:

e First pass parse — Load all named ACPI objects into the internal namespace
e Second pass parse — Resolve all forward references within the ACPI table

e First pass parse of al control methods — Sanity check to ensure that the tables can be
completely parsed, including the control methods. The resulting parse treeis not stored,
since control methods are parsed on the fly every time they are executed. (This task
represents minimal CPU overhead, and saves huge amounts of memory that would be
consumed by storing parse trees.)

e Lock the namespace so that GPEs will not cause control methods to run

Hardware Initialization - AcpiEnableSubsystem

This step continues the subsystem initialization and is more hardware oriented. It first puts the
system into ACPI mode, then installs the default Operation Region handlers, initializes the event
manager, and installs the SCI and Global Lock handlers.

During the event manager initialization, fixed events are initialized and enabled. GPEs are
initialized, but are not enabled at thistime.

To summarize the actions performed by this call:

e Enter ACPlI Mode.

e Install default operation region handlers for the following address spaces that must always
be available: SystemMemory, Systeml O, PCI_Config, and DataTable.

e Initialize ACPI Fixed and General Purpose events (not enabled at this time, however.)
e Install the SCI and Global Lock interrupt handlers.

ACPI Hardware and Event Initialization

This step puts the system into ACPI mode if necessary, sets up the ACPI hardware, initializes the
ACPI Event handling, and installs the ACPI interrupt handlers. This step is optional when running
in “hardware-independent” mode — when there is no access to hardware by the ACPICA subsystem
(For example, the AcpiExec utility runsin this mode.)

37

ACPI Component Architecture User Guide and Programmer Reference

4.2.4

4241

The ACPI hardware must be initialized and an SCI interrupt handler must be installed before it is
architecturally safe to evaluate ACPI objects and execute control methods, for the following
reasons:

1. Any ACPI named object (predefined or otherwise) can be implemented as a control method
and there is no way to safely make any assumptions about which objects are and are not
implemented as control methods. This is dependent on the individual AML on each platform.

2. Because control methods can access the ACPI hardware, cause ACPI interrupts (SCls), and
most interesting of all, can block while waiting for an SCI to be serviced, it isinherently
unsafe and architecturally incorrect to attempt to execute control methods without first
initializing the hardware and installing the SCI interrupt handler

This step is only optional when running in “hardware-independent” mode. Otherwiseit is required
to setup the ACPI hardware and System Control Interrupt handling. ACPI mode is entered if the
machineisin legacy mode. If the machineis already in ACPI mode (such as an | A-64 machine), no
actionisrequired.

When this step is complete, control methods may be executed because the hardware is now
initialized and the subsystem is able to take ACPI-related interrupts (System Control Interrupts or
XCls). The execution of any control method (including the _REG methods) can cause the generation
of an SCI —therefore, the hardware must be initialized before control methods may be run.
Additional ACPICA subsystem initialization that requires control method execution can now be
compl eted.

Handler Installation

Once the namespace has been constructed and the hardware has been initialized, the OS should
install any handlers that it may require during execution of the ACPICA subsystem. The purpose of
installing these handlers at this point in the initialization processis so that the handlers are in place
before execution of any control methods is allowed — thereby insuring that any custom handlers will
not miss any of the events that they are intended to handle. Any handlersinstalled in this phase will
override any default handlers.

Handler Types
The following handler installation interfaces are available

Initialization Handler: AcpilnstalllnitializationHandler

Thisfunction isused to install aglobal handler for ACPICA initialization events. Currently, the
handler is called after the execution of every device INI method.

Table Event Handler: Acpilnstall TableHandler

Thisfunction is used to install aglobal handler for ACPI table load/unload events.

AML Exception Handler: Acpilnstall ExceptionHandler

Thisfunction isused to install aglobal handler for AML run-time exceptions.

Address Space Handler s. Acpilnstall AddressSpaceHandler

Thisfunction is used to install address space handlers to override the default address space
handlers (for the predefined address spaces) or install handlers for custom address spaces. These
handlers are invoked to implement Operation Region requests. Note: during the installation, any

38

4.2.5

4251

ACPI Component Architecture User Guide and Programmer Reference

_REG methods associated with the Spacel D are executed. Thus, the Address Space Handlers can
only be installed after the hardware has been initialized.

Fixed Event Handlers: Acpilnstall FixedEventHandler

This function is used to install handlers for ACPI Fixed Events.

General-Purpose Event Handlers: AcpilnstallGpeHandler

Thisfunction is used to install handlers for ACPI General Purpose Events (GPES).

Notify Handlers. AcpilnstallNotifyHandler

This function is used to install handlers for ACPI device notifications.

Object Initialization — AcpilntializeObjects

This step completes the initialization of all objects within the |loaded namespace, then initializes and
enables the runtime general-purpose events:

. Initialize all Operation Regions. This step runs all Operation Region _REG methods for the
address spaces with default handlers — SystemMemory, Systeml O, PCI_Config, and
DataTable. Note: Operation Regions that are declared within control methods are not
initialized until actual execution of the method.

. Finish initialization of complex objects (Operation Regions, BufferFields, Buffers,
BankFields, and Packages) that contain executable AML code within the declaration.

. Initialize all Device, Processor and Thermal objects within the namespace by executing
the STA and _INI methods on each of these objects.

. Initialize the FADT-defined GPE blocks.

. Execute all _PRW methods within the namespace. These methods identify and define the
GPEs that are used for wake events. These types of GPES are never enabled at runtime, they
are only enabled as the system enters a sleep state.

. Enable all runtime GPEs. The GPEs can only be enabled after the REG, STA, and NI
methods have been run. This ensures that all Operation Regions and all Devices have been
initialized and are ready.

ACPI Device Initialization

During this step, all Device, Processor, and Thermal objects found within the ACPI namespace are
initialized. The _INI method is executed for all devicesthat are present asindicated by the STA
method. Thisis not an actual initiaization of the device hardware — thisisleft to the actual device
drivers for the hardware.

The entire namespace is traversed and the STA and _INI methods are run on all ACPI objects of
type Device, Processor, and Thermal found therein. Any operation regions accessed by these
methods will be automatically initialized by the just-in-time address space initialization mechanism.
Theinitialization is performed via the following steps:

e A namespace analysisis performed to identify all subtreesthat contain devicesthat have a
corresponding _INI method. This greatly enhances the speed of this step and can reduce

39

ACPI Component Architecture User Guide and Programmer Reference

operating system boot time. If thereisno _INI method for a given device, then no attempt is
made to execute the STA method for the device.

o |f thedevice hasan _INI method, attempt to execute the ST A method for the device.

e |f _STA doesnot exist within the scope of the device, the device is assumed to be both
present and functional — as per the ACPI specification.

o |fthe STA flagsindicate the device is not present but functioning, do not run _INI onthe
device, but continue to examine the children of the device.

o |f the_STA flagsindicate the device is not present and not functioning, do not examine the
children of this device — abort the walk of this subtree of the namespace.

o |fthe STA flagsindicate that the deviceis present, then attempt to execute the INI method
for the device.

e Thegloba initiaization handler is called after the execution of every NI method.

4.25.2 Other ACPI Object Initialization

This step initializes the remaining AML Operation Regions and Fields that were not initialized
during the device and address space initiaization.

Operation Regions and CreateField ASL statements can contain executable AML code and therefore
the initialization of the objects must be deferred until the CA subsystem and ACPI hardware are
both initialized. Some of thisinitialization may have been completed during the earlier steps. This
step completes that initialization.

Thisfinal pass through the loaded ACPI tables will execute all AML code outside of the control
methods that has not already been executed on-demand during the previous phases. The purposeis
to initialize the Field and OpRegion objects by executing all CreateField, OperationRegion code in
the AML. ACPI 2.0 has additional elementsthat will need to beinitialized this way (Not yet
implemented.)

4.2.6 Other Operating System ACPI-related Initialization

All external ACPI interfaces are available and the host OS can perform the following initialization
steps:

e Enumerate devices using the _HID method
e Load, configure, and install device drivers

e DeviceDriversingtall handlersfor other address spaces such as SMBus, EC, IPMI, and
custom address spaces

e The PCI driver enumerates PCI devices and loads PCIConfig handlers for PCI-to-PCl-
bridge devices (which causes the associated child PCI bus REG methodsto run, etc.)

4.2.7 Just-in-time Operation Region Initialization

This phase includes just-in-time initialization for any Operation Regions, Packages, Buffers, or
Fields that are accessed by the control methods executed here. For example, if a_ REG method for a
PCIConfig address space accesses a SystemMemory Operation Region, the definition of that

40

42.7.1

4.2.7.2

ACPI Component Architecture User Guide and Programmer Reference

particular SystemMemory region is fully evaluated at that time. (Operation Regions and CreateField
ASL statements can contain executable AML code and therefore the initialization of the objects
must be deferred until the CA subsystem and ACPI hardware are both initialized).

Therefore, Address Spaces are initialized in the order in which they are accessed, not in the order
that they are declared in the ASL source code.

When any Address Space isinitialized, the associated REG method (if any) is executed as well.

SystemMemory Region Initialization

For each operation region within the SystemMemory address space, a memory mapped window of
maximum size ACPI_SYSMEM_REGION_WINDOW _SIZE is maintained, in an attempt to
minimize the overhead of mapping entire operation regionsif they are very large.

When areguest is received that is outside of the current window, the existing mapping is deleted
and a new mapping that can service the request is created.

This mapping feature isimplemented in the default handler for the SystemMemory address space.

PCI_Config Region Initialization

For these operation regions, the namespace is searched upwards from the region to find the
corresponding PCI Root Bridge.

If a_HID or _CID method under a device object indicates the presence of a PClI Root Bridge (an ID
value of PNPOAO3 or PNPOAQS8 for PCl Express), perform PCI Configuration Space initialization
on the bridge. Install the PCI address space handler on the bridge (and on all descendents) and run
the REG method for the deviceif it is present. Then execute the _ADR, _SEG, and _BBN
methods (in the bridge scope) to obtain the PCI Device, Function, Segment, and Bus numbers.
Finally, run the associated REG method to indicate the availability of the region.

e Theinitial PCI Device and Function values are obtained from the _ ADR method.
e Theinitial PCl Segment number is obtained fromthe SEG method.
e Theinitial PCl Bus number is obtained from the _ BBN method.

o Thefinal PCI ID consisting of Device, Function, Segment, and Bus is obtained by calling the
AcpiHwDerivePcild OSL interface. This function adjusts the Bus, Device, and Function
numbers based upon the PCI device tree and the PCI configuration space registers. This
allows for adynamic value for the Bus number based upon the hardware configuration and
initialization.

When accessing a PCl_Config operation region, all 1/0 from/to the PCI confituration spaceis
performed viathe OSL interfaces Acpi OsReadPci Configuration and Acpi OsWritePciConfiguration.

The (internal) AcpiHwDerivePcild function derives afull PCI ID for a PCI device, consisting of a
Segment number, a Bus number, and a Device number.

The PCI hardware dynamically configures PCI bus numbers depending on the bus topology
discovered during system initialization. The AcpiHwDerivePcild function isinvoked by the
ACPICA subsystem during configuration of a PCl_Config Operation Region in order to (possibly)
update the Bus number in the Pcild with the actual Bus number as determined by the hardware and
operating system configuration.

41

ACPI Component Architecture User Guide and Programmer Reference

4.2.8

4.3

4.3.1

4.3.2

4.3.3

The Pcild parameter isinitially populated by the ACPICA subsystem during the Operation Region
initialization. ACPICA then calls AcpiHwDerivePcild, which is makes any necessary modifications
to the Segment, Bus, or Device number PCI 1D subfields as appropriate for the current hardware and
OS configuration.

System Shutdown - AcpiTerminate

This step frees all dynamically allocated resources back to the host operating system The ACPICA
subsystem may be re-initialized and restarted from the beginning anytime after this step completes.

Multithreading Support

Reentrancy

All external interfaces to the ACPICA Core Subsystem are fully reentrant. There are limitationsto
the amount of concurrency allowed during control method execution, but these limitations are
transparent to the calling threads — in the sense that threads that attempt to execute control methods
will simply block until the interpreter becomes available.

Mutual Exclusion and Synchronization

Three different types of synchronization objects are used by the ACPICA code:

1. Mutex objects. These objects are used for high-level mutual exclusion within the ACPICA
core and AML interpreter and to implement the ASL Mutex operators, aswell asthe ACPI
Global Lock. If there are no mutex primitives available in the host OS, they can be
implemented with semaphore objects (binary semaphores.)

2. Semaphor e objects. These objects are used for synchronization and to implement the ASL
Event operators.

3. Spin Locks. These objects are only used at interrupt level (ininterrupt handlers).

Control Method Execution

Most of the multithread support within the ACPICA subsystem isimplemented using traditional
locks and mutexes around critical (shared) data areas. However, the AML interpreter designis
different in that the ACPI specification defines a special threading behavior for the execution of
control methods. The design implements the following portion of the ACPI specification that
defines a partially multithreaded AML interpreter in these four sentences:

A control method can use other internal, or well-defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating
software. Interpretation of a Control Method is not preemptive, but can block. When a
control method does block, the operating software can initiate or continue the execution of
a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

42

ACPI Component Architecture User Guide and Programmer Reference

4.3.3.1 Control Method Blocking

First of al, how can a control method block? Thisisafairly exhaustive list of the possibilities:
1. Executesthe Sleep() ASL opcode
2. Executesthe Acquire() ASL opcode and the request cannot be immediately satisfied
3. Executesthe Wait() ASL opcode and the request cannot be immediately satisfied
4. Attemptsto acquire the Global L ock (via Operation Region access, etc), but must wait
5

Attempts to execute a control method that is serialized and already executing (or is blocked),
or has reached its concurrency limit

6. Invokesthe host debugger via awrite to the debug object or executes the BreakPoint() ASL
opcode

7. Accesses an Operation Region which resultsin a dispatch to a user-installed handler that
blocks on /O or other long-term operation

8. A Notify AML opcode results in adispatch to a user-installed handler that blocksin a similar
way

4.3.3.2 Control Method Execution Rules

Here are some Control Method execution “rules’ that the ACPICA multithread support is built
upon. These rules are not always stated explicitly in the ACPI specification — some of them are
inferred.

1. A Control Method will run to completion (as far asthe interpreter is concerned - this
doesn’t include thread preemption and interrupt handling by the OS) unlessit blocks (i.e. a
control method will not be arbitrarily preempted by the interpreter.)

2. If aControl Method blocks, the next Control Method in the queue will be executed. When
the original (blocked) control method becomes ready, it will not preempt the executing
method. Instead, it will be placed back on the execution queue (We could place the method
at the tail or the head of the execution queue, or leave this decision to the OSL
implementers).

3. Methods can be serialized (non-reentrant) or reentrant. A thread will block if an attempt is
made to execute (either via direct invocation or indirectly via a method call) a serialized
method that is aready executing (or is blocked).

4. The"“implicit” synchronization supported by Operation Regions and mentioned in the ACPI
specification seems to depend entirely on the non-preemptive control method execution
model (see above.)

4.3.3.3 A Simple Multithreading Model

The actual mechanismsto block athread are simple and are already in place on the OSL side:

1. Sleep () - directly implemented via AcpiOsSleep (), will block the caller and free the
processor.

Acquire () - implemented viaan AcpiOsM utex.
Wait () - implemented via an AcpiOsSemaphore.

4. Global Lock - implemented viaan AcpiOsM utex and the interrupt caused by the release of
the lock.

43

ACPI Component Architecture User Guide and Programmer Reference

4.3.3.4

5. Concurrency limit - we could put a queue at each method (high overhead), or smply re-
gueue the thread (perhapsin a high-priority queue if we implement one).

6. Host Debugger - These are simply AcpiOs* calls that we assume will block for along time.
7. Operation Region Handler blocks on some OS primitive

8. Notify handler blocks in the same manner as (7).

These mechanisms are sufficient to implement the blocking, but thisisn’'t enough to implement the
execution semantics of “no preemption unless the method does something to block itself”. This
requires additional support. | will take a stab at a multithread model here; please feel free to modify
or comment.

1. True concurrent control method execution is not allowed. Although the interpreter is
“reentrant” in the sense that more than one thread can call into the interpreter, only one
thread at any given time (system wide) can be actively interpreting a control method. All
other control methods (and the threads that are executing them) must be either blocked or
awaiting execution/resumption.

2. Therefore, we can put a mutex around the entire interpreter and only allow a thread access
to the interpreter when there are no other accessing threads.

3. Theimplication and result is that when an executing control method blocks, it is defined to
have stopped accessing the interpreter, and is no longer executing within the interpreter.

4. If any interrupt handler needs interpreter services (such asthe EC driver and the _Qxx
control methods), it must schedule athread for execution. When it runs, this thread calls the
interpreter to execute the method.

The algorithm below implements the model described above:

Al Execut eCont r ol Met hod ()
Acquire (G obal Interpreter Lock)
If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero
timeout, or grab gl obal |ock)
If <we know or the nmethod will block or still think that it m ght
bl ock>
(such as sleep, acquire-no-units, wait-no-event, global |ock not
avai |l abl e, reached concurrency linmt) - and perhaps before we
di spatch to a user OpRegion or Notify handler)
Rel ease (G obal Interpreter Lock) (Al'l ow another thread to
execute a net hod)
Execute the bl ocking call (Acpi GsSl eep or Acpi GsWiit Semaphor e)

Acquire (G obal Interpreter Lock) (Must re-enter the
interpreter, can’t preenpt running thread!)
Rel ease (d obal Interpreter Lock) (Finished with this nethod, free

the interpreter)

A More Complex Multithreading Model

This extension to the model shown above adds a mechanism to implement a “priority” system where
all executing and blocked Control Methods have a higher priority than methods that are queued and
have never executed yet. This allows the interpreter some control over the scheduling of threads that
are executing control methods, without relying directly on an OS-defined priority mechanism. In
other words, it provides an OS-dependent way to schedule threads the way we want.

Two semaphores are used, call them an “Outer Gate” and an “Inner Gate”. A thread must pass
through both gates before it can begin execution. Once inside both gates, it releases the outer gate,

44

4.3.4

ACPI Component Architecture User Guide and Programmer Reference

allowing athread in to wait at the inner gate. When the first thread completes execution of the
method, it releases the inner gate, allowing the next thread to proceed. If at any time during
execution athread must block, it releases the inner gate, blocks, then re-acquires the inner gate when
it resumes execution.

The maximum length of the queue at the inner gate will never exceed <the number of blocked
threads (running a method)> + 1 (the last thread allowed in through the outer gate).

In the typical (blocking) case, T1 blocks allowing T2 to run. T1 unblocks and eventually waits on
the inner gate. T2 eventually completes and signals the inner gate. T1 now runsto completion. All
of this happens regardless of the number of threads waiting at the outer gate - therefore, it gives
priority to threads that are already running a method.

The algorithm below implements the modified model described above:

Al Execut eCont r ol Met hod ()
Acquire (Quter Lock)
Acqui re (lInner Lock) (Mist acquire both | ocks to begin execution)
Rel ease (Quter Lock) (Allow one thread into the outer |ock)
If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero
ti meout)
If <we know or the nmethod will block or still think that it m ght
bl ock>
(such as sleep, acquire-no-units, wait-no-event, global |ock not
avai |l abl e, reached concurrency linmt) - and perhaps before we
di spatch to a user OpRegion or Notify handler)
Rel ease (I nner Lock) (Al'l ow anot her thread to begin
execution of a nethod)
Execute the bl ocking call (Acpi GsSl eep, Acpi GsWait Sermaphore,

etc.)
Acquire (Inner Lock) (Must re-enter the interpreter since
we cannot preenpt running thread!)

Rel ease (I nner Lock) (Finished with this nethod, free the

interpreter)

Note: It is not so important that the threads free the locks in rever se order asit isthat they all unlock
thelocksin the same order. Since they are all executing the same code, this behavior is ensured.

While the simple multithreading model will be sufficient, the more complex model allows a more
“fair” allocation of resources under heavy load. The outstanding question is whether there will ever
be enough concurrent use of the AML interpreter to justify the complexity of the second model.

ACPI Global Lock Support

The ACPI Global Lock isintended to be a mutual exclusion mechanism that allows both the host
operating system and the resident firmware to access common hardware and data structures. It is not
intended to be a mutual exclusion mechanism between threads implemented by the host OS.

The one and only purpose of the Global Lock isto provide synchronization between the resident
firmware (SMI BIOS, etc.) and all other software on the platform.

The ACPICA subsystem manages the global lock in the following manner:

e When the firmware owns the global lock, ACPICA queues up all requests to acquire the
global lock.

45

ACPI Component Architecture User Guide and Programmer Reference

e When the firmware releases the global lock, ACPICA satisfies all queued requests one at
atime. A separate hardware acquire and release is performed for each thread that has
requested the lock.

This algorithm prevents starvation of the global lock if many OS threads are requesting it. The BIOS
has the opportunity to acquire the lock after each requesting thread releasesiit.

The diagram below shows the global lock in relation to the BIOS and other system software.

Figure 8. Global Lock Architecture

Shared Data

Operating System

I Device Drivers

Resident
Firmware
(BIOS)

ACPI Subsystem

Global Lock

434.1 Obtaining The Global Lock
/* Only one thread can acquire the lock at a tine */

Acquire the internal global |ock nutex
If (AcquireHardwar ed obal Lock())

d obal LockAqui red = TRUE;
return; /* Al done! */

}

/* Must wait until the BIOS rel eases the | ock and generates interrupt */

Ar ExitInterpreter ();
Acpi CsWai t Semaphore (d obal LockSemaphore, WAl T_FOREVER) ;
A Enterinterpreter ();

46

ACPI Component Architecture User Guide and Programmer Reference

4.3.4.2 Releasing the Global Lock

If global lock is not acquired
Error, return;

Rel easeHar dwar ed obal Lock ();
If Pending bit set
Wite the GBL_RLS bit to the control register

G obal LockAqui red = FALSE;
Rel ease the internal global |ock nutex

4.34.3 Global Lock Interrupt Handler
/* W get an SCI when the firnware rel eases the | ock */

Acqui r eHar dwar ed obal Lock ()
If (dobal Locak was acquired)

d obal LockAcqui red = TRUE;
Acpi GsSi gnal Semaphor e (G obal LockSemaphore) ;

4.3.5 Single Thread Environments

Both the design and implementation of the ACPICA Core Subsystem is targeted primarily for
inclusion within the kernel of a multitasking operating system. However, it is possible to generate
and operate the subsystem within a single threaded environment — with either a primitive operating
system or loader, or even standal one with no additional system software other than afew device
drivers.

The successful operation of the ACPICA in any environment depends upon the correct
implementation of the OSL layer underneath it. This requirement is no different for asingle
threaded environment, but some special considerations must be made:

The primary mechanisms used for mutual exclusion and multithread synchronization throughout the
ACPICA subsystem are the OSL Spinlock, Mutex, and Semaphore. Since these mechanisms are not
required in asingle threaded environment, it is sufficient to implement these interfaces to simply
always return an AE_OK exception code.

When used within an OS kernel at ring 0, the ACPI debugger requires a dedicated thread to perform
command line processing. Since this mechanismis not required in a single threaded environment, it
can be configured out during generation of the subsystem.

a7

(intel,
ACPI Component Architecture User Guide and Programmer Reference

4.4

4.4.1

4411

General Purpose Event (GPE) Support

This section describes the initialization and use of the ACPI General Purpose Events.

Runtime and Wake GPEs

The original definition of a“runtime” versus a“wake” GPE was as follows:

A runtime GPE is a GPE that is used for signaling while the system is up and running.
Examples of these types of eventsinclude the Embedded Controller, thermal zones, and
notebook lid switches.

A wake GPE isany GPE that is capable of waking the system from dleep/suspend. Examples of
these types of events include a notebook lid switch, a serial port, USB ports and a power
button. These GPEs are usually identified by being referenced by one or more _PRW methods
(Power Resources for Wake.)

There are alimited number of GPEs that are defined by the ACPI specification as being both
runtime and wake. Examples of these include lid switches and control method power buttons.

Recently, however, the line between runtime and wake GPEs has been blurred by various platforms.
For example, on some platforms, a wake GPE can be used at runtime to indicate state changes for
individua buses such as USB.

Partly because of these changes and because ACPICA will no longer execute _ PRW methods on
behalf of the host, ACPICA itself no longer attempts to differentiate between runtime and wake
GPEs. Thisidentification isleft to the host and the individual device drivers as described in the
following sections.

Execution of _PRW Methods

Asof ACPICA version 20101217 (December 2010), the PRW methods (Power Resources for
Wake) are no longer automatically executed as part of the ACPICA initialization.

Originally (2000 -- 2010), the ACPICA GPE initialization code performed awalk of the entire
namespace to execute all discovered PRW methods and thus detect all GPES capabl e of waking the
system.

As of December 2010, the _ PRW method execution has been removed from ACPICA itself sinceit
isactually unnecessary. The host OS must in fact execute all _PRW methods in order to identify the
device and power-resource dependencies for its own power management subsystem. ACPICA now
requires the host OS to identify the wake GPEs as part of this process and to inform ACPICA of
these GPESs via the Acpi SetWakeGpe interface. This not only reduces the complexity of the ACPICA
initialization code, but in many cases (on systems with large namespaces) it should reduce the
kernel boot time as well since the _PRW methods are now only executed once, and an entire ACPI
namespace walk/search is eliminated.

Asthe host executes the PRW methods, it must inform ACPICA of the GPE associated with each
PRW, aswell asthe parent device associated with the PRW.

48

4.4.2

ACPI Component Architecture User Guide and Programmer Reference

Implicit Notify Support

This feature provides an automatic device notification for wake devices when a wakeup GPE occurs
and there is no corresponding GPE method or handler. Rather than ignoring such a GPE, an implicit
AML Notify operation is performed on the parent device object.

Thisfeature is not part of the ACPI specification and is provided for Windows compatibility only.
The behavior of this feature is summarized below:

1. A Device hasa_PRW method that associates it with a GPE

2. Thereisno method for the GPE in the ACPl namespace
3. Nohandler isinstalled for the GPE
4

When the GPE fires, a Notify(2) is performed on the original Device. The GPE is assumed
to be level-triggered and the GPE is cleared after the Notify has been executed. Notify(2) is
aDEVICE_WAKE notify.

Example:

In this example, a Device named USBO hasa_PRW method that associates the device with wake
GPE 07. However, there is no GPE method named _L 07 in the namespace.

Devi ce (USBO)
Name (_PRW Package() {
7,
3
1)
}

Since there is no GPE method named _L 07 in the ACPI namespace, ACPICA automatically
executes the code below on behalf of USBO when GPE 7 fires:

Met hod (_L0O7)

Notify (USBO, 2)

Note that the implicit notify feature only applies to GPEs that have a Device associated with them
viaa_PRW method.

Using the ACPICA GPE Support Code

This section describes the use of the ACPICA GPE support code in the following areas:
1) GPE initialization during the host OS startup
2) GPE Block Devices
3) GPEsand dynamically loaded ACPI tables

4) GPE handlers

49

ACPI Component Architecture User Guide and Programmer Reference

4421

4.42.2

4423

Host OS Initialization
The Host operating system is expected to perform the following actions during system initialization:

The Host calls AcpiEnableSubsystem. During execution of this call, ACPICA initializesthe FADT-
defined GPE blocks 0 and 1, and finds all _Lxx/_Exx methods for the GPE 0/1 blocks (under
\ GPE).

Later, after the host has called AcpilnitializeObjects, the host then performs a namespace walk to
identify and execute all _PRW methods.

For each PRW method found in the ACPI namespace, the host calls Acpi SetWakeGpe to identify a
possible wake GPE.

The host should install any GPE handlers at thistime (See “ GPE Handlers’ below.)

After completion of the_ PRW method execution phase, the host calls AcpiUpdateAllGpes. During
thiscall, ACPICA completesthe initialization of all GPEs and enables all of the “runtime” GPEs.
The only GPEs that are enabled directly by ACPICA are those GPEs that have an associated
_Lxx/_Exx method. For GPEs that have handlers, the host is responsible for enabling them.

Before the system sleeps, the host calls Acpi SetGpeWakeMask for every GPE that isto be allowed
to wake the system. The actual GPEs to be enabled for wake depends on the system configuration
and the ACPI-related drivers that are loaded.

GPE Handlers

By default, ACPICA will enable at runtime any GPE that has an associated _Lxx/_Exx GPE method
(during the execution of the AcpiUpdateAllGpesinterface.)

The GPE handler mechanism enables host GPE processing for GPEs that do not have an associated
GPE method (for example, the GPE associated with the Embedded Controller) or any other GPE. If
there is a method associated with a GPE, an installed handler for the GPE takes precedence. The
method is no longer executed after a handler isinstalled.

During host OS initialization or when a new GPE is detected via a GPE Block Device or adynamic
table load, the host may install handlers for individual GPEs via the Acpilnstall GpeHandler
interface. Also, the host may install asingle global handler that isinvoked for all GPEs and Fixed
Events by using the AcpilnstallGlobal EventHandler interface.

Once ahandler isinstalled for a particular GPE, the host is responsible for enabling the GPE (viathe
AcpiEnableGpe interface) and disabling the GPE if necessary via AcpiDisableGpe.

Both AcpiEnableGpe and AcpiDisableGpe implement a reference count mechanism that allows for
transparent sharing of runtime GPESs.

Any GPE handlers should be installed during the initialization phase anytime after
Acpi EnableSubsystem has been called, but before the required call to AcpiUpdateAll Gpes.

GPE Handler Execution

The basic GPE handler execution model is as follows: First, the GPE is disabled. Next, the handler
isinvoked, at interrupt level. At completion of the GPE handler processing, the GPE is cleared if
necessary and re-enabled.

There are two types of supported GPE handlers:

50

4424

4.4.2.5

ACPI Component Architecture User Guide and Programmer Reference

1. A simple, synchronous handler that performs some GPE processing and immediately
returns to the invoking ACPICA code. Note that this handler isinvoked at interrupt level
and thusiits capabilities are limited.

2. A more complex handler that performs some asynchronous processing via athread that is
signaled from the synchronous part of the handler.

Simple Handler (synchronous): The handler should return the value ACPI_REENABLE_GPE. In
response, ACPICA will immediately call the internal version of AcpiFinishGpe in order to clear and
reenable the GPE.

Complex Handler (with asynchronous part): The synchronous part of the handler performs some
limited processing and then signal's the asynchronous part via a host-dependent mechanism and
returnsto ACPICA. After the GPE has been completely processed by the asynchronous part of the
handler (at some later time), the handler calls AcpiFinishGpe to clear and reenable the GPE.

Note that in the case of the simple handler, ACPICA will automatically finish the GPE by clearing
the GPE status bit (if the GPE is level-triggered) and reenabling the GPE because ACPICA knows
that the GPE processing is complete. In the asynchronous/complex case, the GPE handler must tell
ACPICA that the GPE processing is complete by invoking the AcpiFinishGpe interface.

Load and LoadTable ASL/AML Operators

During execution of a control method that contains a Load or LoadTable operator, ACPICA locates
the new ACPI table and installs the table into the namespace. It also finds any new _Lxx/_Exx GPE
methods that may exist with the new table.

ACPICA natifies the host that a new table has been loaded by invoking the global Table Handler.
The host installs this handler during system initialization via the Acpilnstall TableHandler interface.

From the host-installed Table Handler, the host must identify and execute any newly-loaded _ PRW
methods, and call AcpiSetWakeGpe for any GPEs that are identified as possible wake GPEs.

After completion of the PRW execution, the host calls AcpiUpdateAll Gpes to enable any GPESs that
now have associated _Lxx/_Exx GPE methods that were discovered within the loaded table.

GPE Block Devices

A GPE Block Deviceisindicated by a device object within the ACPI namespace with a PNP ID of
“ACPI0006". Typically, once such a device is detected, a host-specific GPE Block Device Driver
will be loaded and will perform the following actions:

The Host calls Acpilnstall GpeBlock. During execution of thiscall, ACPICA ingtalls and initializes
the GPEs associated with the GPE Block Device and finds all _Lxx/_Exx methods for the block.

The Host must identify any _PRW methods associated with individual GPEs within the GPE Block
Device, and call AcpiSetWakeGpe for each possible wake GPE.

After completion of the GPE Block Device installation and _PRW method execution, the host calls
AcpiUpdateAll Gpes to enable any new runtime GPESs associated with the new GPE block.

Again, before the system sleeps, the host calls Acpi SetGpeWakeMask for every GPE that isto be
allowed to wake the system. The actual GPEs to be enabled for wake depends on the system
configuration and the ACPI-related drivers that are loaded.

51

(intel,
ACPI Component Architecture User Guide and Programmer Reference

4.5 Miscellaneous ACPICA Behavior

45.1 Dynamically Loaded ACPI Tables

Additional ACPI tables may be loaded from ASL code via two methods:

1. ASL Load operator: This operator will load an ACPI table directly from an Operation Region,
Operation Region Field, or a Buffer. Although the ACPI specification states that the loaded
table should be of type SSDT, ACPICA will not check the signature of the |oaded table. Objects
are loaded into the namespace rel ative to the namespace root. Thisis compatible with other
ACPI implementations.

2. ASL L oadTable operator: This operator will load an ACPI table that is present in the
RSDT/XSDT. Since all SSDTswithinthe RSDT/XSDT are loaded automatically at
initialization time, this table must have a signature other than SSDT — typically OEMx.

Regardless of where the table originates, the following actions are performed on behalf of the newly
loaded table before the L oad or L oad T able operator compl etes execution:

e Any module-level code (executable AML code not within any control method) within the
table is executed.

e Anyandall PRW methods within the table are executed in order to discover any GPES that
must now be marked as wakeup GPEs.

o Anynew _Lxx/_Exx GPE methods within the table are registered with their corresponding
GPE. If the referenced GPE is aruntime GPE and is not currently enabled, it is enabled
immediately. This behavior applies to both the FADT-defined GPE blocks (0 and 1) and any
GPE Block Devices.

52

5.2

5.3

ACPI Component Architecture User Guide and Programmer Reference

Subsystem Features

AML Interpreter Slack Mode

When enabled, this mode provides better compatibility with other existing ACPI implementation(s)
by ignoring certain errors and improper AML sequences. It also enables the Implicit Return feature.

Implicit Return Value: Thisfeature will automatically return the result of the last AML operation
in acontrol method, in the absence of an explicit Return() operator. Since other ACPI
implementations have implemented this feature by default, there are many existing machines whose
ASL/AML depends on this behavior.

Operation Region Range Checking: Allow access beyond the end of of aregion. The default
behavior isto strictly limit access to the end of the operation region. Typically, access beyond the
end of the region occurs when the access data width causes the overrun. For example, a one-byte
operation region and afield with DWORD access. Normally, access to the field will cause an error.
This option will allow the access to continue.

Uninitialized M ethod L ocals and Arguments: Allow access to uninitialized Locals and
Arguments asif they wereinitialized to an Integer object with avalue of zero. If thisfeatureis not
enabled, an error is generated an the method is aborted.

Source Operand Typesfor Store Operator: Allow objects of any type to be the source for the
ASL/AML Store operator. The ACPI specification restricts the source operand to be one of a subset
of the available ACPI object types. This option overrides the ACPI specification and allows source
operands of any type.

Unresolved Refer ences within Packages. Allow references within Package objectsto go
unresolved with no error or warning. A NULL package element isinserted instead. Thisis another
compatibility issue with other AML interpreters, and there are existing machines that depend on this
feature.

AML Interpreter Math Mode (32-bit or 64-bit)

Theinteger size used by the AML interpreter is variable and is dynamically set viathe DSDT that is
loaded. For ACPI 1.0 DSDTswith aversion number of 1, the integer width used is always 32-bits
for backward compatibility. For ACPI 2.0 and later DSDTs with a version number larger than 1, full
64-bit integer math is used.

Predefined Control Method Validation

For the predefined control methods (methods that are defined in the ACPI specification and whose
names begin with a single underscore), the ACPICA subsystem performs a validation on the return
value, if any. There are nearly 200 such methods.

The input number of arguments and the type of the return object is validated against the ACPI
specification. If the method returns a package, the length of the package as well as the individual
elements of the package are validated. A warning message isissued if there are any problems found.

This feature is useful in finding problems with objects returned by BIOS AML code immediately
upon execution of the method -- before the ACPI-related device drivers run into them.

53

ACPI Component Architecture User Guide and Programmer Reference

5.4

5.5

5.5.1

I/O Port Protection

The ACPICA subsystem protects certain 1/0O ports from access viathe AML code. Some ports are
alwaysillegal, and some ports areillegal based upon the strings that the BIOS has requested via the
_OSl predefined control method. When an 1/0 request is made to a blocked port, the
AE_AML_ILLEGAL_ADDRESS exception is returned.

The current list of protected portsis asfollows:

{" DVA", 0x0000, 0xO000F, ACPI_OSI _W N_XP}, /* DVA controller 1 */
{"PICO", 0x0020, 0x0021, ACPI_ALWAYS | LLEGAL}, /* Interrupt Controller */
{"PIT1", 0x0040, 0x0043, ACPI_OSI _W N_XP}, /* System Tiner 1 */

{"PIT2", 0x0048, 0x004B, ACPI _OSI _W N_XP}, /* System Tiner 2 failsafe */
{"RTC", 0x0070, 0x0071, ACPI_OSI _W N_XP}, /* Real -tine clock */
{"cmos', 0x0074, 0x0076, ACPI_OSI _W N_XP}, /* Extended CMOS */

{" DVAL", 0x0081, 0x0083, ACPI_OSI _W N_XP}, /* DVA 1 page registers */

{" DVALL", 0x0087, 0x0087, ACPI_OSI _W N_XP}, /* DVAW 1 Ch O | ow page */

{" DvA2", 0x0089, 0x008B, ACPI _OSI _W N_XP}, /* DMA 2 Ch 2 | ow page */

{" DvA2L", 0x008F, 0x008F, ACPI_OSI _W N_XP}, /* DVA 2 |ow page refresh */
{"ARBC', 0x0090, 0x0091, ACPI _OSI _W N_XP}, /* Arbitration control */

{" SETUP", 0x0093, 0x0094, ACPI _OSI _W N_XP}, /* System board setup */
{"PCS", 0x0096, 0x0097, ACPI_OSI _W N_XP}, /* POS channel select */
{"pPrC1", 0x00AO, O0x00A1, ACPI_ALWAYS | LLEGAL}, /* Cascaded PIC */

{"1DVA", 0x00C0, 0xO00DF, ACPI_OSI _W N_XP}, /* 1 SA DVA */

{"ELCR'", 0x04D0, 0x04D1, ACPI _ALWAYS | LLEGAL}, /* PIC edgel/l evel registers */
{"pPc", 0x0CF8, OxO0CFF, ACPI_OSI _W N_XP} /* PCl configuration space */

ACPI_ALWAYS ILLEGAL: These ports are aways blocked.

ACPI_OSI_WIN_XP: These ports are legal unlessthe BIOS AML hasinvoked _OSI with the XP
string “Windows 2001” or any Windows string representing a release of Windows later than XP.
Performed for Windows compatibility, this means that these ports are illegal on most modern x86
machines.

Debugging Support

Two styles of debugging are supported with the debugging tools available with the ACPICA
Subsystem:

1. Extraordinary amounts of trace and debug output can be generated from debug output and
trace statements that are embedded in the debug version of the ACPICA subsystem. This
data can be used to track down problems after the fact. So much data can be generated that
the debug output can be selectively enabled on a per-subcomponent basis and even afiner
granularity of the type of debug statement can be selected.

2. An AML debugger is provided that has the ability to single step control methodsto
examine the results of individual AML opcodes, and to change the values of local variables
and method arguments if necessary.

Error and Warning Messages

There are several macros used throughout the ACPICA subsystem to format and print error and
warning messages. In addition to the input message, each of these macros automatically print the
module name, line number, and current ACPICA version number.

54

5.5.2

5.5.3

ACPI Component Architecture User Guide and Programmer Reference

These macros are conditionally compiled and can be removed if desired by defining
ACPI_NO_ERROR_MESSAGES during subsystem compilation. However, they are used only for
seriousissuesin order to limit their overhead.

ACPI_ERROR - Displays an error message.

ACPI_EXCEPTION - Displays an error message with a decoded ACPI_STATUS exception.

ACPI_WARNING - Displays a warning message.

ACPI_INFO - Information message only.

The current statistics for the use of these macros within the ACPICA source are approximately as
follows:

ACPI_ERROR 270 invocations
ACPI_EXCEPTION 70 invocations
ACPI_WARNING 40 invocations
ACPI_INFO 15 invocations

Also, if ACPI_NO_ERROR_MESSAGES is defined, the module that formats and displays output
from the AML Debug Object is configured out completely.

Execution Debug Output (ACPI_DEBUG_PRINT Macro)

The ACPI_DEBUG_PRINT macro is used throughout the source code of the ACPICA Core
Subsystem to selectively print debug messages. Over 350 invocations of the ACPI_DEBUG_PRINT
are scattered throughout the ACPICA subsystem source. This macro is compiled out entirely for
non-debug versions of the subsystem.

Output from ACPI_ DEBUG_PRINT can be enabled at two levels: on a per-subcomponent level
(Namespace manager, Parser, Interpreter, etc.), and on a per-type level (informational, warnings,
errors, and more.) There are two global variables that set these output levels:

1. AcpiDbgLayer Bitfield that enables/disables debug output from entire subcomponents
within the ACPICA subsystem.

2. AcpiDbgLevel Bit field that enables/disables the various debug output levels

The example below shows some of the debug output from a namespace search. None of the output
of the function tracing is shown here, but the enter/exit traces would appear interspersed with the
other debug output.

nsutils-0346: NslnternalizeNane: returning [00821F30] (abs) "\BITZ"
nsaccess- 0424: NsLookup: Searching fromroot [007F09B4]

nsaccess-0477: NsLookup: Milti Name (1 Segrents, Flags=0)

nsaccess-0494: NsLookup: [BITZ/]

nssearch-0166: NsSearchOnly: Searching \/ [007F09B4]

nssearch-0168: NsSearchOnly: For BITZ (type 0)

nssearch-0239: NsSearchOnly: Name BITZ (actual type 8) found at 007FC384
nseval - 0302: NsEval uat eByNane: \BlI TZ [007FC384] Val ue 007FEOCO

Function Tracing (ACPI_FUNCTION_TRACE Macro)

Most of the functions within the subsystem use the ACPI_FUNCTION_TRACE macro upon entry
and thereturn_ACPI_STATUS macro upon exit. For the debug version of the subsystem, if the

55

ACPI Component Architecture User Guide and Programmer Reference

5.5.4

5.6

5.6.1

function trace debug level is enabled, the ACPI_FUNCTION_TRACE macro displays the name of
the module and function and the current call nesting level. Upon exit, the return ACPI_STATUS
macro again displays the name of the function, the call nesting level, and the return status code of
the call.

The next few lines show examples of the function tracing. On each invocation of the
ACPI_FUNCTION_TRACE macro, we see the module name and line number, followed by the call
nesting level (2 digits), followed by the name of the actual procedure entered. Some versions of the
ACPI_FUNCTION_TRACE macro allow one of the function parameters to be displayed as well.

Executing \BI TZ

nsobj ect - 0356 [07] NsGet AttachedObj ect : ----Entry 004A2CC8
nsobj ect - 0373 [07] NsGet Att achedObj ect © ----Exit- 004A2728
dswscope-0186 [07] DsScopeSt ackPush . ----Entry
utal |l oc-0235 [07] U AcquireFromCache . 004A1DC8 from State Cache

utm sc-0711 [08] Ut PushCenericState : ----Entry

utm sc-0719 [08] Ut PushCenericState Do----Exit-
dswscope- 0223 [07] DsScopeSt ackPush Do----Eit- AEXXK
dsnt hdat - 0274 [07] DsMet hodDatalnitArgs : ----Entry 004A1438
dsnt hdat - 0655 [08] DsStoreChject ToLocal : ----Entry
dsnt hdat - 0657 [08] DsStoreChject ToLocal : Opcode=104 | dx=0 Cbj =004A2F08

The function entry and exit macros have the ability to generate huge amounts of output data.
However, thisis often the best way to determine the actual execution path taken by subsystem. If the
problem being debugged can be narrowed to a single control method, tracing can be enabled for that
method only, thus reducing the amount of debug data generated.

ACPICA Debugger

Provided as a subcomponent of the ACPICA Core Subsystem, the AML Debugger providesthe
capability to display subsystem data structures and objects (such as the namespace and associated
internal object), and to debug the execution of control methods (including single step and breakpoint
support.) By using only two OSL interfaces, AcpiOsGetLine for input and AcpiOsPrint for output,
the debugger can operate standalone or as an extension to a host debugger.

The debugger provides a more active debugging environment where data can be examined and
altered during the execution of control methods.

Environmental Support Requirements

This section describes the environmental requirements of the ACPICA subsystem. Thisincludes the
external functions and header files that the subsystem uses, as well as the resources that are
consumed from the host operating system.

Resource Requirements

Static Memory - example Code and Data Size: These are the sizes for the OS-independent acpicalib
produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes
the debug output trace mechanism and has a much larger code and data size.

Non- Debug Version: 89.9K Code, 19.0K Data, 108.9K Tot al
Debug Versi on: 166. 3K Code, 52.1K Data, 218.4K Total

56

5.6.2

ACPI Component Architecture User Guide and Programmer Reference

Dynamic Memory: The size of the internal ACPI namespace is dependent on the size of the loaded
ACPI tables— DSDT and any SSDTs— and the number of nhamed ACPI objects they create at table
load time. All resources used during control method execution are freed at control method
termination.

C Library Functions

In order to make the ACPICA Core Subsystem as portable and truly OS-independent as possible,
there isonly extremely limited use of standard C library functions within the Core Subsystem
component itself. The calls are limited to those that can generate code in-line or link to small,
independent code modules. Below is a comprehensive list of the C library functions that are used by
the Core Subsystem code.

Table 1. C Library Functions Used within the Subsystem

i sal pha

isdigit

i sprint

i sspace

i supper

i sxdigit

mentnp

nmenset

strcat

strcnp

strcpy

strlen

strncat

st rncnp

st rncpy

strstr

strtoul

strupr

t ol ower

t oupper

va_end

va_li st

va_start

If ACPI_USE_SYSTEM_CLIBRARY isdefined during the compilation of the subsystem, the
subsystem must be linked to alocal C library to resolve these Clib references. If
ACPI_USE_SYSTEM_CLIBRARY isnot set, the subsystem will automatically link to local
implementations of these functions. Note that the local implementations are written in portable
ANSI C, and may not be as efficient aslocal assembly code implementations of the same functions.
Therefore, it is recommended that the local versions of the C library functions be used if at all
possible.

57

ACPI Component Architecture User Guide and Programmer Reference

5.6.3 Source Code Organization
The ACPICA source code as released is organized as below. At the top level, there are separate
directories for the ACPICA documentation, generation tools, and the actual C source code. The
source code itself is organized into a separate directory for each major ACPICA component, tool, or
test.
acpi ca
docunent s /1 Acpica docunentation
generate /1 Source generation tools:
I'int I/l PC-lint files
I'i nux /] Linux nakefiles
nsvc /1 Mcrosoft VC++ 6.0 makefiles
rel ease /] Release utilities
uni x /1 Ceneric Unix/gcc makefiles
sour ce /1 Entire ACPI CA source code tree:
common /] Common files
conpi | er /1 1 ASL conpil er
conponent s /1 Main ACPI CA conponents:
debugger /1 AML Debugger
di sassenbl er /'l AML Di sassenbl er
di spat cher /1 AML Interpreter dispatcher
events /1 ACPI Event Manager (GPEs etc.)
execut er /1 Main AML Interpreter
har dwar e /1 ACPlI Hardware Manager
namespace /1 ACPlI Nanmespace Manager
par ser /1 AML Interpreter parser
resources /1 ACPlI Resource Manager
tabl es /1 ACPlI Tabl e Manager
utilities /'l Mscellaneous utilities
i ncl ude /1 Mbst ACPI CA incl udes
platform /1 Platformspecific files
os_specific /1 OS-specific files
service_|l ayers /1 Various COSLs
tool s /] ACPICA tools/utilities:
acpi bin /1 Binary file utility
acpi exec /1 ACPl user space executer
acpi src /1 Source translation utility
acpi xtract /1 Table extraction utility
exanpl es /1 ACPI CA exanpl e code
tests /] ACPI CA test suites:
aapits /1 ACPICA interface tests
aslts /1 ASL test suite
m sc /'l M scel | aneous ASL tests
5.6.4 System Include Files

The following include files (header files) are useful for users of both the Acpi* and AcpiOs*

interfaces:
e acpi.h
e acexcep.h
e acpiosxf.h
e acpixf.h
e actypesh

Includes all of the files below.

The ACPI_STATUS exception codes

The prototypes for all of the AcpiOs* interfaces
The prototypes for all of the Acpi* interfaces
Common data types used across all interfaces

58

ACPI Component Architecture User Guide and Programmer Reference

Customization to the Target Environment

The use of header filesthat are external to the ACPICA subsystem is confined to a single header file
named acenv.h. These external include files are used only if the following symbols are defined:

e ACPI_USE_SYSTEM_CLIBRARY
e ACPI_USE_STANDARD_HEADERS

Several of the standard C library headers are used:

e stdarg.h
o ddlib.h
e dtring.h
e ctypeh

When generating the Core Subsystem component from source, the acenv.h header may be modified
if the filenames above are not appropriate for generation on the target system. For example, some
environments use a different set of header files for the kernel-level C library versus the user-level C
library. Use of C library routines within the Core Subsystem component has been kept to a
minimum in order to enhance portability and to ensure that the Core Subsystem will run as a kernel-
level component in most operating systems.

59

(intel,
ACPI Component Architecture User Guide and Programmer Reference

6

6.1

6.1.1

6.1.2

6.1.3

Data Types and Interface
Parameters

ACPICA Interface Parameters

ACPI Names and Pathnames

Asdefined in the ACPI Specification, all ACPI object names (the names for all ACPI objects such
as control methods, regions, buffers, packages, etc.) are exactly four ASCII characterslong. The
ASL compiler automatically pads names out to four charactersif an input nameinthe ASL sourceis
shorter. (The padding character is the underscore.) Since all ACPI names are always of afixed
length, they can be stored in a single 32-bit integer to simplify their use.

Pathnames are null-terminated ASCI| strings that reference named objects in the ACPI namespace.
A pathname can be composed of multiple 4-character ACPI names separated by a period. In
addition, two special characters are defined. The backd ash appearing at the start of a pathname
indicates to begin the search at the root of the namespace. A carat in the pathname directs the search
to traverse upwards in the namespace by one level. The ACPI namespace is defined in the ACPI
specification. The ACPICA subsystem honors all of the naming conventions that are defined in the
ACPI specification.

Frequently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
pathname” or “relative pathname”. A pathnameisfully qualified if it begins with the backslash
character (‘\') since it defines the complete path to an object from the root of the namespace. All
other pathnames are relative since they specify a path to an object from somewhere in the
namespace besides the root.

The ACPI specification defines specia search rules for single segment (4-character) or standalone
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPICA Core Subsystem component implements these rules fully for the
execution of control methods. It does not implement the so-called “parent tree” search rules for the
external interfacesin order to avoid object reference ambiguities.

Pointers

Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the caller
to ensure that all pointers passed to the ACPICA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If apointer is any value other than NULL, it will
be assumed to be a valid pointer and will be used as such.

Buffers

It isthe responsibility of the caller to ensure that all input and output buffers supplied to the Core
Subsystem component are at |east as long as the length specified in the ACPI_BUFFER structure,
readable, and writable in the case of output buffers. The Core Subsystem does not perform
addressability checking on buffer pointers, nor does it perform range validity checking on the
buffers themselves. In the ACPI Component Architecture, it is the responsibility of the OS Services
Layer to validate all buffers passed to it by application code, create aliases if necessary to address

60

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

ACPI Component Architecture User Guide and Programmer Reference

buffers, and ensure that all buffersthat it creates locally are valid. In other words, the ACPICA Core
Subsystem trusts the OS Services Layer to validate all buffers.

When the length field of ACPI_BUFFER is set to ACPI_ALLOCATE_BUFFER before acall that
returns data in an output buffer, the core subsystem will allocate a return buffer on behalf of the
caler. It isthe responsibility of the caller to free this buffer when it is no longer needed.

ACPICA Basic Data Types

UINT64 and COMPILER_DEPENDENT_UINT64

Beginning with the ACPI version 2.0 specification, the width of integers within the AML interpreter
are defined to be 64 bits on all platforms (both 32- and 64-bit). The implementation of this
requirement requires the deployment of 64-bit integers across the entire ACPICA Core Subsystem.
Since there is (currently) no standard method of defining a 64-hit integer in the C language, the
COMPILER_DEPENDENT_UINT64 macro is used to allow the UINT64 typedef to be defined by
each host compiler. The UINT64 datatype is used at the Acpi* interface level for both physical
memory addresses and ACPI (interpreter) integers.

ACPI_PHYSICAL_ADDRESS

The width of all physical addressesisfixed at 64 bits, regardless of the platform or operating
system. Logical addresses (pointers) remain the natural width of the machine (i.e. 32 bit pointers on
32-bit machines, 64-bit pointers on 64-bit machines.) Thisalows for afull 64 bit address space on
64-bit machines as well as “extended” physical addresses (above 4Gbytes) on 32-bit machines.

ACPI_IO_ADDRESS

Similar to ACPI_PHY SICAL_ADDRESS, except it is used for 1/O addresses.

ACP|_SIZE

This data type is 32-hits or 64 bits depending on the platform. It isused in leiu of the C library
size t, which cannot be guaranteed to be available.

ACPI_STRING — ASCII String

The ACPI_STRING datatypeis aconventional “char *” null-terminated ASCI| string. It isused
whenever afull ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME datatype.

ACPI_BUFFER - Input and Output Memory Buffers

Many of the ACPICA interfaces require buffers to be passed into them and/or buffers to be returned
from them. A common structure is used for al input and output buffers across the interfaces. The
buffer structure below is used for both input and output buffers. The Core Subsystem component
only allocates memory for return buffersif requested to do so — this allows the caller complete
flexibility in where and how memory is allocated. Thisis especially important in kernel level code.

61

ACPI Component Architecture User Guide and Programmer Reference

6.2.6.1

6.2.6.2

6.2.7

t ypedef struct

Ul NT32 Lengt h; /1 Length of the buffer in bytes;
voi d *Poi nt er ; /1 pointer to buffer
} ACPI _BUFFER,

Input Buffer

Aninput buffer is defined to be a buffer that is filled with data by the user (caller) beforeit is passed
in as a parameter to one of the ACPI interfaces. When passing an input buffer to one of the Core
Subsystem interfaces, the user creates an ACPI_BUFFER structure and initializes it with a pointer
to the actual buffer and the length of the valid data in the buffer. Since the memory for the actual
ACPI_BUFFER structure is small, it will typically be dynamically allocated on the CPU stack. For
example, auser may allocate a 4K buffer for common storage. The buffer may be reused many
times with data of various lengths. Each time the number of bytes of significant data contained in
the buffer is entered in the Length field of the ACPI_BUFFER structure before an Core Subsystem
interfaceis called.

Output Buffer

An output buffer is defined to be a buffer that isfilled with data by an ACPI interface beforeit is
returned to the caller. When the ACPI_BUFFER structure is used as an output buffer the caller must
always initialize the structure by either

1. Placing avalueinthe Length field that indicates the maximum size of the buffer that is
pointed to by the Pointer field. The length is used by the ACPI interface to ensure that thereis
sufficient user provided space for the return value.

2. Initializing the Length field to ACPI_ALLOCATE_BUFFER to cause the ACPICA
subsystem to allocate a buffer.

If a buffer that was passed in by the caller istoo small, the ACPI interfaces that require output
buffers will indicate the failure by returning the error code AE_ BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the Length
field of the ACPI_BUFFER structure (unless ACPI_ALLOCATE BUFFER isused). The caler
may recover from this failure by examining the Length field of the ACPI_BUFFER structure. The
interface will place the required length in thisfield in the event that the buffer was too small.

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the
caller the length of datain the buffer by setting the Length field of the ACPI_BUFFER to the actual
number of bytes placed in the buffer.

Therefore, the Length field is both an input and output parameter. On input, it indicates either the
size of the buffer or an indication to the ACPICA subsystem to allocate a return buffer on behalf of
the caller. On output, it either indicates the actual amount of datathat was placed in the buffer (if the
buffer was large enough), or it indicates the buffer size that is required (if the buffer was too small)
and the exception is set to AE_ BUFFER_OVERFLOW.

ACPI_STATUS - Interface Exception Return Codes

Most of the external ACPI interfaces return an exception code of type ACPI_STATUS asthe
function return value, as shown in the example below:

62

6.2.8

6.2.8.1

ACPI Component Architecture User Guide and Programmer Reference

ACPI _STATUS St at us;

Status = AcpilnitializeSubsystem ();
if (ACPI _FAI LURE (Status))
{

}

/1 Exception handling code here

ACPI_HANDLE — Object Handle

References to ACPI objects managed by the Core Subsystem component are made viathe
ACPI_HANDLE datatype. A handle to an object is obtained by creating an attachment to the object
viathe AcpiPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to
opening afile and receiving a connection — after the pathname has been resolved to an object
handle, no additional internal searching is performed whenever additional operations are needed on
the object.

References to object scopes also use the ACPI_HANDLE type. This alows objects and scopes to be
used interchangeably as parameters to Acpi interfaces. In fact, a scope handle is actually ahandle to
the first object within the scope.

Predefined Handles

One predefined handleis provided in order to simplify access to the ACPI namespace:

ACPI_ROOT_OBJECT: A handle to the root object of the namespace. All objects contained
within the root scope are children of the root object.

63

ACPI Component Architecture User Guide and Programmer Reference

6.2.9

(lntel)
ACPI_OBJECT_TYPE — Object Type Codes

Each ACPI object that is managed by the ACPICA subsystem has a type associated with it. The
valid ACPI object types are defined as follows:

Table 2. ACPI Object Type Codes

6.2.10

ACPI _TYPE_ANY
ACPI _TYPE_| NTEGER
ACPI _TYPE_STRI NG
ACPI _TYPE_BUFFER
ACPI _TYPE_PACKAGE
ACPI _TYPE_FI ELD UNI T
ACPI _TYPE_DEVI CE
ACPI _TYPE_EVENT
ACPI _TYPE_METHOD
ACPI _TYPE_MUTEX
ACPI _TYPE_REG ON
ACPI _TYPE_POWER
ACPI _TYPE_PROCESSOR
ACPI _TYPE_THERVAL
ACPI _TYPE_BUFFER FI ELD
ACPI _TYPE_DDB_HANDLE
ACPI _TYPE_DEBUG OBJECT

ACPI_OBJECT — Method Parameters and Return Objects

The general purpose ACPI_OBJECT isused to pass parameters to control methods, and to receive
results from the evaluation of namespace objects. The point of this data structure isto provide a
common object that can be used to contain multiple ACPI data types. Only a subset of the
ACPI_OBJECT_TY PEs are supported by the ACPI_OBJECT. The types that are supported
represent the types that are supported by control method arguments and return val ues as per the
ASL/AML grammar specification.

When passing parameters to a control method, each parameter is contained in an ACPI_OBJECT.
All of the parameters are then grouped together in an ACPI_OBJECT _LIST.

When receiving a result from the evaluation of a namespace object, asingle ACPI_OBJECT is
returned in an ACPI_BUFFER structure. This allows variable length objects such as ACPI Packages
to be returned in the buffer. The first item in the buffer is always the base ACPI_OBJECT.

Some of the ACPI_OBJECT types (String, Buffer, Package) contain pointersto additional data.
These pointers reference additional storage within the same ACPI_OBJECT allocation. They are
guaranteed to be valid. Note: the entire ACPI_OBJECT cannot be simply copied, else any pointers
within the object(s) will be invalid.

e String: Pointer is areference to the actual string data.
e Buffer: Pointer is areference to the actual buffer data.

e Package: Pointer is areference to the sub-object (elements) array of additional
ACPI_OBJECT(s)

64

intel)

When the device driver has completed processing of the ACPI_OBJECT, it can be deleted with one
call to free.

ACPI Component Architecture User Guide and Programmer Reference

t ypedef uni on acpi _obj ect

{
ACPI _OBJECT_TYPE Type; /* See ACPI _OBJECT_TYPE for values */
struct
{
ACPI _OBJECT_TYPE Type; /* ACPI _TYPE_I| NTEGER */
Ul NT64 Val ue; /* The integer value */
} Integer;
struct
ACPI _OBJECT_TYPE Type; /* ACPI _TYPE_STRI NG */
Ul NT32 Lengt h; /* # of bytes in string, minus null */
char *Poi nter; /* points to the string value */
} String;
struct
ACPI _OBJECT_TYPE Type; /* ACPlI _TYPE_BUFFER */
Ul NT32 Lengt h; /* # of bytes in buffer */
Ul NT8 *Poi nt er ; /* points to the buffer */
} Buffer;
struct
ACPI _OBJECT_TYPE Type; /* ACPlI _TYPE_PACKAGE */
Ul NT32 Count ; /* # of elenents in package */
uni on acpi _obj ect *El ements; /* Pointer to array of ACPI_OBJECTs */
} Package;
struct
ACPI _OBJECT_TYPE Type; /* ACPI _TYPE_LOCAL_REFERENCE */
ACPI _OBJECT_TYPE Act ual Type; /* Type associated with the Handle */
ACPI _HANDLE Handl e; /* object reference */
} Reference;
struct
{
ACPI _OBJECT_TYPE Type; /* ACPI _TYPE_PROCESSCR */
Ul NT32 Procl d;
ACPI _| O_ADDRESS Pbl kAddr ess;
Ul NT32 Pbl kLengt h;
} Processor;
struct
ACPI _OBJECT_TYPE Type; /* ACPlI _TYPE_POAER */
Ul NT32 Syst enlevel ;
Ul NT32 Resour ceOr der;

} Power Resour ce;

} ACPI _OBJECT;

65

ACPI Component Architecture User Guide and Programmer Reference

6.2.10.1

Using the ACPI_OBJECT

In this example, the PCT object is evaluated viathe AcpiEvaluateObject. PCT isdefined to return
two buffers each containing a single Resource Template. The diagram shows the internal structure
of the ACPI_OBJECT that isreturned from PCT.

The original ASL source code is shown below:

Name (_PCT, Package (0x02)

{
Resour ceTenpl ate ()

{

},
Resour ceTenpl ate ()

Regi ster (System O, 0x08, 0x00, 0x00000000000000B2)

Regi ster (System O, 0x08, 0x00, 0x00000000000000B3)
}
H

Thisisthe evalution of the PCT object defined above, and the diagram shows the contents of the
returned ACPI_OBJECT:

Status = Acpi Eval uat eObj ect (Node, “_PCT”, NULL, &ReturnCbj);

Package Object

Buffer Object

Buffer Object

Buffer Data

e

Buffer Data

e

66

6.2.12

6.2.13

6.3

6.3.1

ACPI Component Architecture User Guide and Programmer Reference

ACPI_OBJECT_LIST — List of Objects

Thisobject is used to pass parameters to control methods via the AcpiEvaluateMethod interface. The
Count is the number of ACPI objects pointed to by the Pointer field. In other words, the Pointer
field must point to an array that contains Count ACPI objects.

t ypedef struct Acpi ObjLi st
Ul NT32 Count ;

ACPI _OBJECT *Poi nt er ;
} ACPI _OBJECT_LI ST;

ACPI_EVENT_TYPE - Fixed Event Type Codes

The ACPI fixed events are defined in the ACPI specification. The event codes below are used to
install handlers for the individual events.

ACPI _EVENT_PMII MER /1 Power Managenent Tiner rollover
ACPI _EVENT_GLOBAL /1 dobal Lock rel eased
ACPI _EVENT_POWNER BUTTON // Power Button (pressed)

ACPI _EVENT_SLEEP_BUTTON // Sleep Button (pressed)
ACPI _EVENT_RTC /1 Real Time Cock alarm

ACPI_TABLE_HEADER — Common ACPI Table Header

Thisisthe header used for most of the BIOS-provided ACPI tables.

typedef struct /* ACPlI common table header */

{
char Signature [4]; /* ldentifies type of table */
Ul NT32 Lengt h; /* Length of table, in bytes, */
* i ncl udi ng header */
Ul NT8 Revi si on; /* Specification mnor version # */
Ul NT8 Checksum /* To make sumof entire table = 0 */
char Cemd [6]; /* CEMidentification */
char Centabl el d [8]; /* CEMtable identification */
Ul NT32 CenRevi si on; /* OEM revision nunber */
char Asl Compilerld [4]; /* ASL conpiler vendor ID */
Ul NT32 As| Conpi | erRevi sion;/* ASL conpil er revision nunber */

} ACPl _TABLE_ HEADER

ACPI Resource Data Types

These data types are used by the ACPICA resource interfaces.

PCI IRQ Routing Tables

The AcpiGetlrgRoutingTable interface retrieves the PCI IRQ routing tables. This interface returns
the routing table in the ACPI_BUFFER provided by the caler. Upon return, the Length field of the
ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ routing tables. If
thereturned statusis AE_ BUFFER_OV ERFLOW, the Length indicates the size of the buffer
needed to contain the routing table.

67

ACPI Component Architecture User Guide and Programmer Reference

6.3.2

6.3.2.1

The ACPI_BUFFER Pointer pointsto a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member isa PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table element.
Thefina PCI_ROUTING_TABLE entry will contain no data and have a Length member of zero.

Each PRT_ENTRY contains the Address, Pin, Source, and Source Index information as described in
Chapter 6 of the ACPI Specification. While all structure members are UINT32 types, the valid
portion of both the Pin and Sourcelndex members are only UINT8 wide. Although the Source
member is defined as “char Source[4]”, it can be de-referenced as a null-terminated string.

typedef struct acpi _pci _routing table

{
Ul NT32 Lengt h;
Ul NT32 Pi n; /* PCl Pin */
Ul NT64 Addr ess; /* PCl Address of device */
Ul NT32 Sour cel ndex; /* Index of resource, allocating dev */
char Sour ce[4] ; /* pad to 64 bits so sizeof () works */

} ACPI _PCl _ROUTI NG TABLE;

Device Resources

Device resources are returned by indirectly executing the_ CRS and _PRS control methods viathe
Acpi GetCurrentResources and Acpi GetPossibleResour ces interfaces. These device resources are
needed to properly execute the SRS control method using the Acpi SetCurrentResour ces interface.

These interfaces require an ACPI_BUFFER parameter. If the Length member of the
ACPI_BUFFER is set to zero, the AcpiGet* interfaces will return an ACPI_STATUS of
AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that Pointer
points to a memory buffer of at least Length size. Upon return, the Length member will indicate the
amount of the buffer used to store the resource descriptors.

ACPI_RESOURCE_TYPE — Resource Data Types

The following resource types are supported by the ACPICA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling interfaces:
AcpiGetCurrentResources, Acpi GetPossibleResources, and Acpi SetCurrentResour ces.

e Irg

e Dma

e StartDependentFunctions
e EndDependentFunctions

e o

e Fixedlo

e VendorSpecific
e EndTag

e Memory24

e Memory32

e FixedMemory32

68

ACPI Component Architecture User Guide and Programmer Reference

e Addressl6

e Address32

e Address64

e ExtendedAddress64
e Extendedirq

e GenericRegister

t ypedef union acpi _resource_data /* union of all resources */

{

ACPI _RESQURCE_I RQ Irq;

ACPI _RESOURCE_DNA Dng;

ACPI _RESOURCE_START_ DEPENDENT St art Dpf;

ACPI _RESOQURCE_I O | 0;

ACPI _RESOURCE_FI XED_I O Fi xedl o;

ACPI _RESOURCE_VENDCOR Vendor ;

ACPI _RESOURCE_VENDOR_TYPED Vendor Typed,;
ACPI _RESOURCE_END_TAG EndTag;

ACPI _RESOURCE_MEMORY24 Menor y24;

ACPI _ RESOURCE_MEMORY32 Menor y32;

ACPI _RESQURCE_FI XED_MEMORY32 Fi xedMenor y32;
ACPI _ RESOURCE_ADDRESS16 Addr ess16;
ACPI _ RESOURCE_ADDRESS32 Addr ess32;
ACPI _RESOURCE_ADDRESS64 Addr ess64;
ACPI _RESOURCE_EXTENDED_ADDRESS64 Ext Addr ess64;
ACPI _RESOURCE_EXTENDED_I| RQ Ext endedl r q;
ACPI _RESOURCE_CENERI C_REd STER Generi cReg;

} ACPl _RESOURCE_DATA;

t ypedef struct acpi _resource

Ul NT32 Type;
Ul NT32 Lengt h;
ACPI _RESOURCE_DATA Dat a;

} ACPl _RESOURCE;

The ACPI_BUFFER Pointer pointsto a buffer of at least Length size. The buffer isfilled with a
series of RESOURCE entries, each of which begins with an Id that indicates the type of resource
descriptor, a Length member and a Data member that isa RESOURCE_DATA union. The
RESOURCE_DATA union can be any of fourteen different types of resource descriptors. The
Length member will alow the caller to walk the RESOURCE entries. By incrementing a buffer
walking pointer by Length bytes, the pointer will reference each succeeding table element. The final
element in thelist of RESOURCE entries will have an I1d of EndTag. An EndTag entry contains no
additional data

When walking the RESOURCE entries, the |d member determines how to interpret the structure.
For example, if the Id member evaluates to StartDependentFunctions, then the Data member istwo
32-hit values, a CompatibilityPriority value and a PerformanceRobustness value. These values are
interpreted using the constant definitions that are found in actypes.h, GOOD_CONFIGURATION,
ACCEPTABLE_CONFIGURATION or SUB_OPTIMAL_CONFIGURATION. The interpretation
of these constant definitions is discussed in the Start Dependent Functions section of the ACPI
specification, Chapter 6.

As another, more complex example, consider a RESOURCE entry with an |d member that evaluates
to Address32, then the Data member is an ADDRESS32 _RESOURCE structure. The

69

ACPI Component Architecture User Guide and Programmer Reference

6.4

ADDRESS32_RESOURCE structure contains fourteen members that map to the data discussed in
the DWORD Address Space Descriptor section of the ACPI specification, Chapter 6. The
Data.Address32.ResourceType member is interpreted using the constant definitions
MEMORY_RANGE, IO_RANGE or BUS_NUMBER_RANGE. This value also effectsthe
interpretation of the Data.Address32.Attribute structure because it contains type specific
information.

The General Flags discussed in the ACPI specification are interpreted and given separate members
within the ADDRESS32 RESOURCE structure. Each of the bitsin the General Flags that describe
whether the maximum and minimum addresses is fixed or not, whether the address is subtractively
or positively decoded and whether the resource simply consumes or both produces and consumes a
resource are represented by the members MaxAddressFixed, MinAddressFixed, Decode and
ProducerConsumer respectively.

The Attribute member is interpreted based upon the ResourceType member. For example, if the
ResourceType is MEMORY _RANGE, then the Attribute member contains two 16-bit values, a
Data.Address32.Attribute.Memory.CacheAttribute val ue and a ReadWriteAttribute value.

The Data.Address32.Granularity, MinAddressRange, MaxAddressRange, AddressTrand ationOffset
and AddressLength members are simply interpreted as UINT32 numbers.

The optional Data.Address32.ResourceSourcelndex isvalid only if the ResourceSourceStringLength
is non-zero. Although the ResourceSource member is defined as UINT8 ResourceSource[1], it can
be de-referenced as a null-terminated string whose length is Resour ceSour ceStringLength.

ACPICA Exception Codes

A common and consistent set of return codes is used throughout the ACPICA subsystem. For
example, al of the public ACPI interfaces return the exception AE_ BAD_PARAMETER when an
invalid parameter is detected.

The exception codes are contained in the public acexcep.h file.
The entirelist of available exception codesis given below, along with a generic description of each

code. See the description of each public primitive for alist of possible exceptions, along with
specific reason(s) for each exception.

Table 3. Exception Code Values

Excepti on Nane Typi cal Meani ng

AE_CK No error

Envi ronnent al Excepti ons

AE_ERRCR Unspeci fied error

AE_NO_ACPI _TABLES ACPI tables could not be found
AE_NO_NAMESPACE A nanespace has not been | oaded
AE_NO_MEMORY I nsufficient dynam c nenory
AE_NOT_FOUND The name was not found in the namespace
AE_NOT_EXI ST A required entity does not exist
AE_ALREADY_EXI STS An entity already exists
AE_TYPE The object type is incorrect

70

ACPI Component Architecture User Guide and Programmer Reference

Excepti on Nane

Typi cal Meani ng

AE_NULL_OBJECT

A required object was m ssing

AE_NULL_ENTRY

The requested object does not exist

AE_BUFFER_OVERFLOW

The buffer provided is too snall

AE_STACK_OVERFLOW

An internal stack overfl owed

AE_STACK_UNDERFLOW

An internal stack underfl owed

AE_NOT_| MPLEMENTED

The feature is not inplenented

AE_SUPPCORT The feature is not supported

AE LIMT A predefined linmt was exceeded

AE_TI ME Atine limt or tineout expired

AE_ACQUI RE_DEADL OCK Internal error — attenpt was nmade to
acquire a nmutex in inproper order

AE_RELEASE_DEADLOCK Internal error — attenpt was made to

rel ease a nmutex in inproper order

AE_NOT_ACQUI RED

An attenpt to release a mutex or the G obal
Lock without a previous acquire

AE_ALREADY_ACQUI RED

Internal error — attenpt was made to
acquire a nmutex twce

AE_NO_HARDWARE _RESPONSE

Har dwar e di d not
oper ation

respond after an I/0O

AE_NO GLOBAL_LOCK

There is no hardware d obal Lock

AE_ABORT_METHOD

A control nethod was aborted

AE_SAME_HANDLER

Attenpt was made to install the same
handl er that is already installed.

AE_ OMNER ID LIMT

There are no nore Owner |Ds available for

ACPI tables or control methods
Programmer Exceptions (ACPlI external interfaces)
AE_BAD_PARAMETER A paraneter is out of range or invalid

AE_BAD_CHARACTER

An invalid character was found in a nane

AE_BAD_PATHNAME

An invalid character was found in a
pat hnane

AE_BAD DATA

A package or buffer contained incorrect

dat a

AE_BAD_HEX_CONSTANT

Invalid character in a Hex constant

AE_BAD_OCTAL_CONSTANT

Invalid character in an Cctal constant

AE_BAD_DECI MAL_CONSTANT

Invalid character in a Deci mal constant

AE_M SSI NG_ARGUMENTS

To few argunents were passed to a control
nmet hod

AE_BAD_ADDRESS

A null 1/0 address was passed as a
paraneter to Acpi Read or AcpiWite

ACPI Tabl e Excepti ons

AE_BAD_SI GNATURE

An ACPlI table has an invalid signature

AE_BAD_HEADER

Invalid field in an ACPl table header

71

intel.

ACPI Component Architecture User Guide and Programmer Reference

Excepti on Nane

Typi cal Meani ng

AE_BAD_CHECKSUM

An ACPlI table checksumis not correct

AE_BAD_VALUE

An invalid value was found in a table

AE_| NVALI D_TABLE_LENGTH

The FADT or FACS has inproper |length

AML (Interpreter) Exceptions

AE_AM._BAD_OPCODE

Invalid AML opcode encountered

AE_AM._NO_OPERAND

An operand is mssing (such as a nethod
that did not return a required val ue)

AE_AM._OPERAND TYPE

An operand of an incorrect type was
encount er ed

AE_AM._OPERAND VALUE

The operand had an inappropriate or invalid
val ue

AE_AM__UNI NI TI ALl ZED_LOCAL

Met hod tried to use an uninitialized | oca
vari abl e

AE_AM._UNI NI TI ALI ZED_ARG

Met hod tried to use an uninitialized
ar gunent

AE_AML_UNI NI Tl ALl ZED_ELEMENT

Met hod tried to use an enpty package
el enment

AE_AM__NUNMERI C_OVERFLOW

Overfl ow during BCD conversion or other

AE_ AML_REG ON LIMT

Tried to access beyond the end of an
Oper ati on Regi on

AE_AM._BUFFER LIM T

Tried to access beyond the end of a buffer

AE_AML_PACKAGE LIM T

Tried to access beyond the end of a package

AE_AM__DI VI DE_BY_ZERO

During execution of AM. Divi de operator

AE_AM._BAD_NAME

An ACPlI nanme contains invalid character(s)

AE_AM__NANME_NOT_FOUND

Coul d not resolve a naned reference

AE_AM._| NTERNAL

An internal error within the interpreter

AE_AM__| NVALI D_SPACE_| D

An Operation Region SpacelDis invalid

AE_ AML_STRING LIMT

String is longer than 200 characters

AE_AM._NO_RETURN_VALUE

A nethod did not return a required val ue

AE_AML_METHOD LIM T

A control nethod reached the naxi mum
reentrancy limt of 255

AE_AM__NOT_OWRER

Athread tried to release a nmutex that it
does not own

AE_AML_MUTEX_ORDER

Mut ex SyncLevel rel ease nmismatch

AE_AML_MUTEX_NOT_ACQUI RED

Attenpt to release a nutex that was not
previously acquired

AE_AM__| NVALI D_RESOURCE_TYPE

Invalid resource type in resource list

AE_AM._I NVALI D_I NDEX

Invalid Argx or Local x (x too |large)

AE_AM__REG STER LIM T

Bank val ue or Index val ue beyond range of
regi ster

AE_AML_NO W LE

Break or Continue without a Wile

AE_AM._ALI GNVENT

Non-al i gned nenory transfer on platform

72

ACPI Component Architecture User Guide and Programmer Reference

Excepti on Nane

Typi cal Meani ng

t hat does not support this

AE_AM__NO RESOURCE_END_TAG

No End Tag in a resource |ist

AE_AM._BAD_RESOURCE_VALUE

Invalid value of a resource el ement

AE_AM__Cl RCULAR REFERENCE

Two references refer to each other

AE_AM._BAD_RESOURCE_LENGTH

The length of a Resource Descriptor in the
AML was incorrect

AE_AM._| LLEGAL_ADDRESS

A nenory, |/O or PCl configuration address
was invalid

AE_AM__| NFI NI TE_LOOP

An AML Wil e | oop appears to have been
stuck infinitely and the nethod was aborted

I nternal Exceptions used for

contro

AE_CTRL_RETURN_VALUE

A Met hod returned a val ue

AE_CTRL_PENDI NG

Met hod is calling another rmnethod

AE_CTRL_TERM NATE

Term nate the executing nethod

AE_CTRL_TRUE

An If or Wiile predicate result

AE_CTRL_FALSE

An If or Wiile predicate result

AE_CTRL_DEPTH

Maxi mum sear ch depth has been reached

AE_CTRL_END

An If or Wiile predicate is fal se

AE_CTRL_TRANSFER

Transfer control to called nethod

AE_CTRL_BREAK

A Break has been executed

AE_CTRL_CONTI NUE

A Continue has been executed

AE_CTRL_PARSE_CONTI NUE

Used to skip over bad opcodes

AE_CTRL_PARSE_PENDI NG

Used to inplement AML Wil e | oops

73

(inte!
ACPI Component Architecture User Guide and Programmer Reference

v

7.1

7.2

7.2.1

71.2.2

Subsystem Configuration

There are several methods of configuring the OS-independent ACPICA Core Subsystem:
1. Selection of individual ACPICA components.

2. Configuration of platform-specific data types.

3. Per-machine configuration for machine-specific dependencies.

4. Per-compiler configuration for compiler dependencies.

5. Other compile-time configuration through the use of compiler switches.

6

Run-time global variables which are statically initialized from the configuration header file.

Configuration Files

The ACPICA subsystem has three types of configuration header filesto allow the subsystem to be
tailored to the particular machine and compiler, as well as allowing for the tuning of subsystem
constants.

These three include files perform the subsystem configuration:

e Anincludefilethat is specific to the particular compiler being used to compile the ACPICA
subsystem provides macros and defines that must be implemented on a per-compiler basis.
These files appear in the include/platform directory.

e Anincludefilethat is specific to the particular machine being targeted for the ACPICA
subsystem provides macros and defines that must be implemented on a per-machine basis.
These files appear in the include/platform directory.

e A global include file, acconfig.h alows for the tailoring and tuning of various subsystem
constants and options. Thisfile appearsin the include directory

Component Selection

ACPI_DISASSEMBLER

This switch enables the AML Disassembler component, which is usually used in conjunction with
the ACPI Debugger.

ACPI_DEBUGGER

This switch enables the ACPICA Debugger component. It also enables the various object dumping
routines.

74

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

ACPI Component Architecture User Guide and Programmer Reference

Configurable Data Types

The configurable data types are used to help tailor the ACPICA subsystem to a particular operation
system or compiler. Any changes from the default values should be specified in a system-dependent
header file under the include/platform directory.

ACPI_SPINLOCK

Thistype is an OS-dependent handle for a spinlock. It is returned by the AcpiOsCreatelock
interface, and passed as a parameter to the AcpiOsAcquirelock and Acpi OsReleasel ock interfaces.
The default value for ACPI_SPINLOCK is(void *). It can be changed to whatever type the host
OS uses for spinlocks.

ACPI_SEMAPHORE

Thistype is an OS-dependent handle for a semaphore. It is returned by the Acpi OsCreateSemaphore
interface, and passed as a parameter to the AcpiOsWaitSemaphore and Acpi OsSignal Semaphore
interfaces. The default value for ACPI_SEM APHORE is (void *). It can be changed to whatever
type the host OS uses for semaphore objects.

ACPI_MUTEX

Thistypeis an OS-dependent handle for a mutex. It is returned by the AcpiOsCreateMutex
interface, and passed as a parameter to the AcpiOsAcquireMutex and Acpi OsRel easeMutex
interfaces. The default value for ACPI_MUTEX is(void *). It can be changed to whatever type the
host OS uses for mutex objects.

If mutex objects are not supported by the host operating system, usethe ACPI_MUTEX_TYPE
with the ACPI_BINARY_SEM APHORE option (described later). This option causes mutexesto
be automatically implemented via ACPI_SEM APHORE objects, and the OSL mutex interfaces are
not required.

ACPI_CPU_FLAGS

Thistypeisused for the value returned from AcpiOsAcquireLock, and the value passed as a
parameter to AcpiOsReleasel ock. It can be configured to whatever type the host OS uses for CPU
flags that need to be saved and restored across the acquisition and release of a spinlock. The default
vaueisACPI_SIZE.

ACPI_THREAD_ID

Thistypeisdefined asa UINT64 and is returned by the AcpiOsGetThreadld interface.

Thereisno standard "thread_id" across operating systems or even the various UNIX systems. Since
ACPICA only needsthe thread ID as a unique thread identifier, it usesa UINT64 as the only
common data type —a UINT64 will accommodate any type of pointer or any type of integer. It isup
to the host-dependent OSL to cast the native thread ID typeto a UINT64 (in AcpiOsGetThreadld)
before returning the value to ACPICA.

75

ACPI Component Architecture User Guide and Programmer Reference

7.3.6

7.3.7

7.4

7.4.1

71.4.2

7.4.3

7.4.4

ACPI_CACHE_T

Thistypeis used for the value returned from Acpi OsCreateCache. It is used as a parameter to the
various OSL cache interfaces to identify a cache object for operating systems that implement a
cache manager. If the local ACPICA cache memory manager is used (configured), the value for this
typeisACPI_MEMORY_LIST. Otherwise, the value is OS-dependent.

ACPI_UINTPTR_T

Thistypeisintroduced to assist compilation of ACPICA under a C99 compiler that implements the
uintptr_t type. It isused for casting of pointersto eliminate compiler warnings. The default value
for the non-C99 caseis (void *).

Subsystem Options

These defines are used to customize the ACPICA Subsystem at compile time by selecting or
disabling various features.

ACP|_USE_SYSTEM_CLIBRARY

This switch allows the use of a system-supplied C library for the Clib functions used by the
subsystem. If this switch is not set, the subsystem uses its own implementations of these functions.
Use of asystem C library (when available) may be more efficient in terms of reused system code
and efficiency of the function implementations.

ACP|_USE_STANDARD_ HEADERS

This switch allows the use of standard C library headers that are provided by the host. The following
C library headers are used:

#i ncl ude <stdarg. h>
#i ncl ude <stdlib. h>
#include <string. h>
#i ncl ude <ctype. h>

ACPI_DEBUG_OUTPUT

This switch enables al debug facilities within ACPICA. Thisincludesthe ACPI_DEBUG_PRINT
output statements, the ACPI_FUNCTION_TRACE tracing statements, and the various object
dumping routines. If disabled, all of these macros evaluate to NULL and no code is produced.

ACP|_USE_LOCAL_CACHE

This switch enable the local ACPICA cache manager code. The use of a cache can improve the
ACPICA performance considerably, since it frequently allocations and deallocates objects of
identical size. If the host OS provides a similar cache manager, the ACPICA cache manager is not
needed.

76

7.4.6

7.4.7

7.4.8

ACPI Component Architecture User Guide and Programmer Reference

ACPI_DBG_TRACK_ALLOCATIONS

This switch enables the ACPICA cache statistics mechanism, and is only applicable if the local
ACPICA cache manager isenabled (ACPI_USE _LOCAL_CACHE.) When enabled, information
about each cache is saved, including the total memory allocated/freed, total requests, cache
hits/misses, etc. Thisinformation can be displayed via the ACPICA Debugger.

ACPI_MUTEX_TYPE

This macro is used to define the type of mutex support desired. Either native (host OS) mutexes may
be used, or binary semaphores may be used. The default behavior isto use binary semaphores.

The ACPI_MUTEX_TYPE must be one of the two following values:
ACPI BINARY SEMAPHORE (default)

Use thisvalue if the host OS does not support mutex objects. If set, this switch enables the
automatic use of macros that implement the mutex interfaces via binary semaphores, and the various
mutex interfaces do not need to be implemented in the OSL.

ACPI OSL MUTEX

Use thisvalueif the host OS supports mutex objects. The various mutex interfaces must be
implemented in the OSL.;

AcpiOsCreateM utex
AcpiOsDeleteM utex
AcpiOsAcquireM utex
AcpiOsReleaseM utex

ACPI_MUTEX_DEBUG

Enables code that performs error checking on the use of mutex objects. It checks for possible
deadlock conditions by enforcing a mutex ordering rule. Use of this option can impact performance
considerably, so it it should only used for debugging.

ACPI_SIMPLE_RETURN_MACROS

Enables simplified return macros. The default implementation for the return macros has extra
protection so that the macro parameter is not evaluated twice. The simplified versions of these
macros are smaller, but the parameter can be evaluated twice

Protected macro:

#define return_ACPI _STATUS(s) \
ACPI _DO WHI LEO ({ \
regi ster ACPI _STATUS _s = (s); \
Acpi Ut St at usExi t (ACPI _DEBUG_PARAMETERS, _s); \
return (_s); })

77

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Simplified macro:

#define return_ACPI _STATUS(s) \
ACPlI _DO WHI LEO ({ \
Acpi Ut Stat usExit (ACPI _DEBUG PARAMETERS, (s)); \

return((s)); })

7.49 ACPI_USE_DO_WHILE_0

Insertsado ... while(0) statement around the return macros (see examples above). Prevents some
compilers from issuing warnings for these macros.

Default i mplementation:

#define ACPI _DO WH LEO(a) do a while(0)

7.5 Per-Compiler Configuration

These macros and defines allow the ACPICA subsystem to be tailored to a particular compiler.

7.5.1 COMPILER_DEPENDENT_INT64

Defines the name of a signed 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language. Thereisno
default, this macro must be defined by the platform configuration file.

Examples

#defi ne COWPI LER_DEPENDENT_I NT64 int64_t
#def i ne COVPI LER_DEPENDENT | NT64 | ong
#defi ne COVPI LER_DEPENDENT_I NT64 __int64
#def i ne COVPI LER_DEPENDENT _| NT64 I ong | ong

7.5.2 COMPILER_DEPENDENT_UINT64

Defines the name of an unsigned 64-bit integer on for this compiler. This macro is required because
thereis (currently) no standard method to define 64-hit integers in the C language. Thereisno
default, this macro must be defined by the platform configuration file.

Examples

#defi ne COVPI LER_DEPENDENT Ul NT64 ui nt 64_t

#def i ne COVPI LER_DEPENDENT Ul NT64 unsi gned | ong
#def i ne COVPI LER_DEPENDENT Ul NT64 unsigned __int64
#def i ne COVPI LER_DEPENDENT Ul NT64 unsi gned | ong | ong

78

7.5.4

7.5.5

7.5.6

ACPI Component Architecture User Guide and Programmer Reference

ACPIL_INLINE

Optionally defines the proper “inling” keyword for this compiler, since “inlineg” itself is not a
standard C keyword. A few ACPICA functions use ACPI_INLINE since they are very small. This
option can be defined to the appropriate keyword for this compiler. If an inline function is not
available, or if it is not needed, this function does not need to be defined, the default is“null”.

Examples

#define ACPI | NLI NE inline
#define ACPI | NLI NE __inline
#define ACPI | NLI NE _inline__

ACPI_USE_NATIVE_DIVIDE

This switch enables native 64-bit divides. It is set by default for 64-bit machine widths. It is optional
for 32-bit platforms. Only use this option on a 32-bit platform if a 64-bit double-precision math
library isavailable for use by ACPICA. If thelibrary is not available, then do not use this option and
alocal ACPICA double-precision divide function is enabled instead.

ACPI_DIV_64 BY_32 (Short 64-bit Divide)

This macro performs a simple 64-bit divide with a 64-bit dividend and a 32-bit divisor. The purpose
of this macro isto perform a short divide on 32-bit platforms without invoking a double-precision
math library. Both the quotient and remainder must be returned. There is no default, this macro
must be defined by the platform configuration file.

Example 32-bit | mplementation

#define ACPI _DIV_64 BY 32(n_hi, n_lo, d32, g32, r32) \

{ \
__asm nov edx, n_hi \
__asm nov eax, n_lo \
__asmdiv d32 \
__asm nmov g32, eax \
__asm nov r32, edx \

}

Exampl e 64-bit | mplementation

#define ACPI _DIV_64 BY 32(n, n_hi, n_lo, d32, g32, r32) \
{\
g32
r32

n/ d32; \
n % d32; \

ACPI_SHIFT_RIGHT_64 (64-bit Shift)

This macro performs a 64-bit right shift by one bit. The purpose of this macro isto perform a shift
right on 32-bit platforms without invoking a double-precision math library. There is no default, this
macro must be defined by the platform configuration file.

79

(intel,
ACPI Component Architecture User Guide and Programmer Reference

7.5.7

7.5.8

7.5.9

7.5.10

Example 32-bit | mplementation

#define ACPI _SH FT_RI GHT_64(n_hi, n_lo) \

{ \
__asm shr n_hi, 1 \
_asmrcr nlo, 1 \

}

Example 64-bit | mplementation

#define ACPI _SH FT_RI GHT_64(n, n_hi, n_lo) \
{\

n <<= 1; \
}

ACPI_EXPORT_SYMBOL

This macro is used to define the mechanism used to export public symbols, if applicable. Within
ACPICA, it isinvoked for each of the public interfaces. The default valueis NULL.

Example
#def i ne ACPI _EXPORT_SYMBOL(Synbol) EXPORT_SYMBOL(Synbol) ;

ACPI_EXTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as_cdecl, pascal, etc.) to be used
in the declaration of all ACPICA externa interfaces (the Acpi* interfaces.) The default valueis
NULL.

Example
#def i ne ACPlI EXTERNAL XFACE APl ENTRY

ACPI_INTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA internal interfaces. The default valueisNULL.

ACPI_INTERNAL_VAR_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA variable-argument list internal interfaces. The default valueis
NULL.

Example
#defi ne ACPI _| NTERNAL VAR XFACE __cdecl

80

7.5.11

7.5.12

7.5.13

7.6

7.6.1

7.6.2

ACPI Component Architecture User Guide and Programmer Reference

ACPI_SYSTEM_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all interfaces to the host OS. The default valueis NULL.

Examples
#defi ne ACPI _SYSTEM XFACE cdecl

#def i ne ACPI _SYSTEM XFACE APl ENTRY

ACPI_PRINTF_LIKE

This macro defines a suffix to be used in the definitions and prototypes of internal print functions
that accept a printf-like format string. Some compilers have the ability to perform additional
typechecking on such functions. The default valueis NULL.

Example

#define ACPI _PRINTF_LIKE(c) \
__attribute_ ((__format__ (__printf__, c, c+l)))

ACPI_UNUSED_VAR

This macro defines a prefix to be used in the definition of variables that may not be used in a
module (such asthe ACPI_MODULE_NAME). This can prevent compiler warnings for such
variables. The default valueis NULL.

Example
#defi ne ACPI _UNUSED VAR _attribute_ _ ((unused))

Per-Machine Configuration

These macros and defines allow the ACPICA subsystem to be tailored to a particular machine or
machine architecture.

ACPI_MACHINE_WIDTH

This macro defines the standard integer width of the target machine, either 32 or 64. Thereisno
default, this macro must be defined by the platform configuration file.

Examples
#defi ne ACPI _MACHI NE_W DTH 32
#defi ne ACPI _MACHI NE_W DTH 64

ACPI_FLUSH_CPU_CACHE

Defines the instruction or instructions necessary to flush the CPU cache(s) on this machine.

81

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Examples

#define ACPI _FLUSH CPU CACHE() __ asm {WBI NVD}
#defi ne ACPlI _FLUSH CPU CACHE() whi nvd()

7.6.3 ACPI_OS NAME

This defines the string that is returned by the predefined “_OS " method in the ACPI namespace.
#def i ne ACPlI _0OS_NAME "M crosoft Wndows NT"

The OS_object isessentially obsolete, but there is alarge base of ASL/AML codein existing
machines that check for the string above. The use of this string usually guarantees that the ASL will

execute down the most tested code path. Also, there is some code that will not execute the _OSl
method unless _OS matches the string above. Therefore, change this string at your own risk.

7.6.4 ACPI_ACQUIRE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to acquire the ACPI Global Lock on this
machine.

ACPI _ACQUI RE_GLOBAL_LOCK (FacsPtr, Acquired)

Where:
FacsPtr isapointer to the FACS table.
Acquired isaboolean return value. TRUE if the lock was acquired; FALSE otherwise.
Example:
#define ACPI _ACQUI RE_GLOBAL_LOCK(FacsPtr, Acq) _ _asm\
{ \
__asm nov eax, OxFF \
__asm nov ecx, FacsPtr \
__asmor ecx, ecx \
_asmjz exit_acq \
__asmlea ecx, [ecx].d obal Lock \
\
__asm acql0: \
__asm nov eax, [ecx] \
__asm nov edx, eax \
__asm and edx, OxFFFFFFFE \
__asmbts edx, 1 \
__asm adc edx, O \
__asmlock cnmpxchg dword ptr [ecx], edx \
_asmjnz acqlo \
\
__asmcnp dl, 3 \
__asm sbb eax, eax \
\
__asmexit_acq: \
__asm nov Acqg, al \
}

82

7.7

7.7.1

ACPI Component Architecture User Guide and Programmer Reference

ACPI_RELEASE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to release the ACPI Global Lock on this

machine.

ACPl RELEASE GLOBAL_LOCK (FacsPtr, Pending)

Where:
FacsPtr isapointer to the FACS table.
Pending isaboolean return value. TRUE if the global lock pending bit is set; FALSE
otherwise.
Example:
#defi ne ACPlI _RELEASE GLOBAL_LOCK(FacsPtr, Pnd) _ _asm\
{ \
__asm xor eax, eax \
__asm nov ecx, FacsPtr \
__asmor ecx, ecx \
_asmjz exit_rel \
__asmlea ecx, [ecx].d obal Lock \
\
__asm Rel 10: \
__asm nov eax, [ecx] \
__asm nov edx, eax \
__asm and edx, OxFFFFFFFC \
__asmlock cnmpxchg dword ptr [ecx], edx \
_asmjnz Rel 10 \
\
__asmcnp dl, 3 \
__asm and eax, 1 \
\
_asmexit_rel: \
__asm nov Pnd, al \
}

Dynamic Configuration

This section describes features that may be enabled or disabled at run-time by setting various

ACPICA global option variables.

The global option variables are found in the include/acglobal .h header.

Interpreter Slack Mode

Enable or disable the AML Interpreter slack mode, as decribed earlier. The default is disabled.
ACPlI _INI T_GLOBAL (Acpi Gol _Enabl el nterpreterSlack,

83

ACPI Component Architecture User Guide and Programmer Reference

1.7.2

7.7.3

1.7.4

7.7.5

ACPI Register Widths

This option can be used to override the ACPI register widths that are specified in the FADT in the
case where the FADT contains one or more incorrect register widths (lengths). The default value is
FALSE, do not use the default register widths -- use the values as specified in the FADT.

The default register widths are as follows:

PM 1A Enable,

PM1A Status,

PM 1A Contral,

PM 1B Enable,

PM 1B Status,

PM1B Control -- 16 hitseach, = ACPI_PM1 REGISTER_WIDTH

PM2 Control -- 8 bits, = ACPI_PM2_REGISTER_WIDTH
PM Timer -- 32 bits, = ACPI_PM_TIMER_WIDTH

ACPlI _INIT_GLOBAL (Acpi &l _UseDef aul t Regi ster Wdt hs, FALSE);

Serialized Control Methods

This option can be used to force all control methods to be serialized. Meaning that only one thread
can enter the method at atime, similar to the Serialized control method option. The default isto not
force serialization and let each control method dictate the serialization mode for itself. The use of
this option essentially forces the AML interpreter to be single threaded.

ACPlI INIT_GLOBAL (Acpi Gol _Al'l Met hodsSeri alized, FALSE);

Output from the AML Debug Object

This option controls whether output from the AML “Debug Object” is enabled or not. If set to
TRUE, all system AML stores to the debug object will be formatted and printed via calls to the
AcpiOsPrintf interface. Note: the module that formats stores to the debug object can optionally be
configured out of the ACPICA build (viaACPI_NO_ERROR_MESSAGES). In this case, this
option will have no effect.

ACPlI _INIT_GLOBAL (Acpi &l _Enabl eAm DebugObj ect, FALSE);

Copy the System DSDT to Local Memory

For memory efficiency, ACPICA does not normally copy the DSDT or any other ACPI tables from
their locations as presented by the system firmware; they are ssmply memory mapped. Thisis
especially important on large systems where the DSDT can be several megabytesin size.

However, on some rare systems, it has been seen that the DSDT can become corrupted or even
entirely replaced by anew (and invalid) DSDT during system operation. Reasons for this are
unclear, but they are assumed to be bugs in the firmware. For these systems, an option to copy the
DSDT to local memory is provided. When this option is specified, the DSDT is copied during
system initialization, and the original DSDT is never referenced again.

84

intel
b ACPI Component Architecture User Guide and Programmer Reference

ACPlI _INIT_GLOBAL (Acpi Gol _CopyDsdtLocal |y, FALSE);

7.7.6 Creation of OSI Method

This option controls whether the predefined _OS| method is created or not. The _OS| method was
defined in ACPI 2.0 and isimplemented internally within the ACPICA subsystem.

ACPI _I NI T_GLOBAL (Acpi &l _CreateGsi Met hod, TRUE);

7.8 Subsystem Configuration Constants

The configurable subsystem constants are specified in the include/acconfig.h header file. These
constants may be modified at either compile time by changing the constantsin acconfig.h, or at run-
time by changing the contents of the global variables where these constants are stored.

7.8.1 ACPI_CHECKSUM_ABORT

Defines whether the table manager should abort the loading of an ACPI table if the table checksum
isincorrect. Possible values are TRUE or FAL SE. The default isFAL SE.

In practice, often table checksums are found to be incorrect, not because of corruption, but because
the BIOS has modified the table on the fly according to BIOS configuration options, and has
inadvertently forgotten to update the checksum. Therefore, the ACPI table checksum isn’t very
useful and the default is to ignore checksum errors.

7.8.2 ACPI_MAX_LOOP_INTERATIONS

This defines the number of AML While() loop executions that are permitted before the infinite loop
break mechanism isinvoked. The default is 64K iterations, which isavery large number of
interations for an AML loop. This mechanism prevents a catastrophic infinite loop which would
block the AML interpreter forever, effectively locking up most of the ACPICA subsystem.

Infinite loops can occur in poorly written AML in a hardware polling loop. For example, if the
hardware simply does not respond and the loop does not i mplement a timeout.

7.8.3 ACPI_MAX_STATE CACHE_DEPTH

The maximum number of objectsin the generic state object cache used to avoid recursive cals
within the subsystem. These are small objects, but are used frequently. A larger cache will improve
the performance of the entire subsystem (loading tables, parsing methods, and executing methods.)

7.84 ACPI_MAX_PARSE_CACHE_DEPTH

The maximum number of objectsin the parse object cache. These are the objects used to build parse
trees. A larger cache will improve the execution performance of control methods (when the parse
just-in-time strategy is used) by improving the time to parse the AML.

85

(ntel)
ACPI Component Architecture User Guide and Programmer Reference

7.8.5

7.8.6

ACPl_MAX_OBJECT CACHE_DEPTH

The maximum number of objectsin the interpreter operand object cache. These objects are used
during control methods to pass the operands for individual AML opcodes to the interpreter. A larger
cache will improve the performance of control method execution

ACPI_MAX_WALK_CACHE_DEPTH

The maximum number of objectsin the parse tree walk object cache. These are relatively large
objects (about 512 bytes) that are used to contain the entire state of a control method during its
execution. Each nested control method requires an additional walk object. Since only one object is
required per control method, it is not necessary to cache alarge number of these objects. A few

cached walk objects are sufficient to increase the performance of control method execution and
reduce memory fragmentation.

86

8.1

8.1.1

ACPI Component Architecture User Guide and Programmer Reference

ACPICA Core Subsystem - External
Interface Definition

This section contains documentation for the specific interfaces exported by the ACPICA Core. The
interfaces are grouped based upon their functionality. These groups are closely related to the internal
modules (or sub-components) of the Core Subsystem described earlier in this document. These
interfaces are intended to be used by the OSL only. The host OS does not call these interfaces
directly. All interfaces to the ACPICA Core Subsystem are prefixed by the letters “Acpi”.

ACPICA Subsystem Initialization and Control

AcpilnitializeSubsystem

| Initialize all ACPICA globals and sub-components.

ACPI_STATUS
AcpilnitializeSubsystem (
void)

PARAMETERS

None

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS
AE_OK The subsystem was successfully initialized.
AE_ERROR The system is not capable of supporting ACPlI mode.
AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI

initialization.

Functional Description:

This function initializes the entire ACPICA subsystem, including the OS Services Layer. It must be
called once before any of the other Acpi* interfaces are called (with the exception of the Table
Manager interfaces these interfaces are independent and can be called at any time.)

87

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.1.2 AcpilnstalllnitializationHandler

| Install a global handler for initialization handling.

ACPI_STATUS
AcpilnstalllnitializationHandler (
ACPI_INIT_HANDLER Handler,
UINT32 Function)
PARAMETERS
Handler A pointer to the initialization handler.
Function Reserved.
EXCEPTIONS
AE_OK The ACPI namespace was successfully loaded and
initialized.
AE BAD PARAMETER The Handler parameter isinvalid.
AE_ALREADY_EXISTS A global initialization handler has aready been installed.

Functional Description:

Thisfunction installs a global initialization handler that is called during the subsystem initialization.

Currently, the handler is called after each Device object within the namespace has been initialized
(The _INI and _STA methods have been run on the device.)

8.1.2.1 Interface to User Callback Function

| Interfaceto the user function that isinstalled via Acpil nstalll nitializationHandler.

ACPI_STATUS (*ACPI_INIT_HANDLER) (

ACPI_HANDLE Object,
UINT32 Function)
PARAMETERS
Object A handle for the object that is being or has just been
initialized.
Function One of the following manifest constants:

ACPI_INIT_DEVICE_INI —the Object isahandleto a
Device that has just been initialized.

88

RETURN VALUE

Status

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

AE_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.
All others Abort the walk with this exception
code.

Thisfunction is called during subsystem initialization.

8.1.3 AcpiEnableSubsystem

| Completethe ACPICA Subsystem initialization and enable ACPI operations.

ACPI_STATUS
AcpiEnableSubsystem (
UINT32

PARAMETERS

Flags

RETURN

Status

EXCEPTIONS

AE_OK

AE_NO_MEMORY

Flags)

Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

ACPI_FULL _INITIALIZATION — Perform completed
initialization. Thisisthe normal use of thisinterface.

ACPI_NO_ACPI_ENABLE. Do not attempt to enter
ACPI mode. For hardware-independent mode only.

ACPI_NO_ADDRESS SPACE_INIT. Do not install the
default address space handlers. For debug purposes only.

ACPI_NO_HANDLER_INIT. Do not install the SCI and
global lock handlers. For hardware-independent mode only.

Exception code that indicates success or reason for failure.

The ACPI namespace was successfully loaded and
initialized.

Insufficient memory to build the internal namespace.

89

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.1.4

Functional Description:

This function completesinitialization of the ACPICA Subsystem.

AcpilnitializeObjects

| I nitialize objects within the ACPI namespace.

ACPI_STATUS
AcpilnitializeObjects (
UINT32

PARAMETERS

Flags

RETURN

Status

EXCEPTIONS

AE_OK

AE_NO_MEMORY

Functional Description:

Flags)

Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

ACPI_FULL _INITIALIZATION — Perform completed
initialization. Thisisthe normal use of thisinterface.

ACPI_NO_ADDRESS SPACE_INIT. Do not execute the
operation region _REG control methods. For debug
purposes only.

ACPI_NO_OBJECT_INIT. Do not run the fina
initialization pass to complete initialization of all address
spaces and fields.

ACPI_NO_DEVICE_INIT. Do not attempt to run the
_STA and _INI methods on devices in the ACPI namespace.

ACPI_NO_EVENT_INIT. Do not initialize the FADT-
defined GPE blocks. For hardware independent mode only.

Exception code that indicates success or reason for failure.

The ACPI namespace was successfully loaded and
initialized.

Insufficient memory to build the internal namespace.

This function completesinitialization of the ACPICA Subsystem by initializing all ACPI Devices,
Operation Regions, Buffer Fields, Buffers, and Packages. It must be called and it should only be
called after a call to AcpiEnableSubsystem. The object cache is purged after these objects are
initialized, in case an overly large number of cached objectswere created during initialization
(versus the size of the caches at runtime.)

90

intel)
b ACPI Component Architecture User Guide and Programmer Reference

8.1.5 AcpiSubsystemStatus

| Obtain initialization status of the ACPICA subsystem.

ACPI_STATUS
AcpiSubsystemStatus (
void)

PARAMETERS

None

RETURN
Status Exception code indicates success or reason for failure.

EXCEPTIONS
AE_OK The subsystem was successfully initialized.

AE_ERROR The subsystem has not been initialized

Functional Description:

This function allows device drivers to determine the initialization status of the ACPICA subsystem.:

8.1.6 AcpiTerminate

| Shutdown all ACPI Components.

ACPI_STATUS
AcpiTerminate (
void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS
AE_OK The subsystem was successfully shutdown.

AE_ERROR The OS-dependent layer did not shutdown properly.

91

ACPI Component Architecture User Guide and Programmer Reference

8.1.7

Functional Description:

This function performs a shutdown of the Core Subsystem portion of the ACPICA subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPICA subsystem. In more detail, the terminate

function performs the following:

e Freeal memory associated with the ACPI tables (either allocated or mapped memory).

o Freeadl internal objects associated with the namespace.

e Freeall objectswithin the object caches.

e Freeall OS resources associated with mutual exclusion.

Acpilnstallinterface

| Install an interfaceinto thelist of interfacesrecognized by the OSI predefined method.

ACPI_STATUS
Acpilnstalllnterface (
ACPI_STRING

PARAMETERS

InterfaceName

RETURN

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NO_MEMORY

AE_ALREADY_EXISTS

Functional Description:

I nterfaceName)

A pointer to a string containing the name of the interface.

Exception code that indicates success or reason for failure.

The interface was successfully installed.

Either InterfaceName isNULL or it pointsto aNULL

string.

Insufficient memory to install the interface.

The interface already exists.

Thisfunction installs an interface into the global list of interfaces that are recognized by the _OS|
predefined control method. Once installed, _OSl will return TRUE for a query that matches the

InterfaceName.

92

8.1.7.1

8.1.7.2

intel.

ACPI Component Architecture User Guide and Programmer Reference

Default Supported _OSI Strings

The following table lists the strings that are supported by ACPICA by default. This means that an
_0Osl query on any of the default strings will return TRUE.

The Acpilnstalllnterface function may be used to dynamically add additional stringsto thislist, or
the Acpi Removel nterface function may be used to dynamically remove strings from this list.

/* QOperating System Vendor Strings */

"W ndows 2000" /* W ndows 2000 */

"W ndows 2001" /* Wndows XP */

"W ndows 2001 SP1" /* Wndows XP SP1 */

"W ndows 2001. 1" /* W ndows Server 2003 */

"W ndows 2001 SP2" /* Wndows XP SP2 */

"W ndows 2001.1 SP1" /* Wndows Server 2003 SP1 - Added 03/2006 */
"W ndows 2006" /* Wndows Vista - Added 03/2006 */

"W ndows 2006. 1" /* Wndows Server 2008 - Added 09/ 2009 */

"W ndows 2006 SP1" /* Wndows Vista SP1 - Added 09/2009 */

"W ndows 2006 SP2" /* Wndows Vista SP2 - Added 09/2010 */
"W ndows 2009" /* Wndows 7 and Server 2008 R2 - Added 09/2009 */

/* Feature Group Strings */
"Ext ended Address Space Descriptor"”

/
Al "optional" feature group strings (features that are inpl enented
by the host) should be dynam cally added by the host via

Acpi I nstal | Interface and shoul d not be added here.

Exanpl es of optional feature group strings:

"Modul e Devi ce"

"Processor Device"

"3.0 Thernal Mbdel"

"3.0 _SCP Extensions"
"Processor Aggregator Device"

¥k ok ok ok k% ok ok % ¥

-~

Why ACPICA responds TRUE to _OSI (Windows)

ACPICA responds TRUE to all known Windows strings because ACPICA attempts to be fully
compatible with the Windows implementation of ACPI. On the other hand, ACPICA responds

FAL SE to other operating system strings (such as“Linux”, “FreeBSD”, or “HP-UX") because doing
so has been seen to often cause serious problems. For example, on many platforms, the only path
through the ASL code that has been fully tested by the manufacturer isin fact the path for
“Windows’. By responding TRUE to other operating system strings, the ASL may execute paths
that have had only limited or even no evaluation.

An experience with the “Linux” _OSI string as experienced by Linux developersis documented
below.

93

intel.

ACPI Component Architecture User Guide and Programmer Reference

The story of OSI (Li nux)

From pre-history through Linux-2.6.22, Linux responded TRUE upon a BI GS COSl (Li nux)
query.

Unfortunately, reference BIOS witers got wind of this and put OSI(Linux) in their
exanpl e code, quickly exposing this string as ill-conceived and opening the door to
an un-bounded nunber of BIOS inconpatibilities.

For exanple, OSI(Linux) was used on resume to re-POST a video card on one system
because Linux at that tine could not do a speedy restore in its native driver. But
t hen upon gai ning quick native restore capability, Linux has no way to tell the
BIOS to skip the tine-consuming POST -- putting Linux at a permanent perfornmance

di sadvant age. On another system the BIOS witer used OSI(Linux) to infer native OS
support for IPM! On other systens, OSl(Linux) sinply got in the way of Linux
claimng to be conpatible with other operating systens, exposing BlICS issues such
as skipped device initialization.

So "Linux" turned out to be a really poor choice of OSI string, and from Li nux-
2.6.23 onward we respond FALSE.

BIOS witers should NOT query _OSI(Linux) on future systems. Linux will conplain on
the console when it sees it, and return FALSE. To get Linux to return TRUE for your
systemw || require a kernel source update to add a DM entry, or boot with

"acpi _osi =Li nux"

8.1.8 AcpiRemovelnterface

| Remove an interface from thelist of interfacesrecognized by the OSl predefined method.

ACPI_STATUS
AcpiRemovel nterface (

ACPI_STRING I nterfaceName)
PARAMETERS

InterfaceName A pointer to a string containing the name of the interface.
RETURN

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The interface was successfully removed.

AE BAD PARAMETER Either InterfaceName isNULL or it pointsto aNULL

string.
AE_NOT_EXIST The interface does not exist.

Functional Description:

This function removes an interface from the global list of interfaces that are recognized by the OSl
predefined control method. Once removed, an _OSI query for the InterfaceName will return
FALSE.

94

ACPI Component Architecture User Guide and Programmer Reference

8.1.9 AcpilnstallinterfaceHandler

| Install or remove a handler for _OSl invocations.

ACPI_STATUS
AcpilnstalllnterfaceHandler (
ACPI_INTERFACE_HANDLER Handler)
PARAMETERS
Handler Address of the handler to beinstalled. A NULL pointer will
remove a previously installed handler.
RETURN
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The handler was successfully installed or removed.
AE_ALREADY_EXISTS A handler has already been installed.

Functional Description:

This function installs or removes a global handler for all _OSI invocations. The handler isinvoked
whenever an _OSl invocation is encountered in the executing system AML.

An_OSl handler is entirely optional and should only be installed if it is necessary for the host OS to

know exactly when _OSl isinvoked and/or what interfaces are being requested by the system AML.
Otherwise, the Acpilnstalllnterface and Acpi Removel nterface functions should be sufficient.

8.1.9.1 Interface to _OSI Interface Handlers

| Definition of the handler interface for _OSI handlers.

typedef
UINT32 (*ACPI_INTERFACE_HANDLER) (
ACPI_STRING I nterfaceName,
UINT32 Supported)
PARAMETERS
InterfaceName A pointer to a string containing the name of the interface
that was requested via_OSl.
Supported TRUE or FALSE, indicates whether the InterfaceName was

found in the global _OSlI interface table.

95

ACPI Component Architecture User Guide and Programmer Reference

8.2

8.2.1

RETURN VALUE
Supported

Functional Description:

Value of Supported to be returned to the AML code from
the execution of _OSI. This allows the host to either accept
and return the input value of Supported, or overrideit with a
new value.

Thishandler isinstalled via AcpilnstallInterfaceHandler. It isinvoked whenever the _OSI
predefined control method is invoked from the system AML.

ACPI Table Management

AcpilnitializeTables

| Initialize the ACPICA table manager .

ACPI_STATUS
AcpilnitializeTables (
ACPI_TABLE_DESC
UINT32
BOOLEAN

PARAMETERS
Initia TableArray

Initial TableCount

AllowResize

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_NOT_FOUND

AE_NO_MEMORY

*|nitial TableArray,
Initial TableCount,
AllowResize)

Pointer to an array of pre-allocated ACPI_TABLE_DESC
structures. If NULL, the array is dynamically allocated.

Requested size of Initial TableArray, in number of
ACPI_TABLE_DESC structures.

Flag to tell the Table Manager if aresize of the pre-allocated
array isalowed. Ignored if Initial TableArray isNULL.

Exception code that indicates success or reason for failure.

The table manager was successfully initialized.
A valid RSDP could not be located.

Insufficient dynamic memory to complete the operation.

96

8.2.2

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function initializes the table manager component. A memory array is required to store
information about the BIOS-provided ACPI tables. It can be pre-allocated by the caller (if dynamic
memory is not available yet) or it can be allocated by this function.

Specify a static memory array for the Initia TableArray if the Table Manager isto be used early

during kernel initialization, before dynamic memory is available. Otherwise, use aNULL pointer
and the Table Manager will use dynamic memory to alocate the array.

AcpiReallocateRootTable

| Copy theroot ACPI infor mation tableinto dynamic memory.

ACPI_STATUS
AcpiReallocateRootTable (
void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS
AE_OK The table was successfully enlarged.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function copies the root table into dynamic memory. The root table is used to store information
about the BIOS-provided ACPI tables. This function should be called after dynamic memory is
available within the kernel and if AcpilnitializeTables was called with a pre-allocated static table

array.

97

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.2.3 AcpiFindRootPointer

| L ocate the RSDP via memory scan (IA-32).

ACPI_STATUS
AcpiFindRootPointer (
ACPI_SIZE *TableAddress)
PARAMETERS
TableAddress A pointer to where the physical address of the ACPI RSDP
table will be returned.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE _OK The RSDP was found and returned.
AE_NOT_FOUND A valid RSDP could not be located.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns the ACPI Root System Description Pointer by scanning within the
first megabyte of physical memory for the RSDP signature. This mechanism is only applicable to
IA-32 systems.

Thisinterface should only be called from the OSL function AcpiOsGetRootPointer if this memory
scanning mechanism is appropropriate for the current platform.

If the operation fails an appropriate status will be returned and the value of RsdpPhysical Addressis
undefined.

Thisfunction is aways available, regardless of the initialization state of the rest of ACPICA.

8.2.4 AcpiLoadTables

| L oad the BIOS-provided ACPI tablesand build an internal ACPI nhamespace.

ACPI_STATUS
AcpiLoadTables (
void)

PARAMETERS

None

98

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The table was successfully loaded and a handle returned.
AE BAD_CHECKSUM The computed table checksum does not match the checksum
in the table,
AE_BAD_HEADER Thetable header isinvalid or is not avalid type.
AE_NO_ACPI_TABLES The ACPI tables (RSDT, DSDT, FADT, etc.) could not be

found in physical memory.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

Thisfunction loads ACPI tables that are pointed to by the RSDP/RSDT and installs them into the
internal ACPI namespace database. The Root System Description Pointer (RSDP) pointsto the Root
System Description Table (RSDT), and the remaining ACPI tables are found via pointers contained
in RSDT.

The minimum required set of ACPI tables that will allow the ACPICA core subsystem to initialize
consists of the following:

¢ RSDT/XSDT
¢ FADT
¢ FACS
¢ DSDT

Only tablesthat are used directly by the ACPICA subsystem are loaded. Other tables (such asthe
MADT, SRAT, etc.) are obtained and consumed by different kernel subsystems and/or device
drivers.

All SSDTs found within the RSDT/XSDT are loaded.

If the operation fails an appropriate status will be returned.

99

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.2.5 AcpiGetTableHeader

| Get the header portion of a specific installed ACPI table.

ACPI_STATUS
AcpiGetTableHeader (

char *Signature,

UINT32 Instance,

ACPI_TABLE_HEADER *QutTableHeader)

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
regquested table.

Instance For table types that support multiple tables (SSDT), the
instance of the table to be returned. For table types that
support only a single table, this parameter must be set to
one.

OutTableHeader A pointer to alocation where the table header isto be
returned.

RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The table header was successfully located and returned.
AE_BAD_PARAMETER At least one of the following istrue:
The Signature pointer isNULL.
The OutTableHeader pointer isNULL.

AE_NOT_FOUND Thereis no table of thistype currently loaded, or the table of
the specified Instance is not loaded.

AE _TYPE Thetable Typeis not supported (RSDP).

Functional Description:

This function obtains the header of an installed ACPI table. The header contains alength field that
can be used to determine the size of the buffer needed to contain the entire table. This function is not
valid for the RSDP table since it does not have a standard header and is fixed length.

For table types that support more than one table, the Instance parameter is used to specify which
table header of the given type should be returned. For table types that only support single tables, the
Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the contents of OutTableHeader are
undefined.

100

8.2.6 AcpiGetTable

ACPI Component Architecture User Guide and Programmer Reference

| Obtain a specificinstalled ACPI table.

ACPI_STATUS
AcpiGetTable (
char
UINT32
ACPI_TABLE_HEADER

PARAMETERS
Signature

Instance

Table

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NO_ACPI_TABLES

AE_NOT_FOUND

AE_NO_MEMORY

Functional Description:

*Signature,
Instance,
**Table)

A pointer to the 4-character ACPI signature for the
regquested table.

Which table instance, if multiple instances of the table are
alowed (SSDT).

A pointer to where the address of the requested ACPI table
isreturned.

Exception code that indicates success or reason for failure.

The requested table was found and returned.
At least one of the following istrue:

The Signature pointer isNULL.

The OutTableHeader pointer isNULL.

A valid RSDP could not be located.

There is no table of thistype currently loaded, or the table of
the specified Instance is not loaded.

Insufficient dynamic memory to complete the operation.

This function locates and returns one of the ACPI tables that are supplied by the system firmware.
On 1A-32 systems, this involves scanning within the first megabyte of physical memory for the

RSDP signature.

Thisfunction may be called at any time after the Table Manager isinitialized, even before the
ACPICA subsystem has been initialized. This allows early accessto ACPI tables -- even before the
system virtual memory manager has been started.

If the operation fails an appropriate status will be returned and the value of Table is undefined.

101

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.2.7 AcpiGetTableByIndex

| Obtain an installed ACPI table via an index into the Root Table

ACPI_STATUS
AcpiGetTableBylndex (
UINT32 Tablel ndex,
ACPI_TABLE_HEADER **QutTable)
PARAMETERS
Tablelndex Index of the table within the internal Root Table list.
OutTable A pointer to location where the table isto be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The table was successfully located and returned.

AE BAD PARAMETER At least one of the following istrue:

The OutTable pointer is NULL.

AE_NOT_EXIST Thereis no table of thistype currently loaded, or the table of
the specified Instance is not loaded.

Functional Description:

This function obtains an installed ACPI table. It is useful for iterating through the entire set of
installed ACPI tables. To obtain a specific ACPI table, use AcpiGetTable or AcpiGetTableHeader.

If the operation fails an appropriate status will be returned and the contents of OutTableis
undefined.

8.2.8 AcpilnstallTableHandler

| Install a global handler for ACPI tableload and unload events.

ACPI_STATUS
AcpilnstallTableHandler (
ACPI_TABLE_HANDLER Handler,

void *Context)
PARAMETERS
Handler Address of the handler to be installed.

102

intel
b ACPI Component Architecture User Guide and Programmer Reference

Context

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_ALREADY_EXISTS

Functional Description:

A context value that will be passed to the handler as a
parameter.

Exception code that indicates success or reason for failure.

The handler was successfully installed.

At least one of the following istrue:

The Handler pointer isNULL.

A global table handler is already installed.

Thisfunction installs a global handler for table load/unload events.

8.28.1 Interface to the Table Event Handler

| Definition of the handler interfacefor Table Events.

typedef

ACPI_STATUS (*ACPI_TABLE_HANDLER) (

UINT32
void
void

PARAMETERS

Event

Table

Context

RETURN VALUE

None

Event,
*Table,
*Context)

The table event that occurred. One of these manifest
constants:

ACPI_TABLE_EVENT_LOAD — The table wasjust
loaded.

ACPI_TABLE_EVENT_UNLOAD —Thetableis about to

be unloaded.

The table that was either just loaded or is about to be
unloaded.

The Context value that was passed as a parameter to the
Acpilnstall TableHandler function.

103

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

Thishandler isinstalled via Acpilnstall TableHandler. It is called whenever an ACPI table is either
loaded or unloaded.

This function does not execute in the context of an interrupt handler.

8.2.9 AcpiRemoveTableHandler

| Remove a handler for ACPI table events.

ACPI_STATUS
AcpiRemoveT ableHandler (
ACPI_TABLE_HANDLER Handler)

PARAMETERS
Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following istrue:

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE _NOT_EXIST Thereisno handler installed for notifications on this object.

Functional Description:

This function removes a handler for notify events that was previoudly installed viaacall to
Acpilnstall TableHandler.

104

ACPI Component Architecture User Guide and Programmer Reference

8.3 ACPI Namespace Management

8.3.1 AcpiEvaluateObject

| Evaluate an ACPI namespace object and return the result.

ACPI_STATUS

AcpiEvaluateObject (
ACPI_HANDLE
ACPI_STRING

ACPI_OBJECT_LIST

ACPI_BUFFER

PARAMETERS

Object

Pathname

MethodParams

ReturnBuffer

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE__LIMIT

AE_AML_ERROR

AE_AML_PARSE

Object,
Pathname,

*M ethodPar ams,
*ReturnBuffer)

One of the following:

A handle to the object to be evaluated.

A handle to a parent object that is a prefix to the pathname.
A NULL handleif the pathnameis fully qualified.

Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

If the object is a control method, thisis apointer to alist of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

A pointer to alocation where the return val ue of the object

evaluation (if any) is placed. If this pointer isSNULL, no
valueis returned.

Exception code that indicates success or reason for failure.

The object was successfully evaluated.

More than the maximum number of 7 arguments
were passed to a method.

An unspecified error occurred during the parsing of
the AML code.

The control method could not be parsed due to
invalid AML code.

105

ACPI Component Architecture User Guide and Programmer Reference

AE_AML_BAD_OPCODE

AE_AML_NO_OPERAND

AE_AML_OPERAND_TYPE
AE_AML_OPERAND_VALUE

AE_AML_UNINITIALIZED_LOCAL

AE_AML_UNINITIALIZED_ARG

AE_AML_UNITIALIZED_ELEMENT

AE_AML_NUMERIC_OVERFLOW

AE_AML_REGION_LIMIT

AE_AML_BUFFER_LIMIT

AE_AML_PACKAGE_LIMIT

AE_AML_DIVIDE_BY_ZERO

AE_AML_BAD_NAME

AE_AML_NAME_NOT_FOUND

AE_AML_INTERNAL

AE_BAD_CHARACTER

AE_BAD_DATA

AE_BAD_PATHNAME

AE_BAD_PARAMETER

Aninvalid opcode was encountered in the AML
code.

An required operand was missing. This could be
caused by a method that does not return any object.

An operand object is not of the required ACPI type.
An operand object has an invalid value

A method attempted to access alocal variable that
was not initialized.

A method attempted to access an argument that was
not part of the argument list, or was not passed into
the method properly.

A method attempted to use (dereference) areference
to an element of a package object that is empty
(uninitialized).

An overflow occurred during a numeric conversion
(Such as BCD conversion.)

A method attempted to access beyond the end of an
Operation Region defined boundary.

A method attempted to access beyond the end of a
Buffer object.

A method attempted to access beyond the end of a
Package object.

A method attempted to execute a divide instruction
with a zero divisor.

A name contained within the AML code has one or
more invalid characters.

A name reference within the AML code could not be
found and therefore could not be resolved.

An error that isinternal to the ACPICA subsystem
occurred.

Aninvalid character was found in the Pathname
parameter.

Bad or invalid data was found in a package object.

The path contains at least one ACPI name that is not
exactly four characterslong.

At least one of the following istrue:

Both the Object and Pathname parameters are
NULL.

106

ACPI Component Architecture User Guide and Programmer Reference

AE_BUFFER_OVERFLOW

AE_ERROR

AE_NO_MEMORY

AE_NOT_FOUND

AE_NULL_OBJECT

AE_STACK_OVERFLOW

AE_STACK_UNDERFLOW

AE_TYPE

Functional Description:

The Object handleis NULL, but the Pathname is not
absolute.

The Pathname is relative but the Object isinvalid.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer
field of OutBuffer is NULL.

The Length field of the ReturnBuffer istoo small to
hold the actual returned object. Upon return, the
Length field contains the minimum required buffer
length.

An unspecified error occurred.

Insufficient dynamic memory to complete the
request.

The object referenced by the combination of the
Object and Pathname was not found within the
namespace.

A required object was missing. Thisis an internal
error.

Aninternal stack overflow occurred because of an
error in the AML, or because control methods or
objects are nested too deep.

Aninternal stack underflow occurred during
evauation.

The object is of atype that cannot be evaluated.

Thisfunction locates and eval uates objects in the namespace. This interface has two modes of
operation, depending on the type of object that is being eval uated:

1. If thetarget object isacontrol method, the method is executed and the result (if any) is

returned.

2. If thetarget is not a control method, the current “value” of that object is returned. The type of
the returned val ue corresponds to the type of the object; for example, the object (and the
corresponding returned result) may be a Integer, a String, or a Buffer.

Specifying a Target Object: The target object may be any valid named ACPI object. To specify the
object, avalid Object, avalid Pathname, or both may be provided. However, at least one of these

parameters must be valid.

If the Object is NULL, the Pathname must be a fully qualified (absolute) namespace path.

If the Object isnon-NULL, the Pathname may be either:
1. A path relative to the Object handle (arelative pathname as defined in the ACPI specification)

2. An absolute pathname. In this case, the Object handleisignored.

107

ACPI Component Architecture User Guide and Programmer Reference

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed.. The
MethodParams parameter is a pointer to an ACPI_OBJECT_LIST that in turn isacounted array of
ACPI_OBJECTs. If MethodParamsis NULL, then no parameters are passed to the control method.
If the Count field of MethodParams is zero, then the entire parameter is treated exactly asif itisa
NULL pointer. If the object to be evaluated is not a control method, the MethodParams field is
ignored.

Receiving Evaluation Results: The ReturnObject parameter optionally receives the results of the
object evaluation. If this parameter is NULL, the evaluation results are not returned and are
discarded. If there is no result from the evaluation of the object and no error occurred, the Length
field of the ReturnObject parameter is set to zero.

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_DEVICE. Others TBD.

Exceptional Conditions. Any exceptions that occur during the execution of a control method result
in the immediate termination of the control methods. All nested control methods are also terminated,
up to and including the parent method.

EXAMPLES

Example 1: Executing the control method with an absolute path, two input parameters, with no
return value expected:

ACPI _OBJECT_LI ST Par ans;
ACPI _OBJECT oj[2];

/* Initialize the paraneter list */

Par ans. Count = 2;
Par ans. Poi nter = &bj ;

/* Initialize the paraneter objects */

Obj [0] . Type = ACPI _TYPE_STRI NG,
oj [0].String. Pointer = “ACPlI User”;

Obj [1] . Type = ACPI _TYPE_NUMBER
oj [1] . Nunber . Val ue = 0xOEO00200A;

/* Execute the control nethod */

Status = Acpi Eval uateObj ect (NULL,”\ _SB.PCI0. _TWO' , &Parans, NULL);
Example 2: Before executing a control method that returns a result, we must declare and initialize an
ACPI_BUFFER to contain the return value;

ACPI _BUFFER Resul ts;
ACPI _OBJECT j ;

/* Initialize the return buffer structure */

Results. Length = sizeof (Obj);
Resul ts. Poi nter = &Xj ;

The three examples that follow are functionally identical.

108

ACPI Component Architecture User Guide and Programmer Reference

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

Status = Acpi Eval uat eObj ect (NULL,”\ _SB. PClI 0. _STA” , NULL, &Results);

Example 4: Executing a control method using arelative path. A return value is expected.

St at us = Acpi Pat hnameToHandl e (”"_SB. PCl 0", &Object)
Status = Acpi Eval uateObj ect (bject, "_STA" , NULL, &Results);

Example 5: Executing a control method using arelative path. A return value is expected.

St at us
St at us

Acpi Pat hnameToHandl e (”_SB. PCl 0. _STA", &Obj ect)
Acpi Eval uat eObj ect (Object, NULL, NULL, &Results);

8.3.2 AcpiEvaluateObjectTyped

| Evaluate an ACPI namespace object and return the type-validated result.

ACPI_STATUS

AcpiEvaluateObjectTyped (
ACPI_HANDLE
ACPI_STRING
ACPI_OBJECT_LIST
ACPI_BUFFER
ACPI_OBJECT_TYPE

PARAMETERS

Object

Pathname

MethodParams

ReturnBuffer

ReturnType

RETURN VALUE

Status

Object,
Pathname,

*M ethodPar ams,
*ReturnBuffer,
ReturnType)

One of the following:

A handle to the object to be evaluated.

A handle to a parent object that is a prefix to the pathname.
A NULL handleif the pathnameis fully qualified.

Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

If the object is a control method, thisis apointer to alist of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

A pointer to alocation where the return val ue of the object
evaluation (if any) is placed. If this pointer isNULL, no
valueis returned.

The expected type of the returned object.

Exception code that indicates success or reason for failure.

109

ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The object was successfully evaluated and the correct
object type was returned.
AE _NULL_OBJECT No object was returned from the evaluation.
AE_TYPE An object of the incorrect type was returned.
Others See the definition of AcpiEvaluateObject.

Functional Description:

This function locates and eval uates objects in the namespace and validates that the object returned
from the evaluation is of the expected type. It is afront-end to AcpiEvaluateObject. See the
description of AcpiEvaluateObject for more information.

8.3.3 AcpiGetObjectinfo

| Get information about an ACPI namespace obj ect.

ACPI_STATUS
AcpiGetObjectinfo (
ACPI_HANDLE Object,
ACPI_DEVICE_INFO **QutBuffer)
PARAMETERS
Object A handleto an ACPI object for which information isto be
returned.
OutBuffer A pointer to alocation where the device info pointer is
returned.
RETURN
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK Device info was successfully returned. See the
ACPI_DEVICE_INFO structure for valid returned fields.
AE BAD PARAMETER At least one of the following istrue:
The Object handleisinvalid.
The OutBuffer pointer isNULL.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

110

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function obtains information about an object contained within the ACPI namespace. For all
namespace objects, the following information is returned:

Type —
Name —

The ACPI object type (ACPI_TYPE_INTEGER, €tc.)
The 4-character ACPI name of the object

For Control Method objects, this additional information is returned:

ParamCount — The required number of input parameters

For Device and Processor objects, this additional information is returned as aresult of evaluating the
following standard ACPI device methods and objects on behalf of the device:

_ADR —
_STA —
_HID —
uUID —
CID —
SW —

The address of the object (bus and device specific)

The current status of the object/device

The hardware ID of the object (string)

The Unique ID of the object (string)

The Compatibility ID list of the object (strings)

Methods that return the lowest D-state values (SOW, _SIW, S2W,

_S3W, _SAW)

XD —

Methods that return the highest D-state values (_ S1D, _S2D, S3D, $4D)

Returned Data Format: The device information isreturned in the ACPI_DEVICE_INFO structure

that is defined as follows:

t ypedef struct

{
Ul NT32 I nf 0Si ze;
Ul NT32 Nane;
ACPI _OBJECT_TYPE Type;
Ul NT8 Par anCount ;
Ul NT8 Val i d;
Ul NT8 Fl ags;
Ul NT8 Hi ghest Dst at es[4] ;
Ul NT8 Lowest Dst at es[5] ;
Ul NT32 Current St at us;
Ul NT64 Addr ess;
ACPI _DEVICE_I D Har dwar el d;
ACPI _DEVICE_I D Uni quel d;
ACPI _DEVICE_ID LI ST Conpat i bl el dLi st ;

} ACPI _DEVI CE_I NFO

Where:
InfoSize Entire size of the returned structure, including all 1D strings
that are appended to the end of the structure.
Name The 4-character ACPI name of the object.
Type I's the object type code.
ParamCount If the object is a control method, thisis the number of

parameters defined for the method.

111

ACPI Component Architecture User Guide and Programmer Reference

Valid A bit field that indicates which of the optional fields below
contain valid values. See below.

Flags Miscellaneous information flags. The following flags are
defined:

ACPI_PCI_ROOT_BRIDGE: Indicates that €ither the
_HID or one of the _CID values matched either PNPOA03
(PCI root bridge) or PNPOAQO8 (PCI Express root bridge)

HighestDstates _SxD device state values. OXFF indicates that the field is
invalid.

LowestDstates _SXW device wake state values. OxFF indicates that the
fieldisinvalid.

CurrentStatus The result of evaluating _STA method for this object.

Address Theresult of evaluating _ADR for this object.

Hardwareld A pointer to the string obtained as a result of evaluating

_HID for this object.

Uniqueld A pointer to the string obtained as a result of evaluating
_UID for this object.

Compatiblelds An array of pointers to the string(s) obtained as a result of
evaluating _CID for this object (alist of _CIDs.)

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield viathe
following constants:

ACPI _VALI D_ADR
ACPI _VALI D_STA
ACPI _VALI D_H D
ACPI _VALI D_UI D
ACPI _VALI D _CI D
ACPI _VALI D_SXDS
ACPI _VALI D_SXW8

Each bit should be checked before the corresponding value in the structure can be considered valid.
None of the methods/objects that are used by thisinterface are required by the ACPI specification.
Therefore, thereis no guarantee that all or even any of them are available for a particular device.
Even if none of the methods are found, the interface will return an AE_OK status — but none of the
bits set in the Valid field return structure will be set.

112

(inte!)
ACPI Component Architecture User Guide and Programmer Reference
The sub-structures used for the variable-length device ID strings are defined as follows:

t ypedef struct

Ul NT32 Lengt h; /* Length of string + null */
char *String;

} ACPI _DEVI CE_I D

t ypedef struct

Ul NT32 Count ; /* Nunmber of IDs in lds array */
Ul NT32 ListSize; /* Size of list, including ID strings */
ACPI _DEVICE_I D Ids[1]; [* ID array */

} ACPI _DEVI CE_|I D LI ST;

Within the original ACPI tables, the _HID, UID, and _CID values can be of either type
ACPI_TYPE_STRING or ACPI_TYPE_INTEGER. However, in order to provide a consi stent
datatype in the external interface, these values are always returned as NUL L terminated strings,
regardless of the original datatype in the source ACPI table. Aninternal datatype conversion is
performed if necessary, asfollows:

e 32-bit compressed EI SAIDswithin_HID and _CID objects are decompressed and
converted to strings.

e 64-bit integer IDswithin _UID objects are converted to decimal string representation.
The object returned from this function should be freed viaACPI_FREE.
Note: The string pointersfor _HID, _UID, and _CID simply point to areserved area within the

returned buffer af ter the ACPI_DEVICE_INFO structure. When the return object is freed, these
pointers will becomeinvalid.

8.3.4 AcpiGetNextObject

| Get a handleto the next child ACPI object of a parent object.

ACPI_STATUS
AcpiGetNextObject (
ACPI_OBJECT_TYPE Type,
ACPI_HANDLE Parent,
ACPI_HANDLE Child,
ACPI_HANDLE *QutHandle)
PARAMETERS
Type The desired type of the next object.
Parent A handle to a parent object to be searched for the next child
object.
Child A handleto achild object. The next child object of the

parent object that matches the Type will be returned. Use
the value of NULL to get the first child of the parent.

113

ACPI Component Architecture User Guide and Programmer Reference

OutHandle

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NOT_FOUND

Functional Description:

A pointer to alocation where a handle to the next child
object isto be returned. If this pointer isNULL, the child
object handle is not returned.

Exception code that indicates success or reason for failure.

The next object was successfully found and returned.

At least one of the following istrue:

The Parent handleisinvalid.

The Child handleisinvalid.

The Type parameter refersto an invalid type.

The child object parameter is the last object of the given
type within the parent — a next child object was not found.

If Child isNULL, this exception means that the parent
object has no children.

This function obtains the next child object of the parent object that is of type Type. Both the Parent
and the Child parameters are optional. The behavior for the various combinations of Parent and

Child isasfollows:

1. If the Childisnon-NULL, it is used as the starting point (the current object) for the search.

2. If the Child isNULL and the Parent is non-NULL, the search is performed starting at the

beginning of the scope.

3. If both the Parent and the Child parameters are NULL, the search begins at the start of the
namespace (the search begins at the Root Object).

If the search fails, an appropriate status will be returned and the value of OutHandle is undefined.

Thisinterface is appropriate for use within aloop that |ooks up a group of objects within the internal
namespace. However, the AcpiWalkNamespace primitive implements such aloop and may be
simpler to use in your application; see the description of this interface for additional details.

114

8.3.5

8.3.6

AcpiGetParent

ACPI Component Architecture User Guide and Programmer Reference

| Get a handleto the parent object of an ACPI object.

ACPI_STATUS

AcpiGetParent (
ACPI_HANDLE
ACPI_HANDLE

PARAMETERS
Child

OutParent

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NULL_ENTRY

Functional Description:

Child,
*QutParent)

A handle to an object whose parent isto be returned.

A pointer to alocation where the handle to the parent object
isto be returned.

Exception code that indicates success or reason for failure.

The parent object was successfully found and returned.
At least one of the following istrue:

The Child handleisinvalid.

The OutParent pointer isNULL.

The referenced object has no parent. (Entries at the root
level do not have a parent object.)

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

AcpiGetType

| Get the type of an ACPI object.

ACPI_STATUS
AcpiGetType (
ACPI_HANDLE

ACPI_OBJECT_TYPE

PARAMETERS
Object

Object,
*QutType)

A handle to an object whose type isto be returned.

115

ACPI Component Architecture User Guide and Programmer Reference

8.3.7

OutType

RETURN

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

Functional Description:

A pointer to alocation where the object typeisto be
returned.

Exception code that indicates success or reason for failure.

The object type was successfully returned.
At least one of the following istrue:
The Object handleisinvalid.

The OutType pointer is NULL.

This function obtains the type of an ACPI namespace object. See the definition of the
ACPI_OBJECT_TYPE for acomprehensive listing of the available object types.

AcpiGetHandle

| Get the object handle associated with an ACPI name.

ACPI_STATUS

AcpiGetHandle (
ACPI_HANDLE
ACPI_STRING
ACPI_HANDLE

PARAMETERS

Parent

Pathname

OutHandle

RETURN VALUE

Status

Parent,
Pathname,
*QutHandle)

A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be afully qualified
pathname.

A name or pathname to an ACPI object (aNULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

A pointer to alocation where a handle to the object isto be
returned.

Exception code that indicates success or reason for failure.

116

ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The pathname was successfully associated with an object
and the handle was returned.
AE BAD CHARACTER Aninvalid character was found in the pathname.
AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characterslong.
AE BAD PARAMETER At least one of the following istrue:
The Pathname pointer is NULL.
The Pathname does not begin with a backslash character.
The OutHandle pointer is NULL.
AE_NO_NAMESPACE The namespace has not been successfully loaded.
AE_NOT_FOUND One or more of the segments of the pathname refersto a

non-existent object.

Functional Description:

Thisfunction trandates an ACPI pathname into an object handle. It locates the object in the
namespace via the combination of the Parent and Pathame parameters. Only the specified Parent
object will be searched for the name — this function will not perform awalk of the namespace tree
(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of the
namespace, and the pathname must begin with a backslash (‘\').

Multiple instances of the same name under a given parent (within a given scope) are not allowed by
the ACPI specification. However, if more than one instance of a particular name were to appear
under asingle parent in the ACPI DSDT, only the first one would be successfully loaded into the
internal namespace. The second attempt to load the name would collide with the first instance of the
name, and the second instance would be ignored.

If the operation fails an appropriate status will be returned and the value of OutHandle is undefined.

117

ACPI Component Architecture User Guide and Programmer Reference

8.3.8 AcpiGetName

| Get the name of an ACPI object.

ACPI_STATUS

AcpiGetName (
ACPI_HANDLE
UINT32
ACPI_BUFFER

PARAMETERS

Object

NameType

OutName

RETURN VALUE

Status

EXCEPTIONS

AE_OK

AE_BAD_PARAMETER

AE_BUFFER_OVERFLOW

AE_NO_NAMESPACE

Object,
NameType,
*QutName)

A handle to an object whose name or pathname isto be
returned.

The type of name to return; must be one of these manifest
constants:

ACPI_FULL_PATHNAM E — return a complete pathname
(from the namespace root) to the object.

ACPI_SINGLE_NAME - return asingle segment ACPI
name for the object (4 characters, null terminated).

A pointer to alocation where the fully qualified and NULL
terminated name or pathname isto be returned.

Exception code that indicates success or reason for failure.

The full pathname associated with the handle was
successfully retrieved and returned.

At least one of the following istrue:

The Parent handleisinvalid.

The Object handleisinvalid.

The OutName pointer isNULL.

The Length field of OutName is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutName is NULL.

The Length field of OutName indicates that the buffer istoo
small to hold the actual pathname. Upon return, the Length
field contai ns the minimum required buffer length.

The namespace has not been successfully loaded.

118

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function obtains the name that is associated with the Object parameter. The returned name can
be either afull pathname (from the root, with path segment separators) or a single segment, 4-
character ACPI name. This function and AcpiGetHandle are complementary functions, as shown in
the examples below.

EXAMPLES

Example 1: The following operations:

Status = Acpi Get Nane (Handl e, ACPI _FULL_PATHNAME, &Qut Nane)
Status = Acpi Get Handl e (NULL, CQut Nanme. BufferPtr, &QutHandl e))

Yield thisresult:
Handl e == Qut Handl e;

Example 2: If Name is a4-character ACPI name, the following operations:

Status = Acpi Get Handl e (Parent, Nane, &OQutHandl e))
Status = Acpi Get Name (Qut Handl e, ACPI _SI NGLE_NAME, &Qut Nane)

Yield thisresult:

Nane == CQut Nane. BufferPtr

8.3.9 AcpiGetDevices

| Walk the ACPI namespaceto find all objects of type Device.

ACPI_STATUS
AcpiGetDevices (
char *HID,
ACPI_WALK_CALLBACK User Function,
void *User Context,
void **ReturnValue)
PARAMETERS
HID A device Hardware ID to search for. If NULL, all objects of
type Device are passed to the UserFunction.
UseFunction A pointer to afunction that is called when the namespace
object is deleted:
UserContext A value that will be passed as a parameter to the user
function each time it isinvoked.
ReturnValue A pointer to alocation where the (void *) return value from

the UserFunction isto be placed if the walk was terminated
early. Otherwise, NULL isreturned.

119

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The walk was successful. Termination occurred from

completion of the walk or by the user function, depending
on the value of the return parameter.

AE BAD PARAMETER The UserFunction addressis NULL.

Functional Description:

This function performs a modified depth-first walk of the namespace tree. The UserFunction is
invoked whenever an object of type Device with a matching HID isfound. If the user function
returns a non-zero value, the search is terminated immediately and this value is returned to the
caler.

If the HID parameter isNULL, all objects of type Device within the namespace are passed to the
User Function.

8.3.10 AcpiAttachData

| Attach user data to an ACPI namespace obj ect.

ACPI_STATUS
AcpiAttachData (
ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler,
void *Data)
PARAMETERS
Object A handle to an object to which the data will be attached.
Handler A pointer to afunction that is called when the namespace
object is deleted.
Data A pointer to arbitrary user data. The pointer is stored in the

namespace with the namespace object and can be retrieved
at any time via AcpiGetData.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The data was successfully attached.

AE BAD PARAMETER At least one of the following istrue:

120

(inte!
ACPI Component Architecture User Guide and Programmer Reference

The Object handleisinvalid.
The Handler pointer isNULL.
The Data pointer is NULL.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

Thisfunction allows arbitrary data to be associated with a namespace object.

8.3.11 AcpiDetachData

| Remove a data attachment to a namespace obj ect.

ACPI_STATUS

AcpiAttachData (
ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler)

PARAMETERS
Object A handle to an object to which the data will be attached.
Handler A pointer to afunction that is called when the namespace
object is deleted. This must be the same pointer used when
the original call to AcpiAttachData was used.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The data was successfully detached.
AE_BAD_PARAMETER At least one of the following istrue:
The Object handleisinvalid.
The Handler pointer isNULL.
AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function removes a previous association between user data and a namespace object.

121

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.3.12 AcpiGetData

| Retrieve data that was associated with a namespace obj ect.

ACPI_STATUS
AcpiGetData (
ACPI_HANDLE

ACPI_OBJECT_HANDLER

void
PARAMETERS

Object

Handler

Data

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NO_MEMORY

AE_NO_NAMESPACE

Functional Description:

Object,
Handler
**Data)

A handle to an object to from which the attached data will
be returned.

A pointer to afunction that is called when the namespace
object is deleted: This must be the same pointer used when
the original call to AcpiAttachData was used.

A pointer to where the arbitrary user data pointer will be

returned. The pointer is stored in the namespace with the
namespace object.

Exception code that indicates success or reason for failure.

The data was successfully returned.

At least one of the following istrue:

The Object handleisinvalid.

The Handler pointer isNULL.

The Data pointer isNULL.

Insufficient dynamic memory to complete the operation.

The namespace has not been successfully loaded.

This function retrieves data that was previously associated with a namespace object.

122

8.3.13

ACPI Component Architecture User Guide and Programmer Reference

AcpilnstallMethod

| Install a single control method into the namespace.

ACPI_STATUS
AcpilnstallM ethod (
UINT8 *TableBuffer)
PARAMETERS
TableBuffer A pointer to a buffer containing aDSDT or SSDT table

which in turn contains a single control method.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The method was successfully installed.
AE_BAD_HEADER The buffer does not contain avalid ACPI table, or the table
isnot aDSDT or SSDT.
AE_BAD_PARAMETER At least one of the following istrue:

The TableBuffer pointer isNULL.

The table does not contain avalid control method as the first
(and only) element of the table.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE _TYPE The name of the method already exists in the namespace,
but the name is not an object of type method and cannot be
overwritten.

Functional Description:

Thisfunction installs a single control method into the ACPI namespace. It isintended to override an
existing method which may not work correctly or it can insert a completely new method in order to
create amissing method such as_ OFF, _ON, STA, INI, etc. It can also be used to insert a
method for debugging purposes. For these cases, it is far smpler to dynamicaly install asingle
control method rather than override the entire DSDT with a modified DSDT.

AcpilnstallMethod can be used to create a new method anywhere in the namespace or to overwrite
the AML for any existing control method. The name (and location) for the new method is defined
within the AML contained in the ACPI table pointed to by the TableBuffer parameter. Either single
(4 character) ACPI names may be used, or full ACPI pathnames may be used, each segment
separated by periods. This function should be called only after all BIOS-defined ACPI tables have
been loaded and the namespace has been created.

123

intel.

ACPI Component Architecture User Guide and Programmer Reference

The method must be defined and compiled withinaDSDT or SSDT. The resulting table is then
passed as the parameter to AcpilnstallMethod. If the method needs to reference any objects that
already exist within the namespace, the ASL Exter nal operator should be used.

Example

The example ASL code below createsa DSDT that contains one method with the name
“_SI_.ABCD”. The name dictates where the method will be created within the namespace, and can
be afull pathname that references any portion of the namespace.

DefinitionBlock ("", "DSDT", 2, "Intel", "MIHDTEST", 0x20090512)
Method (_SI_.ABCD, 1, Serialized)
Store ("Exanple installed nethod", Debug)

Store (Arg0O, Debug)
Return ()

}

The example is compiled viathe iASL compiler using the “-tc” option to create a C hex file:

> jasl —tc nethod. asl

This produces the following output, which is“C” code that can be included into a C source file:

/
Intel ACPlI Conponent Architecture

ASL Optim zing Conpiler version 20090422 [April 22 2009]
Copyright (C) 2000 - 2009 Intel Corporation

Supports ACPI Specification Revision 3.0a

Conpil ation of "method.asl" - Tue May 12 14:55:53 2009
C source code out put

/
unsi gned char Am Code[] =

o TR

{
0x44, 0x53, 0x44, 0x54, 0x53, 0x00, 0x00, 000, /* 00000000 "DSDTS..." */
0x02, 0x12, 0x49, OX6E, 0x74, 0x65, 0x6C, 0x00, /* 00000008 " lntel." */
0x4D, 0x54, 0x48, 0x44, 0x54, 0x45, 0x53, 0x54, /* 00000010 " MTHDTEST" */
0x12, 0x05, 0x09, 0x20, 0x49, 0x4E, 0x54, 0x4C, /* 00000018 "L INTL" %/
0x22, 0x04, 0x09, 0x20, 0x14, 0x2E, 0x2E, OX5F, /* 00000020 LAY
0x53, 0x49, OX5F, 0x41, 0x42, 0x43, 0x44, 0x09, /* 00000028 "Sl_ABCD." */
0x70, 0xOD, 0x45, 0x78, 0x61, 0x6D, 0x70, 0x6C, /* 00000030 "p. Exanpl " */
0x65, 0x20, 0x69, OX6E, 0x73, 0x74, 0x61, 0X6C, /* 00000038 "e instal" */
0x6C, 0x65, 0x64, 0x20, 0x6D, 0x65, 0x74, 0x68, /* 00000040 "led meth" */
Ox6F, 0x64, 0x00, 0x5B, 0x31, 0x70, 0x68, 0x5B, /* 00000048 "od. [1ph[" */
0x31, 0xA4, 0x00,

}

The buffer above isthen used in a call to AcpilnstallMethod, as shown in the example code below:

Status = Acpilnstall Method (Am Code);
if (ACPI_FAILURE (Status))

Acpi GsPrintf ("%, Could not install method\n",
Acpi For mat Exception (Status));

124

ACPI Component Architecture User Guide and Programmer Reference

8.3.14 AcpiWalkNamespace

| Traversea portion of the ACPI namespace to find objects of a given type.

ACPI_STATUS

AcpiWalkNamespace (
ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 M axDepth,

ACPI_WALK_CALLBACK PreOrderVisit,
ACPI_WALK_CALLBACK PostOrder Visit,

void *User Context,
void **ReturnValue
PARAMETERS
Type The type of object desired.
StartObject A handle to an object where the namespace walk isto begin.

The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire
namespace.)

MaxDepth The maximum number of levelsto descend in the
namespace during the walk.

PreOrderVisit A pointer to a user-written function that is invoked in a pre-
order manner for each matching object that is found during
the walk. (See the interface specification for the user
function below.)

PostOrderVisit A pointer to a user-written function that isinvoked in a
post-order manner for each matching object that is found
during the walk. (See the interface specification for the user
function below.)

UserContext A value that will be passed as a parameter to the user
function each timeiit isinvoked.

ReturnVaue A pointer to alocation where the (void *) return value from

the UserFunction isto be placed if the walk was terminated
early. Otherwise, NULL isreturned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE _OK The walk was successful. Termination occurred from

completion of the walk or by the user function, depending
on the value of the return parameter.

125

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.3.14.1

AE_BAD_PARAMETER

Functional Description:

At least one of the following istrue:
The MaxDepth is zero.

The UserFunction addressis NULL.
The StartObject handle isinvalid.

The Typeisinvalid.

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the abject specified by the StartObject handle. The User Functions (PreOrderVisit and/or

PostOrder Visit) are invoked whenever an object that matches the type parameter is found during the
walk. If the user function returns a non-zero value, the search is terminated immediately and this

valueisreturned to the caller.

The point of this procedure isto provide a generic namespace walk routine that can be called from
multiple places to provide multiple services; the user function can be tailored to each task —
whether it isa print function, a compare function, etc.

Interface to User Callback Function

| Interfaceto the user function that isinvoked from AcpiWalkNamespace.

ACPI_STATUS (*ACPI_WALK_CALLBACK) (

ACPI_HANDLE
UINT32

void

void

PARAMETERS
Object

Nesting Level

Context

ReturnValue

RETURN VALUE

Status

Object,
NestingL evel,
*Context,
**ReturnValue)

A handle to an object that matches the search criteria.

Depth of this object within the namespace (distance from
the root.)

The UserContext value that was passed as a parameter to the
AcpiWalkNamespace function.

A pointer to alocation where the return value (if any) from
the user function isto be stored.

AE_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.
All others Abort the walk with this exception
code.

126

8.4

8.4.1

8.4.2

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

Thisfunction is called from AcpiWalkNamespace whenever a object of the desired type is found.
The walk can be modified by the exception code returned from this function. AE_ TERMINATE
will abort the walk immediately, and AcpiWalkNamespace will return AE_OK to the original caller.
AE_DEPTH will prevent the walk from progressing any deeper down the current branch of the
namespace tree. AE_OK isthe normal return that allows the walk to continue normally. All other
exception codes will cause the walk to terminate and the exception is returned to the original caller

of AcpiWalkNamespace.

ACPI Hardware Management

AcpiEnable

| Put the system into ACPI mode.

ACPI_STATUS

AcpiEnable (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK ACPI mode was successfully enabled.

AE_ERROR Either ACPI mode is not supported by this system (legacy

mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

AE_NO_ACPI_TABLES The ACPI tables have not been successfully loaded.

Functional Description:

This function enables ACPI mode on the host computer system. It ensures that the system control
interrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
transfers the system hardware into ACPI mode.

AcpiDisable

| Take the system out of ACPI mode.

ACPI_STATUS

127

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.4.3

AcpiDisable (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK ACPI mode was successfully disabled.

AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
original ACPI/legacy mode, disables all events, and removes the SCI interrupt handler.

AcpiReset

| Perform a system reset.

ACPI_STATUS

AcpiReset (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The reset register was successfully written.

AE_NOT_EXIST The FADT flagsindicate that the reset register is not

supported, or the reset register addressis zero.

Functional Description:

This function performs a system reset by writing the FADT-defined Reset Value to the FADT-
defined Reset Register (if the register is supported, asindicated by the FADT Flags).

Reset registersin both memory and /O space are supported. A reset register in PCI configuration
space is not supported by this function and must be handled by the host.

128

8.4.4

AcpiReadBitRegister

ACPI Component Architecture User Guide and Programmer Reference

| Get the contents of an ACPI-defined Bit Register.

ACPI_STATUS

AcpiGetRegister (
UINT32
UINT32

PARAMETERS

Registerld

ReturnValue

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

Other

Registerld,
*ReturnValue)

The ID of the desired bit register, one of the following
manifest constants:

ACPI_BITREG_TIMER_STATUS
ACPI_BITREG_BUS MASTER_STATUS
ACPI_BITREG_GLOBAL_LOCK_STATUS
ACPI_BITREG_POWER_BUTTON_STATUS
ACPI_BITREG_SLEEP BUTTON_STATUS
ACPI_BITREG_RT_CLOCK_STATUS
ACPI_BITREG_WAKE_STATUS
ACPI_BITREG_PCIEXP_ WAKE_STATUS
ACPI_BITREG_TIMER_ENABLE
ACPI_BITREG_GLOBAL_LOCK_ENABLE
ACPI_BITREG_POWER_BUTTON_ENABLE
ACPI_BITREG_SLEEP BUTTON_ENABLE
ACPI_BITREG_RT_CLOCK_ENABLE
ACPI_BITREG_PCIEXP_ WAKE_DISABLE
ACPI_BITREG_SCI_ENABLE
ACPI_BITREG_BUS MASTER_RLD
ACPI_BITREG_GLOBAL_LOCK_RELEASE
ACPI_BITREG_SLEEP TYPE
ACPI_BITREG_SLEEP_ENABLE
ACPI_BITREG_ARB_DISABLE

A pointer to alocation where the datais to be returned.

Exception code that indicates success or reason for failure.

The register was read successfully.
Invalid Registerld.

The function failed at the operating system level.

129

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function reads the bit register specified in the Registerld. The value returned is normalized to
bit zero. Can be used with interrupts enabled or disabled. The hardware is not locked during the
read, asit is not necessary

8.4.5 AcpiWriteBitRegister

| Set the contents of an ACPI-defined Bit Register.

ACPI_STATUS

AcpiSetRegister (
UINT32 Registerld,
UINT32 Value)

PARAMETERS

Registerld The ID of the desired register, one of the following manifest
constants:

ACPI_BITREG_TIMER_STATUS
ACPI_BITREG_BUS MASTER_STATUS
ACPI_BITREG_GLOBAL_LOCK_STATUS
ACPI_BITREG_POWER_BUTTON_STATUS
ACPI_BITREG_SLEEP BUTTON_STATUS
ACPI_BITREG_RT_CLOCK_STATUS
ACPI_BITREG_WAKE_STATUS
ACPI_BITREG_PCIEXP_WAKE_STATUS
ACPI_BITREG_TIMER_ENABLE
ACPI_BITREG_GLOBAL_LOCK_ENABLE
ACPI_BITREG_POWER_BUTTON_ENABLE
ACPI_BITREG_SLEEP BUTTON_ENABLE
ACPI_BITREG_RT_CLOCK_ENABLE
ACPI_BITREG_PCIEXP_WAKE_DISABLE
ACPI_BITREG_SCI_ENABLE
ACPI_BITREG_BUS MASTER_RLD
ACPI_BITREG_GLOBAL_LOCK_RELEASE
ACPI_BITREG_SLEEP_TYPE
ACPI_BITREG_SLEEP_ENABLE
ACPI_BITREG_ARB_DISABLE

Vaue The data to be written.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

130

intel
b ACPI Component Architecture User Guide and Programmer Reference

AE_BAD_PARAMETER Invalid Registerld.

Other The function failed at the operating system level.

Functional Description:

This function writes the bit register specified in the Registerld. The value written must be
normalized to bit zero before calling. Can be used with interrupts enabled or disabled.

8.4.6 AcpiRead

| Read the contents of an ACPI Register (low-level read).

ACPI_STATUS

AcpiRead (
UINT64 *ReturnValue,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS
ReturnVaue A pointer to where the data is returned. The entire 64-bit
ReturnValue is set, regardless of the width of the register.
Register A pointer to avalid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The register was read successfully.

AE BAD_ ADDRESS The Address element of the register is zero.

AE_BAD_PARAMETER The Register or ReturnValue parameters are NULL.

AE_SUPPORT The register width was not 8/16/32/64.

Other The function failed at the operating system level.

Functional Description:

Thisfunction reads a register defined in the generic address format. It supports reads from memory
or 1/O space only. Registers must have a width of either 8, 16, 32, or 64 hits.

131

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.4.7 AcpiWrite

| Writean ACPI Register (low-level write).

ACPI_STATUS

AcpiWrite (
UINT64 Value,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS
Value The data to be written.
Register A pointer to avalid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The register was read successfully.

AE BAD_ ADDRESS The Address element of the register is zero.

AE_BAD_PARAMETER The Register parameter isNULL.

AE_SUPPORT The register width was not 8/16/32/64.

Other The function failed at the operating system level.

Functional Description:

Thisfunction writes aregister defined in the generic address format. It supports writes to memory or
1/O space only. Registers must have a width of either 8, 16, 32, or 64 bits.

8.4.8 AcpiAcquireGlobalLock

| Acquirethe ACPI Global L ock.

ACPI_STATUS
AcpiAcquireGlobalL ock (
UINT16 Timeout,
UINT32 *QutHandle)
PARAMETERS
Timeout The maximum time (in System Ticks) the caller iswilling to

wait for the global lock.

132

8.4.9

ACPI Component Architecture User Guide and Programmer Reference

OutHandle A pointer to where a handle to the lock isto be returned.
This handle isrequired to release the global lock.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The global lock was successfully acquired.
AE_BAD_PARAMETER The OutHandle pointer is NULL.
AE_TIME The glabal lock could not be acquired within the specified
time limit.

Functional Description:

This function obtains exclusive access to the single system-wide ACPI Glaobal Lock. The purpose of
the global lock isto ensure exclusive access to resources that must be shared between the operating
system and the firmware.

AcpiReleaseGlobalLock

| Release the ACPI Global L ock.

ACPI_STATUS
AcpiReleaseGlobalL ock (
UINT32 Handle)
PARAMETERS
Handle The handle that was obtained when the Global Lock was

acquired. This alows different threads to acquire and
release the lock, as long as they share the handle.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The global lock was successfully released

AE BAD PARAMETER The Handleisinvalid.

Functional Description:

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobal Lock.

133

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.4.10 AcpiGetTimerResolution

| Get the resolution of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimer Resolution (
UINT32

PARAMETERS
OutValue

RETURN VALUE

Status

EXCEPTIONS
AE _OK
AE_BAD_PARAMETER

Functional Description:

*QutValue)

A pointer to where the current value of the PM Timer
resolution isto be returned.

Exception code that indicates success or reason for failure.

The PM Timer resolution was successfully retrieved and
returned.

The OutVaue pointer isNULL.

This function returns the PM Timer resolution — either 24 (for 24-bit) or 32 (for 32-bit timers).

8.4.11 AcpiGetTimerDuration

Management Timer.

Calculatesthe time elapsed (in microseconds) between two values of the ACPI Power

ACPI_STATUS
AcpiGetTimer (
UINT32
UINT32
UINT32

PARAMETERS

StartTicks

EndTicks

OutValue

StartTicks,
EndTicks,
*QutValue)

The value of the PM Timer at the start of atime
measurement (obtained by calling AcpiGetTimer).

The value of the PM Timer at the end of atime
measurement (obtained by calling AcpiGetTimer).

A pointer to where the elapsed time (in microseconds) isto
be returned.

134

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The time elapsed was successfully calculated and returned.

AE BAD PARAMETER The OutValue pointer isNULL.

Functional Description:

This function calculates and returns the time elapsed (in microseconds) between StartTicks and
EndTicks, taking into consideration the PM Timer frequency, resolution, and counter rollovers.

8.4.12 AcpiGetTimer

| Get the current value of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimer (
UINT32 *QutValue)
PARAMETERS
OutVaue A pointer to where the current value of the ACPI Timer isto
be returned.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The current value of the timer was successfully retrieved
and returned.
AE BAD PARAMETER The OutValue pointer isNULL.

Functional Description:

This function returns the current value of the PM Timer (in ticks).

135

(intel,
ACPI Component Architecture User Guide and Programmer Reference

8.5 ACPI Sleep/Wake Support

8.5.1 AcpiSetFirmwareWakingVector

| Set the 32-bit firmwar e wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector (
UINT32 Address32)
PARAMETERS
Address32 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The vector was set successfully.

AE_NO_ACPI_TABLES The FACS s not loaded or could not be found.

Functional Description:

This function sets the 32-bit firmware (ROM BIOS) wake vector. If a 64-bit vector existsin the
current FACS, it is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be
undisturbed.

8.5.2 AcpiSetFirmwareWakingVector64

| Set the 64-bit firmwar e wake vector.

ACPI_STATUS
AcpiSetFirmwar eWakingVector 64 (
UINT64 Addresst4)
PARAMETERS
Addresst4 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

136

EXCEPTIONS
AE_OK
AE_NOT_EXIST
AE_NO_ACPI_TABLES

Functional Description:

The vector was set successfully.

ACPI Component Architecture User Guide and Programmer Reference

The 64-bit vector does not exist in the current FACS. Either

the table istoo small or the revisionislessthan 1.

The FACS s not loaded or could not be found.

This function sets the 64-bit firmware (ROM BIOS) wake vector. The 32-bit vector is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be

undisturbed.

8.5.3

AcpiGetSleepTypeData

| Get the SLP_TYP data for therequested sleep state.

ACPI_STATUS
AcpiGetSleepTypeData (
UINT8
UINT8
UINT8

PARAMETERS

SleepState
SleepTypeA
SleepTypeB

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_AML_NO_OPERAND

AE_AML_OPERAND_TYPE

SleepState,
*SleepTypeA,
*SleepTypeB)

The SlegpState value (0 through 5) for which the

SLP _TYPaand SLP_TYPb values will be returned.

A pointer to alocation where the value of SLP_TY Pa will

be returned.

A pointer to alocation where the value of SLP_TY Pb will

be returned.

Exception code that indicates success or reason for failure.

Both SLP_TY P values were returned successfully.

Either SleepState has an invalid value, or one of the
SleepType pointersisinvalid.

Could not locate one or more of the SLP_TYP values.

One or more of the SLP_TY P objects was hot a numeric

type.

137

(intel,
ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

Thisfunction returnsthe SLP_TYP object for the requested sleep state.

8.5.4 AcpiEnterSleepStatePrep

| Prepareto enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnter SleepStatePrep (
UINTS8 SleepState)
PARAMETERS
SleepState The sleep state to prepare to enter. Must be in the range 1
through 5.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The PTS and GTS methods were successfully run
Other Exception from AcpiEval uateObject.

Functional Description:

Prepare to enter a system sleep state.

Thisfunction evaluatesthe _PTSand _GTS methods.

8.5.5 AcpiEnterSleepState

| Enter a system deep state (S1-S5).

ACPI_STATUS
AcpiEnter SleepState (
UINT8 SleepState)

PARAMETERS

SleepState The deep state to enter. Must be in the range 1 through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

138

ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The dleep state (S1) was successfully entered.
AE_BAD_PARAMETER Invalid SleepState value.
Other Hardware access exception.

Functional Description:

This function only returns for transitionsto the S1 state or when an error occurs. Sleep states S2-4
use the firmware waking vector during wakeup.

This function must be called with interrupts disabled.

8.5.6 AcpiEnterSleepStateS4Bios

| Enter $4 BIOS sleep

ACPI_STATUS
AcpiEnter SleepState4bios (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The dleep state (S1) was successfully entered.

Other Hardware access exception.

Functional Description:

This function performs an $4 BIOS request.

This function must be called with interrupts disabled.

139

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.5.7 AcpiLeaveSleepState

| L eave (cleanup) a system sleep state (S1-S5).

ACPI_STATUS
AcpilL eaveSleepState (
UINT8 SleepState)
PARAMETERS
SleepState The deep state to leave.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The cleanup was successful.
Other Hardware access exception.

Functional Description:

Perform cleanup after leaving a sleep state.

8.6 ACPI Fixed Event Management

8.6.1 AcpiEnableEvent

| Enablean ACPI Fixed Event.

ACPI_STATUS
AcpiEnableEvent (
UINT32 Event,
UINT32 Flags)
PARAMETERS
Event The fixed event to be enabled. This parameter must be one
of the following manifest constants:
ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC
Flags Reserved, set to zero.

140

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER
Other

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

Exception code that indicates success or reason for failure.

The event was successfully enabled.
The Eventisinvalid.

Hardware access exception.

This function enables a single ACPI fixed event.

8.6.2 AcpiDisableEvent

| Disable an ACPI Fixed Event.

ACPI_STATUS

AcpiDisableEvent (
UINT32
UINT32

PARAMETERS

Event

Flags
RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER
Other

Functional Description:

Event,
Flags)

The fixed event to be disabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Reserved, set to zero.

Exception code that indicates success or reason for failure.

The event was successfully disabled.
The Eventisinvalid.

Hardware access exception.

Thisfunction disablesasingle ACPI fixed event.

141

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.6.3 AcpiClearEvent

| Clear a pending ACPI Fixed Event.

ACPI_STATUS
AcpiClear Event (
UINT32 Event)
PARAMETERS
Event The fixed event to be cleared. This parameter must be one

of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The event was successfully cleared.

AE_BAD_PARAMETER The Eventisinvalid.

Other Hardware access exception.

Functional Description:

This function clears (zeros the status bit for) asingle ACPI fixed event.

8.6.4 AcpiGetEventStatus

| Obtain the status of an ACPI Fixed Event.

ACPI_STATUS
AcpiGetEventStatus (
UINT32 Event,
ACPI_EVENT_STATUS *EventStatus)
PARAMETERS
Event The fixed event for which status will be obtained. This

parameter must be one of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL

142

(inte!
ACPI Component Architecture User Guide and Programmer Reference

EventStatus

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

Other

Functional Description:

ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Where the event status is returned. The following bits may
be sat:

ACPI_EVENT_FLAG_SET

Exception code that indicates success or reason for failure.

The event was successfully disabled.

At least one of the following istrue:

The Eventisinvalid.

The EventStatus pointer isNULL or invalid

Hardware access exception.

This function obtains the current status of asingle ACPI fixed event.

8.6.5 AcpilnstallFixedEventHandler

| Install a handler for ACPI Fixed Events.

ACPI_STATUS

AcpilnstallFixedEventHandler (
UINT32
ACPI_EVENT_HANDLER
void

PARAMETERS
Event

Handler

Context

RETURN VALUE

Status

Event,
Handler,
*Context)

The fixed event to be managed by this handler.
Address of the handler to be installed.

A context value that will be passed to the handler as a
parameter.

Exception code that indicates success or reason for failure.

143

(inte!
ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following istrue:
The Eventisinvalid.
The Handler pointer isNULL.
AE_ERROR The fixed event enable register could not be written.
AE_ALREADY_EXISTS A handler for this event is aready installed.

Functional Description:

Thisfunction installs a handler for a predefined fixed event.

8.6.5.1 Interface to Fixed Event Handlers

| Definition of the handler interface for Fixed Events.

typedef
UINT32 (*ACPI_EVENT_HANDLER) (
void *Context)
PARAMETERS
Context The Context value that was passed as a parameter to the

Acpilnstall FixedEventHandler function.

RETURN VALUE

Reserved Handler should return zero.

Functional Description:

Thishandler isinstalled via AcpilnstallFixedEventHandler. It is called whenever the particular fixed
event it was installed to handle occurs.

This function executes in the context of an interrupt handler.

144

ACPI Component Architecture User Guide and Programmer Reference

8.6.6 AcpiRemoveFixedEventHandler

| Remove an ACPI Fixed Event handler.

ACPI_STATUS
AcpiRemoveFixedEventHandler (
UINT32 Event,
ACPI_EVENT_HANDLER Handler)

PARAMETERS
Event The fixed event whose handler is to be removed.
Handler Address of the previously installed handler.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The handler was successfully removed.
AE BAD PARAMETER At least one of the following istrue:
The Eventisinvalid.
The Handler pointer isNULL.
The Handler addressis not the same as the one that is
installed.
AE_ERROR The fixed event enable register could not be written.
AE _NOT_EXIST Thereisno handler installed for this event.

Functional Description:

This function removes a handler for a predefined fixed event that was previously installed viaa call
to AcpilnstallFixedEventHandler.

145

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.7 ACPI General Purpose Event Management

8.7.1 AcpiUpdateAllGpes

| Finish GPE initialization and enable all runtime GPEs.

ACPI_STATUS

AcpiUpdateAllGpes (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK All GPEs were initialized and the runtime GPESs were

successfully enabled.

Functional Description:

This function completes the GPE initialization and enables all GPEs that have associated L xx or
_Exx methods and are not referenced by any device _ PRW methods. Any GPE that is referenced
by a_ PRW method indicates that the GPE is generally intended for system or device wakeup. Such
GPEs must be enabled directly (via AcpiEnableGpe) when the parent deviceis setup for wakeup.

The host must call thisfunction at least once after the all system PRW methods have been
executed. It should also be called after any new GPEs have been added to the system, either after a
GPE Block Device has been added or if any new GPE methods (_Lxx/_Exx) have been added viaa
dynamic ACPI table load. It is safeto ssimply call this function after any dynamic table load, from a
global table handler.

8.7.2 AcpiEnableGpe

| Enable an ACPI General Purpose Event.

ACPI_STATUS
AcpiEnableGpe (
ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)
PARAMETERS
GpeDevice A handle for the parent GPE Block Device of the GPE to be

enabled. Specify aNULL handle to indicate that the

146

intel
b ACPI Component Architecture User Guide and Programmer Reference

GpeNumber

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_LIMIT
AE_NO_HANDLER

Functional Description:

permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be enabled within the specified GPE
Block. The GPEO block always begins at zero. GPE1 begins

at GPE1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Exception code that indicates success or reason for failure.

The GPE was successfully enabled.
At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

The specified GPE has more than 255 references.

The specified GPE has neither ahandler nor an _L xx/_Exx
method associated with it, thereforeit is useless.

This function enables a single General Purpose Event. Both the FADT—defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPEO and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via Acpil nstallGpeBlock during bus/device enumeration.

For shared GPEs, this function may be called multiple times, once for each device shared on the
GPE. In thisway, device drivers may be written such that the fact that the underlying GPE is shared
istransparent. Physically, aruntime GPE is enabled on the first call to thisinterface. Additional
calls simply increment an internal reference count..

147

ACPI Component Architecture User Guide and Programmer Reference

8.7.3 AcpiDisableGpe

| Disable an ACPI General Purpose Event.

ACPI_STATUS

AcpiDisableGpe (
ACPI_HANDLE
UINT32

PARAMETERS

GpeDevice

GpeNumber

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

AE_LIMIT

Functional Description:

GpeDevice,
GpeNumber)

A handle for the parent GPE Block Device of the GPE to be
disabled. Specify aNULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be disabled within the specified GPE
Block. The GPEQ block always begins at zero. GPE1 begins

at GPEL1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Exception code that indicates success or reason for failure.

The GPE was successfully disabled.
At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

There are currently no references to this GPE. This probably
means that AcpiEnableGpe was never called for this GPE.

This function disables a single General Purpose Event. Both the FADT—defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPEO and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via Acpil nstallGpeBlock during bus/device enumeration.

For shared GPEs, this function may be called multiple times, once for each device shared on the
GPE. In thisway, device drivers may be written such that the fact that the underlying GPE is shared
istransparent. Physically, aruntime GPE is disabled on the last call to thisinterface (corresponding

to the first call to AcpiEnableGpe.)

148

8.7.4 AcpiClearGpe

ACPI Component Architecture User Guide and Programmer Reference

| Clear a pending ACPI General Purpose Event.

ACPI_STATUS

AcpiClear Gpe (
ACPI_HANDLE
UINT32

PARAMETERS

GpeDevice

GpeNumber

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

Functional Description:

GpeDevice,
GpeNumber)

A handle for the parent GPE Block Device of the GPE to be
cleared. Specify aNULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be cleared within the specified GPE
Block. The GPEO block always begins at zero. GPEL begins

at GPEL BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Exception code that indicates success or reason for failure.

The GPE was successfully cleared.
At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Thisfunction clears asingle General Purpose Event. Both the FADT—defined GPE blocks and GPE
Block Devices are supported. The GPE blocks defined in the FADT are permanent and installed
during system initialization. These permanent blocks, GPEO and GPEL, are treated asa single
logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are installed via
Acpilnstall GpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or adevice

driver.

149

ACPI Component Architecture User Guide and Programmer Reference

8.7.5 AcpiSetGpe

| Forced enable/disable for an individual ACPI General Purpose Event.

ACPI_STATUS
AcpiSetGpe (
ACPI_HANDLE
UINT32
UINT8

PARAMETERS

GpeDevice

GpeNumber

Action

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

AE_NO_HANDLER

GpeDevice,
GpeNumber,
Action)

A handle for the parent GPE Block Device of the GPE.
Specify aNULL handle to indicate that the permanent GPE
blocks defined in the FADT (GPEO and GPEL) are to be
used.

The GPE number within the specified GPE Block. The
GPEO block always begins at zero. GPE1 begins at
GPE1_BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

ACPI_GPE_ENABLE - Enable this GPE. For runtime
GPEs, the hardware is updated immediately. For wake
GPEs, the hardware mask is updated for use when

sleeping/suspending.

ACPI_GPE_DISABLE - Disable this GPE. For runtime
GPEs, the hardware is updated immediately. For wake
GPEs, the hardware mask is updated for use when

sleeping/suspending.

Exception code that indicates success or reason for failure.

The type of the GPE was successfully set.
At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

The Action isinvalid.

The specified GPE has neither ahandler nor an _Lxx/_Exx
method associated with it, therefore it is useless.

150

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

This function forces the enabling or disabling of a single General Purpose Event. It bypasses the
reference count mechanism implemented by Acpi EnableGpe and AcpiDisableGpe and must be used
carefully and sparingly. Its primary purpose is for use in device drivers like the Embedded
Controller driver where it may be necessary to disable a GPE for a short period of time.

Both the FADT—defined GPE blocks and GPE Block Devices are supported. The GPE blocks
defined inthe FADT are permanent and installed during system initialization. These permanent
blocks, GPEO and GPEL1, are treated as a single logical block differentiated by non-overlapping GPE
numbers. GPE Block Devices are installed via Acpilnstall GpeBlock during bus/device enumeration.

8.7.6 AcpiFinishGpe

| Clear and conditionally re-enable a GPE from a GPE handler.

ACPI_STATUS

AcpiFinishGpe (
ACPI_HANDLE
UINT32

PARAMETERS

GpeDevice

GpeNumber

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

GpeDevice,
GpeNumber)

A handle for the parent GPE Block Device of the GPE to be
disabled. Specify aNULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be disabled within the specified GPE
Block. The GPEO block always begins at zero. GPE1 begins

at GPEL1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Exception code that indicates success or reason for failure.

The GPE was successfully disabled.
At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

151

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function simplifies the GPE completion processing for GPE handlers. If the GPE islevel-
triggered, the GPE status bit is cleared. If the GPE is currently logically enabled for runtime, it is

then re-enabled in the hardware

Call this function from a synchronous or asynchronous GPE handler after GPE processing is

complete.

8.7.7 AcpiSetupGpeForWake

| Identify a GPE that hasthe ability to wake the system.

ACPI_STATUS
AcpiSetupGpeForWake (
ACPI_HANDLE
ACPI_HANDLE

UINT32

PARAMETERS

WakeDevice

GpeDevice

GpeNumber

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

WakeDevice,
GpeDevice,
GpeNumber)

A handle to the parent device associated with the PRW
method that references this GPE.

A handle for the parent GPE Block Device of the GPE to be
disabled. Specify aNULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be disabled within the specified GPE
Block. The GPEO block always begins at zero. GPEL begins

at GPEL1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Exception code that indicates success or reason for failure.

The GPE was successfully disabled.
At least one of the following istrue:

The WakeDeviceisinvalid or is not of type
ACPI_TYPE_DEVICE.

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

152

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function marks an individual GPE as having the ability to wake the system. It isintended to be
called as the host OS executes the system PRW methods (Power Resources for Wake) in the
system ACPI tables and discovers GPESs that can wake the system.

Each PRW method appears under a Device Object (The WakeDevice), and contains the
information for the wake GPE associated with the WakeDevice. The host should call this function

every time such a GPE isidentified.

Calling this function also enables the Implicit Notify feature for the input WakeDevice. If there
neither a GPE method (_Lxx/_Exx) or a handler for the GPE, when the GPE occurs, a
Notify(DEVICE_WAKE) is automatically issued on the WakeDevice.

8.7.8 AcpiSetGpeWakeMask

| Set or clear the wakeup enable mask bit for an individual GPE.

ACPI_STATUS
AcpiSetGpeWakeM ask (
ACPI_HANDLE
UINT32
UINT8

PARAMETERS

GpeDevice

GpeNumber

Action

RETURN VALUE

Status

EXCEPTIONS
AE_OK

GpeDevice,
GpeNumber,
Action)

A handle for the parent GPE Block Device of the GPE to be
disabled. Specify aNULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPEO and
GPE1) are to be used.

The GPE number to be disabled within the specified GPE
Block. The GPEQ block always begins at zero. GPE1 begins
at GPE1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

Action to take. This parameter must be one of the following
manifest constants:

ACPI_GPE_ENABLE
ACPI_GPE_DISABLE

Exception code that indicates success or reason for failure.

The GPE was successfully disabled.

153

(ntel)
ACPI Component Architecture User Guide and Programmer Reference
AE_BAD_PARAMETER At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

The Action is not one of the supported values.

AE_TYPE The GPE is not marked as a wakeup GPE.

Functional Description:

This function sets or clears the wakeup mask bit for an individual GPE. The GPE must already be
marked as a wake GPE (via Acpi SetupGpeForWake).

Individual drivers should call this function as the system prepares to sleep when a particular device
isto be allowed to wake the system.

8.7.9 AcpiGetGpeStatus

| Obtain the status of an ACPI General Purpose Event.

ACPI_STATUS
AcpiGetGpeStatus (

ACPI_HANDLE GpeDevice,

UINT32 GpeNumber,

ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which status is to be obtained. Specify aNULL handleto
indicate that the permanent GPE blocks defined in the
FADT (GPEO and GPEL1) are to be used.

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPEO block always begins at zero. GPEL begins
at GPEL1 BASE (inthe FADT). Named GPE Block Devices
always begin at zero.

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The GPE was successfully enabled.

154

intel
b ACPI Component Architecture User Guide and Programmer Reference

AE_BAD_PARAMETER

Functional Description:

At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

This function obtains the status of a single General Purpose Event. Both the FADT—defined GPE
blocks and GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent
and installed during system initialization. These permanent blocks, GPEO and GPEL, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via Acpil nstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device

driver.

8.7.10 AcpiGetGpeDevice

| Get the GPE Block Device associated with the GPE index.

ACPI_STATUS

AcpiGetGpeDevice (
UINT32
ACPI_HANDLE

PARAMETERS

Index

GpeDevice

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NOT_EXIST

Index,
*GpeDevice)

The system index of the GPE, defined to be from zero to the
value of AcpiCurrentGpeCount.

A pointer to where the handle of the GPE block deviceis

returned. NULL indicates that the GPE is within one of the
FADT-defined GPE blocks.

Exception code that indicates success or reason for failure.

The GPE block device was successfully returned.
At least one of the following istrue:
The GpeDevice pointer isinvalid.

The Index refers to a non-existent GPE (it islarger than
AcpiCurrentGpeCount).

155

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function obtains the GPE block device associated with the Index parameter. A returned NULL
GPE device indicates that the Index refers to a GPE that is contained in one of the FADT-defined
GPE blocks.

The Index is a system index used to track all GPEs. First are the FADT GPEO block GPEs, then the
FADT GPE1 GPEs (if present), then any GPE block device GPEs. Valid values for the Index are
from zero to the value of the public global variable AcpiCurrentGpeCount. Index values are
consecutive with no ‘holes'.

8.7.11 AcpiDisableAllGpes

| Disable all system GPEs

ACPI_STATUS

AcpiDisableAllGpes (
void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK All GPEs were successfully disabled.

Other Hardware access exception.

Functional Description:

This function disables all GPEs currently defined in the system. Thisincludes al runtime and wake
GPEs, in both the FADT-defined GPE blocks as well as any installed GPE block devices.

8.7.12 AcpiEnableAllRuntimeGpes

| Enable all runtime GPEs

ACPI_STATUS
AcpiEnableAllRuntimeGpes (
void)

PARAMETERS

None

156

RETURN VALUE

Status

EXCEPTIONS
AE_OK
Other

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

Exception code that indicates success or reason for failure.

All runtime GPEs were successfully enabled.

Hardware access exception.

This function enables all runtime GPES currently defined in the system. Thisincludes all runtime
GPEs in both the FADT-defined GPE blocks as well as any installed GPE block devices. Runtime
GPEs are defined to be any GPEs that are not Wake GPES, as determined from the_ PRW methods

within the system AML.

8.7.13 AcpilnstallGpeBlock

| Install a GPE Block Device.

ACPI_STATUS
AcpilnstallGpeBlock (
ACPI_HANDLE
ACPI_GENERIC_ADDRESS
UINT32
UINT32

PARAMETERS
GpeDevice
GpeBlockAddress

RegisterCount

Interrupt

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

GpeDevice,
*GpeBlockAddress,
Register Count,
Interrupt)

A handle for the GPE Block Device to be installed.

The address and space ID for the registers that define the
new GPE block.

The number of status/enable GPE register pairsin this
block.

The hardware interrupt level that this GPE block isto be

associated with. Can be SCI_INT or any other system
interrupt level.

Exception code that indicates success or reason for failure.

The GPE was successfully enabled.

At least one of the following istrue:

157

ACPI Component Architecture User Guide and Programmer Reference

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

Thisfunction installs a GPE Block Device. It isintended for use by a device driver that supports the
enumeration of GPE Block Devices. The caller must identify each Block Device in the ACPI
namespace (each hasa_HID of ACPI0006) and obtain the resource requirements (_CRS, etc.) and
make this call for each device found.

Gpe Block Device handling is supported in the ACPICA core subsystem because the SCI_INT is
owned by the core subystem, and the FADT-defined GPE blocks are also owned by the core. Via
thisinterface, the core also supports GPE Block Devices and the associated interrupts, detection,
dispatch, and GPE control method execution — thus centralizing all GPE support to the core.

8.7.14 AcpiRemoveGpeBlock

| Remove a GPE Block Device.

ACPI_STATUS
AcpiRemoveGpeBlock (
ACPI_HANDLE GpeDevice)
PARAMETERS
GpeDevice A handle for the GPE Block Device to be removed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following istrue:

The GpeDeviceisinvalid or does not refer to avalid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function removed a GPE Block Device that was previoudly installed via Acpilnstall GpeBlock.

158

8.7.15 AcpilnstallGpeHandler

ACPI Component Architecture User Guide and Programmer Reference

| Install a handler for ACPI General Purpose Events.

ACPI_STATUS
AcpilnstallGpeHandler (
ACPI_HANDLE
UINT32
UINT32
ACPI_GPE_HANDLER
void

PARAMETERS

GpeDevice

GpeNumber

Type

Handler

Context

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_ALREADY_EXISTS

AE_NO_MEMORY

Functional Description:

GpeDevice,
GpeNumber,

Type,
Handler,
*Context)

A handle for the parent GPE Block Device of the GPE for
which the handler isto be installed. Specify aNULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPEO and GPEL1) are to be used.

A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Whether this GPE is edge or level triggered:

ACPI_GPE_LEVEL_TRIGGERED
ACPI_GPE_EDGE_TRIGGERED

Address of the handler to be installed.

A context value that will be passed to the handler as a
parameter.

Exception code that indicates success or reason for failure.

The handler was successfully installed.

At least one of the following istrue:

The GpeNumber isinvalid.

The Handler pointer isNULL.

A handler for this general-purpose event is already installed.

Insufficient dynamic memory to complete the operation.

Thisfunction installs a handler for a general-purpose event.

159

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.7.15.1

Interface to General Purpose Event Handlers

| Definition of the handler interface for General Purpose Events.

typedef
UINT32 (*ACPI_GPE_HANDLER) (
void *Context)
PARAMETERS
Context The Context val ue that was passed as a parameter to the
Acpilnstall GpeHandler function.
RETURN VALUE
Flags Return flags, defined as follows:

ACPI_REENABLE_GPE: If thisflagis set, ACPICA will
automatically and immediately clear and re-enable the GPE.
Use this option only if the GPE has been completely
processed in the handler itself and there will be no
asynchronous processing. Otherwise, the handler should
return zero.

Functional Description:

Thishandler isinstalled via Acpilnstall GpeHandler. It is called whenever the referenced general-
purpose event occurs.

This function executes in the context of an interrupt handler.

Typically, a GPE handler will simply setup and initiate some later asynchronous processing for the
GPE. When the asynchronous processing is complete, the asynchronous thread should call
AcpiFinishGpe to clear and re-enable the GPE.

If the GPE handler does not initiate an asynchronous thread to compl ete the GPE processing and
completes the GPE processing by itself, it should return the ACPI_REENABLE_GPE flag. This
will cause ACPICA to clear and re-enable the GPE immediately upon the handler return. The GPE
handler should never call AcpiFinishGpe directly, since this interface cannot be called from interrupt
level. Use ACPI_REENABLE_GPE instead.

160

ACPI Component Architecture User Guide and Programmer Reference

8.7.16 AcpiRemoveGpeHandler

| Remove an ACPI General-Purpose Event handler.

ACPI_STATUS

AcpiRemoveGpeHandler (
ACPI_HANDLE
UINT32

ACPI_EVENT_HANDLER

PARAMETERS

GpeDevice

GpeNumber

Handler

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NOT_EXIST

Functional Description:

GpeDevice,
GpeNumber,
Handler)

A handle for the parent GPE Block Device of the GPE for
which the handler isto be removed. Specify aNULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPEO and GPEL1) are to be used.

A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Address of the previously installed handler.

Exception code that indicates success or reason for failure.

The handler was successfully removed.
At least one of the following istrue:
The GpeNumber isinvalid.

The Handler pointer isNULL.

The Handler address is not the same as the one that is
installed.

Thereisno handler installed for this general -purpose event.

This function removes a handler for a general-purpose event that was previously installed viaa call

to AcpilnstallGpeHandler.

161

(intel,
ACPI Component Architecture User Guide and Programmer Reference

8.8 Miscellaneous Handler Support

8.8.1 AcpilnstallGlobalEventHandler

| Install a global handler for all ACPI General Purpose and Fixed Events.

ACPI_STATUS
AcpilnstallGlobalEventHandler (
ACPI_GBL_EVENT_HANDLER Handler,

void *Context)
PARAMETERS
Handler Address of the handler to beinstalled.
Context A context value that will be passed to the handler as a
parameter.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The handler was successfully installed.
AE_BAD_PARAMETER The Handler pointer isNULL.
AE_ALREADY_EXISTS A global event handler is already installed.

Functional Description:

Thisfunction installs a global handler for all general purpose and fixed ACPI events. The handler is
invoked at interrupt level. Such a handler isintended to be used to update global data structures
suchs as GPE and fixed event counters.

162

ACPI Component Architecture User Guide and Programmer Reference

88.1.1 Interface to the Global Event Handler

| Definition of the handler interface for the Global Event Handler .

typedef
void (*ACPI_GBL_EVENT_HANDLER) (
UINT32 EventType,
ACPI_HANDLE Device,
UINT32 EventNumber,
void *Context)
PARAMETERS
EventType Type of this ACPI event. Currently, general purpose (GPE)

and fixed events are supported. One of the following
manifest constants:

ACPI_EVENT_TYPE_GPE
ACPI_EVENT_TYPE_FIXED

Device For GPE Block Devices, thisisthe parent device for the
GPE. This parameter isNULL for FADT-defined GPEs and
Fixed Events (ACPI_EVENT_TYPE_FIXED).

EventNumber For GPEs, thisis the GPE number relative to the GPE
Device. For Fixed Events, thisisthe Fixed Event type, one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Context The Context val ue that was passed as a parameter to the
Acpilnstall Global EventHandl er function.

RETURN VALUE

None

Functional Description:

Thishandler isinstalled via Acpilnstall Global EventHandler. It is called whenever a general purpose

or fixed ACPI event occurs.

This function executes in the context of an interrupt handler.

163

ACPI Component Architecture User Guide and Programmer Reference

8.8.2 AcpilnstallNotifyHandler

| Install a handler for notification eventson an ACPI object.

ACPI_STATUS

AcpilnstalINotifyHandler (
ACPI_HANDLE
UINT32

ACPI_NOTIFY_HANDLER

void

PARAMETERS

Object

Type

Handler

Context

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_ALREADY_EXISTS

Object,

Type,
Handler,
*Context)

A Handle to the object for which notify events will be
handled. Notifies on this object will be dispatched to the
handler. If ACPI_ROOT_OBJECT is specified, the handler
will become a global handler that receives al (system wide)
notifications of the Type specified. Otherwise, this object
must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

Specifies the type of notifications that are to be received by
this handler:

ACPI_SYSTEM_NOTIFY — Notification values
from Ox00 to Ox7F.

ACPI_DEVICE_NOTIFY — Notification values
from 0x80 to OxFF.

Address of the handler to be installed.

A context value that will be passed to the handler as a
parameter.

Exception code that indicates success or reason for failure.

The handler was successfully installed.
At least one of the following istrue:
The Object handleisinvalid.

The Typeisnot avalid value.

The Handler pointer isNULL.

A handler for notifications on this object is aready installed.

164

(inte!
ACPI Component Architecture User Guide and Programmer Reference

AE _TYPE The type of the Object is not one of the supported object
types.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function installs a handler for notify events on an ACPI object. According to the ACPI
specification, the only objects that can receive notifications are Devices and Thermal Zones.

A global handler for each notify type may be installed by using the ACPI_ROOT_OBJECT constant
as the object handle. When anotification isreceived, it isfirst dispatched to the global handler (if
there isone), and then to the device-specific notify handler (if there is one)

8.8.2.1 Interface to Notification Event Handlers

| Definition of the handler interface for Notification Events.

typedef
void (*ACPI_NOTIFY_HANDLER) (
ACPI_HANDLE Device
UINT32 Value,
void *Context)
PARAMETERS
Device A handle for the device on which the notify occurred.
Value The notify value that was passed as a parameter to the AML
notify operation.
Context The Context value that was passed as a parameter to the
AcpilnstallNotifyHandler function.
RETURN VALUE
None

Functional Description:

Thishandler isinstalled via AcpilnstalINotifyHandler. It is called whenever a notify occurs on the
target object. If the handler isinstalled as a global notification handler, it is called for every notify of
the type specified when it was installed.

This function does not execute in the context of an interrupt handler.

165

ACPI Component Architecture User Guide and Programmer Reference

8.8.3 AcpiRemoveNotifyHandler

| Remove a handler for ACPI notification events.

ACPI_STATUS

AcpiRemoveNotifyHandler (
ACPI_HANDLE
UINT32

ACPI_NOTIFY_HANDLER

PARAMETERS

Object

HandlerType

Handler

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NOT_EXIST

AE_TYPE

Object,

Type,
Handler)

A handle to the object for which a notify handler will be

removed. If ACPI_ROOT_OBJECT is specified, the global

handler of the Type specified is removed. Otherwise, this

object must be one of the following types:
ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

Specifies the type of notify handler to be removed:

ACPI_SYSTEM_NOTIFY — Notification values
from Ox00 to Ox7F.

ACPI_DEVICE_NOTIFY — Notification values
from 0x80 to OxFF.

Address of the previously installed handler.

Exception code that indicates success or reason for failure.

The handler was successfully removed.
At least one of the following istrue:
The Object handleisinvalid.

The Handler pointer is NULL.

The Handler address is not the same asthe one that is
installed.

Thereisno handler installed for notifications on this object.

The type of the Object is not one of the supported object
types.

166

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

This function removes a handler for notify events that was previoudly installed viaacall to

AcpilnstallNotifyHandler.

8.8.4 AcpilnstallAddressSpaceHandler

| Ingtall handlersfor ACPI Operation Region events.

ACPI_STATUS

AcpilnstallAddressSpaceHandler (

ACPI_HANDLE

ACPI_ADR_SPACE_TYPE

Object,
Spaceld,

ACPI_ADR_SPACE_HANDLER Handler,

ACPI_ADR_SPACE_SETUP

void

PARAMETERS

Object

Spaceld

Handler

Setup

Context

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

Setup,
*Context)

A handle for the object for which a address space handler

will beinstalled. This object may be specified asthe

ACPI_ROOT_OBJECT to request global scope. Otherwise,

this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

The ID of the Address Space or Operation Region to be

managed by this handler.

Address of the handler to be installed if the special value

ACPI_DEFAULT_HANDLER is used the handler

supplied with by the ACPICA for that address space will be

installed.

Address of a start/stop initialization/termination function

that is called when the region first becomes available and

aso if and when it becomes unavailable.

A context value that will be passed to the handler as a

parameter.

Exception code that indicates success or reason for failure.

The handler was successfully installed.

At least one of the following istrue:

167

ACPI Component Architecture User Guide and Programmer Reference

The object handle does not refer to an object of type Device,
Processor, Thermal Zone, or the root object.

The Spaceld isinvalid.

The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this address space or operation region is
already installed.
AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an

address space that has no default handler.

AE_NO_MEMORY There was insufficient memory to install the handler.

Functional Description:

Thisfunction installs a handler for an Address Space.

NOTE: Thisfunction should only be called after AcpiEnableSubsystem has been called. Thisis
because any REG methods associated with the Space ID are executed here, and these methods can
only be safely executed after the default handlers have been installed and the hardware has been
initialized (via AcpiEnableSubsystem.)

8.84.1 Interface to Address Space Setup Handlers

Definition of the setup (Address Space start/stop) handler interface for Operation Region

Events.
typedef
void (*ACPI_ADR _SPACE_SETUP) (
ACPI_HANDLE Region,
UINT32 Function
void *Handler Context)
void **ReturnContext)
PARAMETERS
Region A handleto the region that isinitializing or terminating.
Function The type of function to be performed; must be one of the
following manifest constants:
ACPI_REGION_ACTIVATE (init)
ACPI_REGION_DEACTIVATE (terminate)
HandlerContext An address space specific Context value. Typically thisis
the context that was passed as a parameter to the
Acpilnstall AddressSpaceHandler function.
ReturnContext An address space specific Context value. This context

subsumes the HandlerContext, and this is the context value
that is passed to the actual address space handler routine.

168

8.8.4.2

RETURN VALUE

None

Functional Description:

ACPI Component Architecture User Guide and Programmer Reference

Thishandler isinstalled via Acpilnstall AddressSpaceHandler. It isinvoked to both initialize and
terminate the operation region handling code. The setup handler isfirst invoked with afunction
value of ACPI_REGION_ACTIVATE upon the first access to the region from AML code. It is
called again with a function value of ACPI_REGION_DEACTIVATE just before the address

space handler is removed.

This function does not execute in the context of an interrupt handler.

Interface to Address Space Handlers

| Definition of the handler interface for Operation Region Events.

typedef

void (*ACPI_ADR _SPACE_HANDLER) (

UINT32

ACPI_PHYSICAL ADDRESS
UINT32

UINT64

void

void

PARAMETERS

Function

Address

BitWidth

Value

HandlerContext

RegionContext

RETURN VALUE

None

Function,
Address,
BitWidth,
*Value,
*Handler Context,
*RegionContext)

The type of function to be performed; must be one of the
following manifest constants:

ADDRESS_SPACE_READ
ADDRESS_SPACE_WRITE

A space-specific address where the operation isto be
performed.

The width of the operation, typically 8, 16, 32, or 64.

A pointer to the value to be written (WRITE), or where the
value that was read should be returned (READ).

An address space specific Context value. Typically thisis
the context that was passed as a parameter to the
Acpilnstall AddressSpaceHandler function.

An operation region specific context. Created during the
region setup.

169

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

Thishandler isinstalled via Acpilnstall AddressSpaceHandler. It isinvoked whenever AML code
attempts to access the target Operation Region.

This function does not execute in the context of an interrupt handler.

8.8.4.3 Context for the Default PCI Address Space Handler

| Definition of the context required for installation of the default PCI address space handler.

UINT32 PCIl Context

Where PCIContext contains the PCI bus number and the PCI segment number. The bus number isin
the low 16 bits and the segment number in the high 16 bits.

8.8.5 AcpiRemoveAddressSpaceHandler

| Remove an ACPI Operation Region handler.

ACPI_STATUS

AcpiRemoveAddressSpaceHandler (
ACPI_HANDLE Object,
ACPI_ADR_SPACE_TYPE Spaceld,
ACPI_ADR _SPACE_HANDLER Handler)

PARAMETERS

Object A handle for the object for which a address space handler
will beinstalled. This object may be specified asthe
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

Spaceld The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following istrue:

170

8.8.6

ACPI Component Architecture User Guide and Programmer Reference

The object handle does not refer to an object of type Device,

Processor, Thermal Zone, or the root object.
The Spaceld isinvalid.
The Handler pointer isNULL.

The Handler address is not the same as the one that is
installed.

AE _NOT_EXIST Thereisno handler installed for this address space or
operation region.

Functional Description:

This function removes a handler for an Address Space or Operation Region that was previousy
installed viaa call to Acpilnstall AddressSpaceHandler.

AcpilnstallExceptionHandler

| Install a handler for ACPI interpreter run-time exceptions.

ACPI_STATUS
AcpilnstallExceptionHandler (
ACPI_EVENT_HANDLER Handler)

PARAMETERS

Handler Address of the handler to be installed.
RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The handler was successfully installed.

AE BAD PARAMETER At least one of the following istrue:

The Handler pointer isNULL.
AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

Functional Description:

Thisfunction installs a global handler for exceptions generated during the execution of control
methods. Useful for error logging and debugging.

171

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.8.6.1 Interface to Exception Handlers

| Definition of the handler interface for General Purpose Events.

typedef
ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) (
ACPI_STATUS AmlStatus,
ACPI_NAME Name,
UINT16 Opcode,
UINT32 AmIOffset,
void *Context)
PARAMETERS
AmlStatus The exception code that was raised.
Name Name of the executing control method.
Opcode AML opcode whose execution caused the exception.
AmlOffset Offset of the AML opcode within the control method.
Context Reserved for future use. Currently NULL.

RETURN VALUE

None

Functional Description:

Thishandler isinstalled via AcpilnstallExceptionHandler. It is called whenever an exception is
raised within the AML interpreter during control method execution.

The ACPI_STATUS that is returned by the handler is then used by the AML interpreter instead of
the original exception code.

172

ACPI Component Architecture User Guide and Programmer Reference

8.9 ACPI Resource Management

8.9.1 AcpiGetCurrentResources

| Get the current resour ce list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetCurrentResour ces (
ACPI_HANDLE Device,
ACPI_BUFFER *QutBuffer)
PARAMETERS
Device A handle to adevice object for which the current resources
areto be returned.
OutBuffer A pointer to alocation where the current resource list isto
be returned.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The resource list was successfully returned.
AE BAD PARAMETER At least one of the following istrue:

The Device handleisinvalid.
The OutBuffer pointer isNULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer istoo
small to hold the resource list. Upon return, the Length field
contains the minimum required buffer length.

AE TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource datais placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

173

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.9.2

AcpiGetPossibleResources

| Get the possible resour ce list associated with an ACPI-related device.

ACPI_STATUS

AcpiGetPossibleResour ces (
ACPI_HANDLE
ACPI_BUFFER

PARAMETERS

Device

OutBuffer

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_BUFFER_OVERFLOW

AE_TYPE

Functional Description:

Device,
*QutBuffer)

A handle to adevice object for which the possible resources
are to be returned.

A pointer to alocation where the possible resource list isto
be returned.

Exception code that indicates success or reason for failure.

The resource list was successfully returned.

At least one of the following istrue:

The Device handleisinvalid.

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

The Length field of OutBuffer indicates that the buffer istoo

small to hold the resource table. Upon return, the Length

field contains the minimum required buffer length.

The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Thisfunction obtains the list of the possible resources for a specific device. The caller must first
acquire ahandle for the desired device. The resource datais placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial

resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

174

8.9.3

ACPI Component Architecture User Guide and Programmer Reference

AcpiSetCurrentResources

| Set the current resource list associated with an ACPI-related device.

ACPI_STATUS

AcpiSetCurrentResour ces (
ACPI_HANDLE
ACPI_BUFFER

PARAMETERS

Device

Buffer

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_TYPE

Functional Description:

Device,
*Buffer)

A handle to a device object for which the current resource
list isto be set.

A pointer to an ACPI_BUFFER containing the resourcesto
be set for the device.

Exception code that indicates success or reason for failure.

The resources were set successfully.
At least one of the following istrue:
The Device handleisinvalid.

The InBuffer pointer isNULL.

The Pointer field of InBuffer is NULL.
The Length field of InBuffer is zero.

The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

This function sets the current resources for a specific device. The caller must first acquire ahandle
for the desired device. The resource data is passed to the routine the buffer pointed to by the

InBuffer variable.

175

ACPI Component Architecture User Guide and Programmer Reference

8.9.4 AcpiGetIRQRoutingTable

| Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetlRQRoutingTable (
ACPI_HANDLE Device,
ACPI_BUFFER *QutBuffer)
PARAMETERS
Device A handle to adevice object for which the IRQ routing table
isto be returned.
OutBuffer A pointer to alocation where the IRQ routing tableisto be
returned.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The system information list was successfully returned.
AE_BAD_PARAMETER At least one of the following istrue:

The Device handleisinvalid.
The OutBuffer pointer isNULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer isNULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the IRQ table. Upon return, the Length
field contains the minimum required buffer length.

AE TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute the
_PRT method contained in the scope of the device whose handle is passed as a parameter.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

176

ACPI Component Architecture User Guide and Programmer Reference

8.9.5 AcpiGetVendorResource

| Find a resour ce of type Vendor -Defined

ACPI_STATUS
AcpiGetVendor Resour ce (
ACPI_HANDLE
char
ACPI_VENDOR_UUID
ACPI_BUFFER

PARAMETERS

Device

Name

Uuid

OutBuffer

RETURN VALUE

Status

EXCEPTIONS
AE_OK
AE_BAD_PARAMETER

AE_NOT_EXIST

Functional Description:

Device,
*Name,
*Uuid,
*QutBuffer)

A handle to the parent Device that owns the vendor
resource.

Name of the parent resourcelist (CRSor _PRS).
A pointer to the UUID to be matched. The

ACPI_VENDOR_UUID structure includes both the subtype
and the 16-byte UUID.

Where the vendor resource is returned.

Exception code that indicates success or reason for failure.

The vendor resource was successfully acquired.
At least one of the following istrue:
The DeviceHandleisinvalid.

The Name does not refer toa_ CRS or _ PRS control
method.

The OutBuffer of UUID pointer isNULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer isNULL.

The Name could not be found.

This function retrieves a resource of type vendor-defined that matches the supplied UUID and

UUID subtype.

177

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.9.6 AcpiResourceToAddress64

| Convert an addressresour ce descriptor to 64 bits

ACPI_STATUS
AcpiResour ceToAddresst4 (
ACPI_RESOURCE *Resour ce,
ACPI_RESOURCE_ADDRESS64 *QOutResour ce)
PARAMETERS
Resource The resource descriptor to be converted. This resource must
be one of the following types:
ACPI_RESOURCE_TYPE_ADDRESS16
ACPI_RESOURCE_TYPE_ADDRESS32
ACPI_RESOURCE_TYPE_ADDRESS64
OutResource Where the converted resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The resource was successfully converted.

AE_BAD_PARAMETER The resource is not of the correct type.

Functional Description:

This utility function converts resources of type ADDRESS16 and ADDRESS32 to ADDRESS64.
This saves the caller from having to duplicate code for different-sized address descriptors. If the
input descriptor is of type ADDRESS64, a simple copy is performed.

8.9.7 AcpiWalkResources

| Parse an ACPI Resource List.

ACPI_STATUS
AcpiWalkResour ces (
ACPI_HANDLE Device,
char *Name,
ACPI_WALK_ RESOURCE_CALLBACK User Function,
void *User Context)
PARAMETERS
Device A handle to the Device for which one of the resource lists

will be walked:

178

(inte!
ACPI Component Architecture User Guide and Programmer Reference

Name

UserFunction

UserContext

RETURN VALUE

Status
EXCEPTIONS
AE_OK
AE BAD PARAMETER

AE_NO_MEMORY

Functional Description:

Name of aresource method (either a_ CRSor _PRS
method.)

A pointer to a user-written function that is invoked for each
resource object within the resource list. (See the interface
specification for the user function below.)

A value that will be passed as a parameter to the user
function each timeit isinvoked.

Exception code that indicates success or reason for failure.

The event was successfully enabled.

The DeviceHandle isinvalid or the Name does not refer to a
_CRSor _PRS control method.

Insufficient dynamic memory to complete the operation.

Thisfunction retrieves the current or possible resource list for the specified device. The User
Function is called once for each resource in the list — freeing the caller from having to parse the list

itself.

89.7.1 Interface to User Callback Function

| Interfaceto the user function that isinvoked from AcpiWalkResour ces.

ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) (

ACPI_RESOURCE
void

PARAMETERS
Resource

Context

RETURN VALUE

Status

*Resour ce,
*Context)

A pointer to asingle resource within the resource list.

The UserContext value that was passed as a parameter to the
AcpiWalkResources function.

AE_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.
All others Abort the walk with this exception
code.

179

ACPI Component Architecture User Guide and Programmer Reference

8.10

8.10.1

Functional Description:

Thisfunction is called from AcpiWalkResource for each resource object in the resource list.

Memory Management

The ACPICA Core Subsystem provides memory management services that are built upon the
memory management services exported by the OS services layer. If enabled (in debug mode), the
core memory manager tracks and logs each allocation to detect the following conditions:

1) Detect attemptsto release (free) an allocated memory block more than once.

2) Detect memory leaks by keeping alist of all outstanding allocated memory blocks. Thislist
can be examined at any time; however, the best time to find memory leaks is after the
subsystem is shutdown -- any remaining allocations represent leaked blocks.

Do not mix memory manager calls. In other words, if the Acpi* memory manager is used to

allocate memory, do not free memory viathe OS Services Layer (AcpiOsFree), viathe C library
(free), or directly call the host OS memory management primitives.

ACPI_ALLOCATE

| Allocate memory from the dynamic memory pool.

void *
ACPI_ALLOCATE (
ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory cannot be assumed to be
initialized to any particular value or values.

180

ACPI Component Architecture User Guide and Programmer Reference

8.10.2 ACPI_ALLOCATE_ZEROED

| Allocate and initialize memory.

void *
ACPI_ALLOCATE_ZEROED (
ACPI_SIZE Size)
PARAMETERS
Size Amount of memory to allocate.
RETURN VALUE
Memory A pointer to the allocated memory. A NULL pointer is

returned on error.

Functional Description:

This function dynamically allocates and initializes memory. The returned memory is guaranteed to
be initialized to all zeros.

8.10.3 ACPI_FREE

| Free previoudly allocated memory.

void
ACPI_FREE (
void *Memory)
PARAMETERS
Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously alocated via ACPI_ALLOCATE or
ACPI_ALLOCATE_ZEROED.

181

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.11 Formatted Output

8.11.1 Acpilnfo and ACPI_INFO

| Print a for matted infor mation/comment string.

void
Acpilnfo (
const char *M oduleName,
UINT32 LineNumber,
const char *Format,
o)
PARAMETERS
ModuleName The name of the currently executing module or filename.
LineNumber The current line number within the currently executing
module.
Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the Acpi OsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI: (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI INFO macro

The front-end to this function isthe ACPI_INFO macro.
Example: Thefollowing invocation of the ACPI_INFO macro:
ACPI _I NFO ((AE_I NFO, "ACPI CA exanpl e info message"));
Produces this output:
ACPI : ACPI CA exanpl e i nfo nessage
The AE_INFO macro is required and automatically injects the module name and line number into

the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

182

ACPI Component Architecture User Guide and Programmer Reference

8.11.2 AcpiWarning and ACPI_WARNING

| Print a formatted warning string.

void
AcpiWarning (
const char *M oduleName,
UINT32 LineNumber,
const char *Format,
o)
PARAMETERS
ModuleName The name of the currently executing module or filename.
LineNumber The current line number within the currently executing
module.
Format A standard printf-style format string.
RETURN VALUE
None
EXCEPTIONS
None

Functional Description:

This function prints a formatted error message using the Acpi OsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI WARNING macro

The front-end to this function isthe ACPI_ WARNING macro.
Example: Thefollowing invocation of the ACPI_ WARNING macro:
ACPI _WARNI NG ((AE_I NFO, "ACPI CA exanpl e warni ng nmessage"));
Produces this output:
ACPI Warni ng (exanpl es-0187): ACPI CA exanpl e warn nessage [20080926]
The AE_INFO macro isrequired and automatically injects the module name and line number into

the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

183

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.11.3 AcpiError and ACPI_ERROR

| Print aformatted error string.

void
AcpiError (
const char *M oduleName,
UINT32 LineNumber,
const char *Format,
o)
PARAMETERS
ModuleName The name of the currently executing module or filename.
LineNumber The current line number within the currently executing
module.
Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the Acpi OsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI ERROR macro

The front-end to this function isthe ACPI_ERROR macro.
Example: Thefollowing invocation of the ACPI_ERROR macro:
ACPI _ERROR ((AE_I NFO "ACPI CA exanpl e error nmessage"));
Produces this output:
ACPI Error (exanpl es-0187): ACPI CA exanple error nessage [20080926]
The AE_INFO macro isrequired and automatically injects the module name and line number into

the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

184

ACPI Component Architecture User Guide and Programmer Reference

8.11.4 AcpiException and ACPI_EXCEPTION

| Print a formatted error string with decoded ACPICA exception code

void
AcpiException (
const char *M oduleName,
UINT32 LineNumber,
ACPI_STATUS Status,
const char *Format,
o)
PARAMETERS
ModuleName The name of the currently executing module or filename.
LineNumber The current line number within the currently executing
module.
Status ACPICA status to be decoded and displayed.
Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the Acpi OsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Exception (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI EXCEPTION macro

The front-end to this function isthe ACPI_EXCEPTION macro.
Example: Thefollowing invocation of the ACPI_ EXCEPTION macro:

ACPI _EXCEPTI ON ((AE_I NFO, Status, "ACPICA exanple error message"));
Produces this output:

ACPlI Exception (exanpl es-0187): AE_ERROR, ACPI CA status [20080926]
The AE_INFO macro isrequired and automatically injects the module name and line number into

the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

185

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINT

| Print a formatted debug string.

void

AcpiDebugPrint (
UINT32
UINT32
const char
const char
UINT32
const char

)

PARAMETERS
RequestedDebugL evel

LineNumber

FunctionName

RequestedDebugL evel,
LineNumber,
*FunctionName,

*M oduleName,
Componentld,
*Format,

The debug level for this statement. Thisvalue is compared
to the current AcpiDbgL evel mask to determineif this
message will be output or not. Must be one of the following:

ACPI_DB_INIT
ACPI_DB_DEBUG_OBJECT
ACPI_DB_INFO
ACPI_DB_ALL_EXCEPTIONS
ACPI_DB_INIT_NAMES
ACPI_DB_PARSE
ACPI_DB_LOAD
ACPI_DB_DISPATCH
ACPI_DB_EXEC
ACPI_DB_NAMES
ACPI_DB_OPREGION
ACPI_DB_BFIELD
ACPI_DB_TABLES
ACPI_DB_VALUES
ACPI_DB_OBJECTS
ACPI_DB_RESOURCES
ACPI_DB_USER_REQUESTS
ACPI_DB_PACKAGE
ACPI_DB_ALLOCATIONS
ACPI_DB_FUNCTIONS
ACPI_DB_OPTIMIZATIONS
ACPI_DB_MUTEX
ACPI_DB_THREADS
ACPI_DB_IO
ACPI_DB_INTERRUPTS
ACPI_DB_EVENTS
ACPI_DB_ALL

The current line number within the currently executing
module.

The name of the currently executing function.

186

ACPI Component Architecture User Guide and Programmer Reference

ModuleName The name of the currently executing module or filename.
Componentld The ID of the executing component. Currently defined 1Ds
are

ACPI_UTILITIES
ACPI_HARDWARE
ACPI_EVENTS
ACPI_TABLES
ACPI_NAMESPACE
ACPI_PARSER
ACPI_DISPATCHER
ACPI_EXECUTER
ACPI_RESOURCES
ACPI_CA_DEBUGGER
ACPI_OS SERVICES
ACPI_CA_DISASSEMBLER
ACPI_COMPILER
ACPI_TOOLS
ACPI_EXAMPLE
ACPI_DRIVER

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. In addition to the input string, the module name, the line number, and the function name
are added to the output.

The ACPI DEBUG PRINT macro

The front end to the AcpiDebugPrint interface
Example: Thefollowing invocation of the ACPI_ DEBUG_PRINT macro

ACPlI _DEBUG PRI NT ((ACPI _DB_| NFO, "Exanpl e Debug output"));
Produces this output:

exanpl es- 0200 [00] Exanpl es-nain . Exanpl e Debug out put

187

ACPI Component Architecture User Guide and Programmer Reference

8.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

| Print a formatted debug string, with no extra data.

void
AcpiDebugPrintRaw (
UINT32 RequestedDebugL evel,
UINT32 LineNumber,
const char *FunctionName,
const char *M oduleName,
UINT32 Componentld,
const char *Format,
o)
PARAMETERS

See the definition of AcpiDebugPrint

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. The message produced by this function is not embellished with the line number, function
name, and module name asis performed by ACPI_DEBUG_PRINT.

The ACPI DEBUG PRINT RAW macro

The front end to the AcpiDebugPrintRaw interface.

Example: Thefollowing invocation of the ACPI_ DEBUG_PRINT_RAW macro
ACPI _DEBUG PRI NT_RAW ((ACPI _DB_| NFO, "Exanpl e Debug output”));

Produces this output:

Exanpl e Debug out put

8.12 Miscellaneous Utilities

8.12.1 AcpiFormatException

| Return the ASCII name of an ACPI exception code.

const char *
AcpiFormatException (
ACPI_STATUS Status)
PARAMETERS
Status The ACPI status/exception code to be trandated.

188

8.12.2

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE
Exception String A pointer to the formatted exception string.

EXCEPTIONS

None

Functional Description:

This function converts an ACPI exception code into a human-readable string. It returns the
exception name string as the function return value. The string is a const value that does not require
deletion by the caller.

AcpiDebugTrace

| Enable debug tracing of control method execution

ACPI_STATUS
AcpiDebugTrace (
char *Name,
UINT32 DebugL evel,
UINT32 DebugL ayer,
UINT32 Flags)
PARAMETERS
Name Name of the control method to be traced. Currently, only a
4-character ACPI name is supported.
DebugL evel The debug level used for the trace.
DebuglL ayer The debug layer used for the trace.
Flags Setsthe type of trace:
1 — One shot trace
0 — Persistent trace
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The system information list was successfully returned.

Functional Description:

This function enables debug tracing of an individual control method.

189

(inte!
ACPI Component Architecture User Guide and Programmer Reference

8.12.3

AcpiGetSystemInfo

| Get global ACPI-related system infor mation.

ACPI_STATUS
AcpiGetSystemlinfo (
ACPI_BUFFER *QutBuffer)
PARAMETERS
OutBuffer A pointer to alocation where the system information is to be
returned.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The system information list was successfully returned.
AE_BAD_PARAMETER At least one of the following istrue:

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is

too small to hold the system information. Upon return, the
Length field contai ns the minimum required buffer length.

Functional Description:

This function obtains information about the current state of the ACPI system. It will return system
information in the OutBuffer structure. Upon completion the Length field of OutBuffer will indicate
the number of bytes copied into the Pointer field of the OutBuffer buffer. This routine will never
return a partial resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.
The structure that is returned in OutBuffer is defined as follows:

t ypedef struct _Acpi Syslnfo

Ul NT32 Acpi CaVer si on;
Ul NT32 Fl ags;

Ul NT32 Ti mer Resol uti on;
Ul NT32 Reservedi;

Ul NT32 Reserved?;

Ul NT32 DebuglLevel ;

Ul NT32 DebuglLayer;

} ACPI _SYSTEM | NFO

190

ACPI Component Architecture User Guide and Programmer Reference

Where:

AcpiCaVersion Version number of the ACPICA core subsystem, in the form
OxYYYYMMDD.

Flags Static information about the system:
ACPI_SYS MODE_ACPI ACPI mode is supported

on this system.

ACPI_SYS MODE_LEGACY Legacy mode is supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either
24 or 32 indicating the corresponding number of bits of
resolution.

DebugL evel Current value of the global variable that controls the debug
output verbosity.

DebuglL ayer Current value of the global variable that controls the internal

layers whose debug output is enabled.

8.12.4 AcpiGetStatistics

| Returns miscellaneous run-time statistics.

ACPI_STATUS
AcpiGetStatistics (
ACPI_STATISTICS *QutStats)

PARAMETERS

OutStats Where the statistics are returned.

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK Statistics were successfully returned.

Functional Description:

This function returns execution statistics of the subsystem. Included are the number of GPEs, SCls,
and Fixed Events. Also, the number of control methods executed.

Thereturned ACPI_STATISTICS structure is shown below:

191

(intel,
ACPI Component Architecture User Guide and Programmer Reference

8.12.5

8.13

8.13.1

t ypedef struct acpi_statistics
Ul NT32 Sci Count ;
Ul NT32 GpeCount ;
Ul NT32 Fi xedEvent Count [ACPI _NUM FI XED_EVENTS] ;
Ul NT32 Met hodCount ;

} ACPI _STATI STI CS;

AcpiPurgeCachedObjects

| Empty all internal object caches.

ACPI_STATUS

AcpiPurgeCachedObjects (
void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The caches were successfully purged.

Functional Description:

This function purges all internal object caches, freeing all memory blocks: It can be used to purge
the cache after particularly large operations, or the cache can be periodically flushed to ensure that
no large amounts of stagnant cache objects are present. It isimplemented by calling
AcpiOsPurgeCache for each of the object caches.

Global Variables

There are several global variables that are useful for ACPICA users.

AcpiDbgLevel & AcpiDbgLayer

These globals control the debug output mechanism. AcpiDbgLevel specifies the current debug level
and AcpiDbgLayer specifies which ACPICA components will output debug information.

See the description of ACPI_DEBUG_PRINT for more information.

192

intel
b ACPI Component Architecture User Guide and Programmer Reference

8.13.2 AcpiGbl_FADT

Thisisalocal copy of the system FADT, converted to acommon internal format. ACPI-related

device drivers often require information directly from the FADT. The table can be directly accessed
viathis symbol.

8.13.3 AcpiCurrentGpeCount

The current number of active (available) system GPEs. Thisincludes the GPE blocks defined in the
FADT, aswell asany installed GPE block devices. Thisisa dynamic value that can increase or
decrease as GPE block devices are installed or removed. This value also serves as the maximum
index value for the Acpi GetGpeDevice interface.

8.13.4 AcpiGbl_SystemAwakeAndRunning

Thisboolean is set to FALSE just before the system sleeps. It isthen set to TRUE as the system
wakes.

193

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9

9.1

9.1.1

OS Services Layer - External
Interface Definition

This section contains the definitions of the interfaces that must be exported by the OS Services
Layer. The ACPICA Core Subsystem requiresthat all of these interfaces be present. All interfaces
to the OS Services Layer that are intended for use by the ACPICA Core Subsystem are prefixed by
the letters “AcpiOs”.

Only the external definitions of the AcpiOs* interfaces are clearly defined by this document. The
actual implementation of the services and interfacesis by definition OS dependent and may be very
different for different operating systems.

Environmental and ACPI Tables

AcpiOsinitialize

| Initializethe OSL subsystem.

ACPI_STATUS

AcpiOslnitialize (
void)

PARAMETERS

None

RETURN VALUE

Status Initialization status.

Functional Description:

Thisfunction allowsthe OSL to initidize itself. It is called during initialization of the ACPICA
subsystem.

194

ACPI Component Architecture User Guide and Programmer Reference

9.1.2 AcpiOsTerminate

| Terminatethe OSL subsystem.

ACPI_STATUS
AcpiOsTerminate (
void)

PARAMETERS

None

RETURN VALUE

Status Termination status.

Functional Description:

This function allows the OSL to cleanup and terminate. It is called during termination of the
ACPICA subsystem.

9.1.3 AcpiOsGetRootPointer

| Obtain the Root ACPI table pointer (RSDP).

ACPI_PHYSICAL_ADDRESS
AcpiOsGetRootPointer (

void)
PARAMETERS

None.

RETURN VALUE
Address The physical address of the RSDP.

Functional Description:

This function returns the physical address of the. ACPlI RSDP (Root System Description Pointer)
table. The mechanism used to obtain this pointer is platform and/or OS dependent. There are two
primary methods used to obtain this pointer and thus implement thisinterface:

1) On 1A-32 platforms, the RSDP is obtained by searching the first megabyte of physical memory
for the RSDP signature (“RSD PTR “). On these platforms, thisinterface should be implemented via
acall to the AcpiFindRootPointer interface.

2) On |A-64 platforms, the RSDP is obtained from the EFI (Extended Firmware Interface). The
pointer in the EFI information block that is passed to the OS at OS startup.

195

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.14 AcpiOsPredefinedOverride

| Allow the host OSto override a predefined ACPI object.

ACPI_STATUS
AcpiOsPredefinedOverride (
const ACPI_PREDEFINED_NAMES *PredefinedObject,

ACPI_STRING *NewValue)

PARAMETERS
PredefinedObject A pointer to a predefined object (name and initial value.)
NewValue Where a new value for the predefined object is returned.

NULL if thereis no override for this object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override the predefined objects in the ACPI namespace.

9.1.5 AcpiOsTableOverride

| Allow the host OSto override a firmware ACPI table.

ACPI_STATUS
AcpiOsTableOverride (
ACPI_TABLE_HEADER *ExistingT able,
ACPI_TABLE_HEADER **NewT able)
PARAMETERS
ExistingTable A pointer to the header of the existing ACPI table.
NewTable Where the pointer to the replacement table is returned. The
OSL returns NULL if no replacement is provided.
RETURN VALUE
Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override an ACPI table that was found in the firmware. The host OS
can examine the existing table header for the table signature and version number(s) and decide to
replace it if desired. Note, only the table header is guaranteed to be valid and accessible, not the
entire table. Further, the header is only guaranteed to be valid and accessible for the duration of the
execution of this function. It may be unmapped immediately afterwards.

196

ACPI Component Architecture User Guide and Programmer Reference

The full identification of an ACPI table includes the following header items:

The 4-character ACPI signature
The Revision

Thetable Length

The OEM ID string

The OEM Table ID string

The OEM Revision

ACPI Table Header Definition

typedef struct /* ACPlI common table header */

{
char Signature [4]; /* ldentifies type of table */
Ul NT32 Lengt h; /* Length of table, in bytes, */
* i ncl udi ng header */
Ul NT8 Revi si on; /* Specification mnor version # */
Ul NT8 Checksum /* To make sumof entire table = 0 */
char Cemd [6]; /* CEMidentification */
char CentTabl el d [8]; /* CEMtable identification */
Ul NT32 CenRevi si on; /* CEM revision nunber */
char Asl Compilerld [4]; /* ASL conpiler vendor ID */
Ul NT32 As| Conpi | erRevi sion;/* ASL conpil er revision nunber */

} ACPI _TABLE HEADER;

During initialization, ACPICA will invoke this interface once for each table defined in the
RSDT/XSDT, and once for the DSDT (pointed to by the FADT). Thisincludes al tablesin the
RSDT/XSDT, even tables that are not directly consumed by ACPICA such asECDT, MADT,
SRAT, SLIT, etc., and all of the OEMx tables.

Tablesare installed and AcpiOsTableOverride is called in the order that they appear in the
RSDT/XSDT. This may be important for tables that can have multiple instantiations such as the
SSDT. If the host wishesto replace an individual SSDT, it can keep track of the SSDT
instantiations, or it can differentiate SSDTs based upon the full ACPI table identification described
above.

ACPICA will also call thisinterface for each table that is dynamically loaded viathe L oad AML
operator. Tables that are loaded via this mechanism are typically SSDTs and OEMx tables.

The LoadTable AML operator isused to load the namespace from tables that appear in the
RSDT/XSDT with signatures other than SSDT, typically the OEMx tables that contain executable
AML code. These tables can be replaced during the initialization phase when ACPICA traversesthe
RSDT/XSDT as above. AcpiOsTableOverride is therefore not invoked when al cadTableis
executed.

197

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.2 Memory Management

These interfaces provide an OS-independent memory management interface.

9.2.1 AcpiOsCreateCache

| Create a memory cache object

ACPI_STATUS
AcpiOsCreateCache (
char *CacheName,
UINT16 ObjectSize,
UINT16 M axDepth,
ACPI_CACHE_T **ReturnCache)
PARAMETERS
CacheName An ASCII identifier for the cache. May or may not be used
by the host.
ObjectSize The size of each object in the cache.
MaxDepth Maximum depth of the cache (max number of objects.) May
or may not be used by the host.
ReturnCache Where a pointer to the cache object is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The cache was successfully created.

AE BAD PARAMETER At least one of the following istrue:

The ReturnCache pointer is NULL.
The ObjectSize isless than 16.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function creates a cache object. Many host operating systems have a cache manager that can be
used to implement the cache functions. The ACPICA code uses many dynamic objects of the same
size (such asthe ACPI_OPERAND_OBJECT), and the use of a cache can improve performance
considerably.

198

ACPI Component Architecture User Guide and Programmer Reference

9.2.2 AcpiOsDeleteCache

| Delete a memory cache obj ect.

ACPI_STATUS
AcpiOsDeleteCache (
ACPI_CACHE_T *Cache)
PARAMETERS
Cache The cache object to be deleted.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The cache was successfully created.
AE_BAD_PARAMETER The Cache pointer isNULL.

Functional Description:

This function deletes a cache object that was created via Acpi OsCreateCache. Any objects currently
within the cache must also be deleted.

9.2.3 AcpiOsPurgeCache

| Free all objects currently within a cache object.

ACPI_STATUS
AcpiOsPurgeCache (
ACPI_CACHE_T *Cache)
PARAMETERS
Cache The cache object to be deleted.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The cache was successfully created.
AE_BAD_PARAMETER The Cache pointer isNULL.

199

(intel,
ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

Thisfunction deletes all objects that currently reside within a cache.

9.2.4 AcpiOsAcquireObject

| Acquire an object from a cache.

void *
AcpiOsAcquireObject (
ACPI_CACHE_T *Cache)
PARAMETERS
Cache The cache object from which to acquire an object.

RETURN VALUE

Object A pointer to a cache object. NULL if the object could not be
acquired.

EXCEPTIONS

NULL isreturned if an object could not be acquired.

Functional Description:

This function acquires an object from the specified cache.

9.25 AcpiOsReleaseObject

| Release an object to a cache.

ACPI_STATUS
AcpiOsReleaseObject (
ACPI_CACHE_T *Cache,
void *Obj ect)
PARAMETERS
Cache The cache object to which the object will be released.
Object The object to be released.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

200

ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The cache was successfully created.
AE_BAD_PARAMETER The Cache or Object pointer isNULL.

Functional Description:

This function releases an object back to the specified cache. It must have been previously acquired
from the same cache via AcpiOsAcquireObject.

9.2.6 AcpiOsMapMemory

| Map physical memory into the caller’s address space.

void *
AcpiOsM apM emory (
ACPI_PHYSICAL_ADDRESS PhysicalAddress,

ACPI_SIZE Length)
PARAMETERS
Physical Address A full physical address of the memory to be mapped into the

caller’'s address space.

Length The amount of memory to be mapped starting at the given
physical address.

RETURN VALUE

LogicalAddress Pointer to the mapped memory. A NULL pointer indicates
failure,

EXCEPTIONS

NULL isreturned if there was a mapping failure.

Functional Description:

This function maps a physical address into the caller’s address space. A logical pointer is returned.

201

(intel,
ACPI Component Architecture User Guide and Programmer Reference

9.2.7 AcpiOsUnmapMemory

| Remove a physical to logical memory mapping.

void
AcpiOsUnmapMemory (
void *LogicalAddress,
ACPI_SIZE Length)
PARAMETERS
LogicalAddress The logical address that was returned from a previous call to
AcpiOsMapMemory.
Length The amount of memory that was mapped. This value must
be identical to the value used in the cal to
AcpiOsMapMemory.
RETURN VALUE
None

Functional Description:

This function del etes a mapping that was created by AcpiOsMapMemory.

9.2.8 AcpiOsGetPhysicalAddress

| Translate a logical addressto a physical address.

ACPI_STATUS
AcpiOsGetPhysicalAddress (
void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
PARAMETERS
LogicalAddress The logical addressto be trandated.
Physical Address The physical memory address of the logical address.
RETURN VALUE
AE_OK The logical address translation was successfully.
AE_ERROR An error occurred in the trand ation system call.
AE_BAD_PARAMETER One or both of the parameters are NULL, no trandation was

attempted.

202

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function trandates alogical addressto its physical address location.

9.2.9 AcpiOsAllocate

| Allocate memory from the dynamic memory pool.

void *
AcpiOsAllocate (
ACPI_SIZE Size)
PARAMETERS
Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory is not assumed to be initialized
to any particular value or values.

9.2.10 AcpiOsFree

| Free previously allocated memory.

void
AcpiOsFree (
void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via Acpi OsAll ocate.

203

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.2.11 AcpiOsReadable

| Check if a memory region isreadable.

BOOLEAN

AcpiOsReadable (
void
ACPI_SIZE

PARAMETERS
Memory

Length

RETURN VALUE
TRUE
FALSE

Functional Description:

*Memory
Length)

A pointer to the memory region to be checked.

The length of the memory region, in bytes.

If the entire memory region is readable without faults.

If one or more bytes within the region are unreadable.

This function validates that a pointer to amemory region is valid and the entire region is readable.
Used to validate input parameters to the ACPICA subsystem.

9.2.12 AcpiOsWritable

| Check if amemory region iswritable (and readable).

BOOLEAN

AcpiOsWritable (
void
ACPI_SIZE

PARAMETERS
Memory

Length

RETURN VALUE
TRUE

FALSE

*Memory,
Length)

A pointer to the memory region to be checked.

The length of the memory region, in bytes.

If the entire memory region is both readable and writable
without faults

If one or more bytes within the region are unreadable or
unwritable.

204

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is both
writable and readable. Used to validate input parameters to the ACPICA subsystem..

9.3 Multithreading and Scheduling Services

9.3.1 AcpiOsGetThreadld

| Obtain the I D of the currently executing thread.

ACPI_THREAD_ID
AcpiOsGetThreadld (
void)

PARAMETERS

None

RETURN VALUE

Threadld A unigque non-zero value that represents the ID of the
currently executing thread. For single threaded
implementations, a constant integer > zero is acceptable.
The value OXFFFFFFFFFFFFFFFF (-1) is reserved and
must not be returned by thisinterface.

Functional Description:

This function returns the ID of the currently executing thread. The value must be non-zero and must
be unique to the executing thread. The ACPI_THREAD_ID isan unsigned, 64-hit value. Itisup to
the host OSL to cast the native thread ID to an ACPI_THREAD _ID.

A 64-bit ACPI_THREAD_ID isused since it is the only data type that can be used to handle all of
the various native thread 1D types (32-bit integer, 64-bit integer, 32-bit pointer, 64-bit pointer.)

9.3.2 AcpiOsExecute

| Schedule a procedure for deferred execution.

ACPI_STATUS

AcpiOsExecute (
ACPI_EXECUTE_TYPE Type,
ACPI_OSD_EXEC_CALLBACK Function,
void *Context)

205

(inte!
ACPI Component Architecture User Guide and Programmer Reference

PARAMETERS

Type Type of the callback function:

OSL_GLOBAL_LOCK_HANDLER
OSL_NOTIFY_HANDLER
OSL_GPE_HANDLER
OSL_DEBUGGER_THREAD
OSL_EC_POLL_HANDLER
OSL_EC_BURST_HANDLER

Function Address of the procedure to execute.

Context A context value to be passed to the called procedure.

RETURN VALUE

Status Exception code that indicates success or reason for
failure.
EXCEPTIONS
AE_OK The procedure was successfully queued for execution by

the host operating system. This does not indicate that the
procedure has actually executed, however.

AE_BAD_PARAMETER At least one of the following istrue:
The Priority isinvalid.

The Function pointer is NULL.

Functional Description:

This function queues a procedure for later scheduling and execution.

9.3.3 AcpiOsSleep

| Suspend the running task (course granularity).

void
AcpiOsSleep (
UINT64 Milliseconds)

PARAMETERS

Milliseconds The amount of time to sleep, in milliseconds.

RETURN VALUE

None

206

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function seeps for the specified time. Execution of the running thread is suspended for this
time. The deep granularity is one millisecond.

9.34 AcpiOsStall

| Wait for a short amount of time (fine granularity).

void
AcpiOsStall (
UINT32 Microseconds)
PARAMETERS
Microseconds The amount of time to delay, in microseconds.

RETURN VALUE

None

Functional Description:

This function waits for the specified time. Execution of the running thread is not suspended for this
time. The time granularity is one microsecond.

9.4 Mutual Exclusion and Synchronization

Thread synchronization and locking.

Theseinterfaces MUST perform parameter validation of the input handle to at least the extent of
detecting a null handle and returning the appropriate exception.

94.1 AcpiOsCreateMutex

| Createamutex object.

ACPI_STATUS
AcpiOsCreateM utex (
ACPI_MUTEX *QutHandle)
PARAMETERS
OutHandle A pointer to alocation where a handle to the mutex isto be

returned.

207

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The mutex was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_ NO MEMORY Insufficient memory to create the mutex.

Functional Description:

Create a mutex object. Some host operating systems have separate mutex interfaces that can be used
to implement this and the other OSL mutex interfaces. If not, the the mutex interfaces can be

implemented with semaphore interfaces.

9.4.2 AcpiOsDeleteMutex

| Delete a mutex object.

void
AcpiOsDeleteM utex (
ACPI_MUTEX Handle)

PARAMETERS
Handle The mutex to be deleted.

RETURN VALUE

None.

Functional Description:

Deletes a mutex object.

9.4.3 AcpiOsAcquireMutex

| Acquire owner ship of a mutex obj ect.

ACPI_STATUS
AcpiOsAcquireMutex (

ACPI_MUTEX Handle,

UINT16 Timeout)
PARAMETERS

Handle The mutex to be acquired.

208

9.4.4

ACPI Component Architecture User Guide and Programmer Reference

Timeout How long the caller iswilling to wait for the requested
units. The timeout is specified in milliseconds. A value of
OxFFFF (-1) indicates that the calling thread is willing to

wait forever.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The mutex was successfully acquired.
AE BAD PARAMETER The Handle pointer is NULL.

Functional Description:

Acquire ownership of a mutex object.

AcpiOsReleaseMutex

| Release owner ship of a mutex object.

void
AcpiOsReleaseM utex (

ACPI_MUTEX Handle)
PARAMETERS

Handle The mutex to be released.

RETURN VALUE

None

Functional Description:

Release a mutex object. The mutex must have be previously acquired via AcpiOsAcquireMutex.

209

ACPI Component Architecture User Guide and Programmer Reference

9.4.5 AcpiOsCreateSemaphore

| Create a semaphore.

ACPI_STATUS

AcpiOsCreateSemaphore (
UINT32 MaxUnits,
UINT32 InitialUnits,

ACPI_SEMAPHORE
PARAMETERS

MaxUnits

InitialUnits

OutHandle

RETURN VALUE

Status

EXCEPTIONS
AE_OK

AE_BAD_PARAMETER

AE_NO_MEMORY

Functional Description:

*QutHandle)

The maximum number of units this semaphore will be
required to accept.

Theinitial number of unitsto be assigned to the semaphore.

A pointer to alocation where a handle to the semaphore is
to be returned.

Exception code that indicates success or reason for failure.

The semaphore was successfully created.
At least one of the following istrue:

The InitialUnitsisinvalid.

The OutHandle pointer is NULL.

Insufficient memory to create the semaphore.

Create a standard semaphore. The MaxUnits parameter allows the semaphore to be tailored to
specific uses. For example, a MaxUnits value of one indicates that the semaphore isto be used as a
mutex. The underlying OS object used to implement this semaphore may be different than if
MaxUnitsis greater than one (thus indicating that the semaphore will be used as a general purpose
semaphore.) The ACPICA Core Subsystem creates semaphores of both the mutex and general-

purpose variety.

210

ACPI Component Architecture User Guide and Programmer Reference

9.4.6 AcpiOsDeleteSemaphore

| Delete a semaphore.

ACPI_STATUS
AcpiOsDeleteSemaphore (
ACPI_SEMAPHORE Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The semaphore was successfully deleted.

AE_BAD_PARAMETER TheHandleisinvalid.

Functional Description:

Delete a semaphore.

9.4.7 AcpiOsWaitSemaphore

| Wait for unitsfrom a semaphore.

ACPI_STATUS
AcpiOsWaitSemaphore (
ACPI_SEMAPHORE Handle,
UINT32 Units,
UINT16 Timeout)
PARAMETERS
Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.
Units The number of unitsthe caller is requesting.
Timeout How long the caller iswilling to wait for the requested

units. The timeout is specified in milliseconds. A value of
OxFFFF (-1) indicates that the calling thread is willing to
wait forever.

211

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The requested units were successfully received.
AE_BAD_PARAMETER TheHandleisinvalid.
AE_TIME The units could not be acquired within the specified time
limit.

Functional Description:

Wait for the specified number of units from a semaphore.

I mplementation notes:

1. Theimplementation of thisinterface must support timeout values of zero. Thisis frequently
used to determine if a call to the interface with an actual timeout value would block. In this
case, AcpiOsWaitSemaphore must return either an E_OK if the units were obtained
immediately, or an AE_TIME to indicate that the requested units are not available. Single
threaded OSL implementations should always return AE_OK for thisinterface.

2. Theimplementation must also support arbitrary timed waits in order for ASL functions such
as Wait () to work properly.

9.4.8 AcpiOsSignalSemaphore

| Send unitsto a semaphore.

ACPI_STATUS
AcpiOsSignal Semaphore (

ACPI_SEMAPHORE Handle,

UINT32 Units)
PARAMETERS

Handle A handle to a semaphore object that was returned by a

previous call to AcpiOsCreateSemaphore.

Units The number of units to send to the semaphore.
RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The semaphore was successfully signaled.

AE BAD PARAMETER The Handleisinvalid.

212

9.4.9

9.4.10

ACPI Component Architecture User Guide and Programmer Reference

AE_LIMIT The semaphore has already been signaled MaxUnits times.
No more units can be accepted.

Functional Description:

Send the requested number of units to a semaphore. Single threaded OSL implementations should
always return AE_OK for thisinterface.

AcpiOsCreateLock

| Create a spin lock.

ACPI_STATUS

AcpiOsCreatelock (
ACPI_SPINLOCK *QutHandle)

PARAMETERS
OutHandle A pointer to alocation where a handle to the lock isto be

returned.

RETURN VALUE
Status Exception code that indicates success or reason for failure.

EXCEPTIONS
AE_OK The semaphore was successfully created.
AE BAD PARAMETER The OutHandle pointer is NULL.
AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a spin lock. Spin locks are used in the ACPICA subsystem only when there is requirement
for mutual exclusion on data structures that are accessed by both interrupt handlers and normal code.

AcpiOsDeleteLock

| Delete a spin lock.

void
AcpiOsDeletelock (
ACPI_HANDLE Handle)
PARAMETERS
Handle A handle to alock object that was returned by a previous

call to AcpiOsCreatel ock.

213

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

None Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The Lock was successfully del eted.

AE_BAD_PARAMETER TheHandleisinvalid.

Functional Description:

Delete a spin lock.

9.4.11 AcpiOsAcquireLock

| Acquirea spin lock.

ACPI_CPU_FLAGS
AcpiOsAcquirel ock (

ACPI_SPINLOCK Handle)
PARAMETERS
Handle A handleto alock object that was returned by a previous

call to AcpiOsCreatel ock.

RETURN VALUE

Flags Platform-dependent CPU flags. To be used when the lock is
released.

Functional Description:

Wait for and acquire a spin lock. May be called from interrupt handlers, GPE handlers, and Fixed
event handlers. Single threaded OSL implementations should always return AE_OK for this
interface.

214

ACPI Component Architecture User Guide and Programmer Reference

9.4.12 AcpiOsReleaselLock

| Release a spin lock.

void
AcpiOsReleaselock (
ACPI_SPINLOCK Handle,
ACPI_CPU_FLAGS Flags)
PARAMETERS
Handle A handleto alock object that was returned by a previous
call to AcpiOsCreatelock.
Flags CPU flags that were returned from Acpi OsAcquirelLock

RETURN VALUE

None Exception code that indicates success or reason for failure.

Functional Description:

Release aprevioudly acquired spin lock. Single threaded OSL implementations should always
return AE_OK for thisinterface.

9.5 Interrupt Handling

Interrupt handler installation and removal.

951 AcpiOslinstallinterruptHandler

| Install a handler for a hardware interrupt level.

ACPI_STATUS
AcpiOsl nstalllnterruptHandler (
UINT32 InterruptLevel,
ACPI_OSD_HANDLER Handler,
void *Context)
PARAMETERS
InterruptLevel Interrupt level that the handler will service.
Handler Address of the handler.
Context A context value that is passed to the handler when the

interrupt is dispatched.

215

ACPI Component Architecture User Guide and Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.
EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following istrue:

The InterruptNumber isinvalid.
The Handler pointer isNULL.

AE_ALREADY_EXISTS A handler for thisinterrupt level isalready installed.

Functional Description:

This function installs an interrupt handler for a hardware interrupt level. The ACPI driver must
install an interrupt handler to service the SCI (System Control Interrupt) which it owns. The
interrupt level for the SCI interrupt is obtained from the ACPI tables.

9511 Interface to OS-independent Interrupt Handlers

| Definition of theinterface for OS-independent interrupt handlers.

typedef
UINT32 (*ACPI_OSD_HANDLER) (
void *Context)
PARAMETERS
Context The Context value that was passed as a parameter to the

AcpiOslnstallInterruptHandler function.

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

ACPI_INTERRUPT_HANDLED
ACPI_INTERRUPT_NOT_HANDLED

Functional Description:

The OS-independent interrupt handler must be called from an OSL interrupt handler “wrapper” that
exists within the OS Services Layer. It isthe responsibility of the OS Services Layer to manage the
installed interrupt handler(s), and dispatch interrupts to the handler(s) appropriately.

216

ACPI Component Architecture User Guide and Programmer Reference

9.5.2 AcpiOsRemovelnterruptHandler

| Remove an interrupt handler.

ACPI_STATUS
AcpiOsRemovel nterruptHandler (
UINT32 InterruptNumber,
ACPI_OSD HANDLER Handler)
PARAMETERS
InterruptNumber Interrupt number that the handler is currently servicing.
Handler Address of the handler that was previoudly installed.
RETURN VALUE
Status Exception code that indicates success or reason for failure.
EXCEPTIONS
AE_OK The handler was successfully removed.
AE BAD PARAMETER At least one of the following istrue:
The InterruptNumber isinvalid.
The Handler pointer isNULL.
The Handler addressis not the same as the one that is
installed.
AE_NOT_EXIST Thereisno handler installed for thisinterrupt level.

Functional Description:

Remove a previously installed hardware interrupt handler.

9.6 Memory Access and Memory Mapped I/O

These interfaces allow the OS Services Layer to implement memory accessin any manner that is
acceptable to the host OS. The actual hardware 1/0 instructions may execute within the OS Services
Layer itself, or these calls may be trandlated into additional OS calls— such as callsto a Hardware
Abstraction Component.

These calls are used by the ACPICA for small amounts of data transfer only, such as memory
mapped 1/0. For large transfers (such as reading the ACPI tables), the ACPICA code will call
AcpiOsMapMemory instead.

Supports Operation Region accessto the ACPI_ADR_SPACE_SYSTEM_MEMORY
(SystemMemory) space.

217

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.6.1 AcpiOsReadMemory

| Read a value from a memory location.

ACPI_STATUS
AcpiOsReadM emory (
ACPI_PHYSICAL_ADDRESS Address,

UINT32 *Value,
UINT32 Width)
PARAMETERS
Address Memory address to be read.
Value A pointer to alocation where the datais to be returned.
Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

Thisfunction is used to read a data from the specified memory location. The datais zero extended to
fill the 32-bit return value even if the bit width of the location is less than 32. In other words, afull
32 bits are written to the return Value regardless of the number of bits that were read from the
memory at Address. The caller must ensure that no data will be overwritten by this call.

9.6.2 AcpiOsWriteMemory

| Writea valueto a memory location.

ACPI_STATUS
AcpiOsWriteMemory (
ACPI_PHYSICAL_ADDRESS Address,

UINT32 Value,
UINT32 Width)

PARAMETERS
Address Memory address where datais to be written.
Value Data to be written to the memory location.
Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

218

intel
b ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function writes data to the specified memory location. If the bit width of the memory location
islessthan 32, only the lower significant bits of the Value parameter are written.

9.7 Port Input/Output

These interfaces allow the OS Services Layer to implement hardware 1/O services in any manner
that is acceptable to the host OS. The actual hardware /O instructions may execute within the OS
Services Layer itself, or these calls may be translated into additional OS calls— such ascallsto a
Hardware Abstraction Component.

Supports Operation Region accessto the ACPI_ADR_SPACE_SYSTEM_10 (SystemlO) space.

The ACPICA subsystem checks each request against a list of protected 1/0O ports before calling these
interfaces.

9.7.1 AcpiOsReadPort

| Read a value from an input port.

ACPI_STATUS
AcpiOsReadPort (
ACPI_IO_ADDRESS Address,
UINT32 *Value,
UINT32 Width)
PARAMETERS
Address Hardware 1/O port address to read from.
Value A pointer to alocation where the datais to be returned.
Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified input port. The data is zero extended to fill the 32-bit
return value even if the bit width of the port isless than 32.

219

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.7.2 AcpiOsWritePort

| Writeavalueto an output port.

ACPI_STATUS
AcpiOsWritePort (
ACPI_IO_ADDRESS Address,
UINT32 Value,
UINT32 Width)
PARAMETERS
Address Hardware 1/O port address to read from.
Value The value to be written.
Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified input port. If the bit width of the port islessthan 32, only
the lower significant bits of the Value parameter are written.

9.8 PCI Configuration Space Access

These interfaces allow the OS Services Layer to implement PCI Configuration Space servicesin any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute within
the OS Services Layer itself, or these calls may be trandated into additional OS calls— such as
callsto a Hardware Abstraction Component.

Supports Operation Region access to the ACPI_ADR_SPACE_PCI_CONFIG (Pci_Config) space.

220

ACPI Component Architecture User Guide and Programmer Reference

9.8.1 AcpiOsReadPciConfiguration

| Read a value from a PCI configuration register.

ACPI_STATUS
AcpiOsReadPciConfiguration (
ACPI_PCI_ID Pcild,
UINT32 Register,
UINT64 *Value,
UINT32 Width)
PARAMETERS
Pcild The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.
Register The PCI register address to be read from.
Value A pointer to alocation where the datais to be returned.
Width The register width in bits, either 8, 16, 32, or 64.
RETURN VALUE
Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified PCI configuration port. The data is zero extended to fill
the 64-bit return value even if the bit width of the location is less than 64.

9.8.2 AcpiOsWritePciConfiguration

| Writeavalueto a PCI configuration register.

ACPI_STATUS
AcpiOsWritePciConfiguration (
ACPI_PCI_ID Pcild,
UINT32 Register,
UINT64 Value,
UINT32 Width)
PARAMETERS
Pcild The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.
Register The PCI register address to be written to.
Value Datato be written.

221

ACPI Component Architecture User Guide and Programmer Reference

9.9

9.9.1

Width The register width in bits, either 8, 16, 32, or 64.
RETURN VALUE
Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified PCI configuration port. If the bit width of the register is
less than 64, only the lower significant bits of the Value are written.

Formatted Output

These interfaces provide formatted stream output. Used mainly for debug output, these functions
may be redirected to whatever output device or fileis appropriate for the host operating system.

AcpiOsPrintf

| For matted stream output.

void ACPI_INTERNAL_VAR_XFACE
AcpiOsPrintf (
const char *Format,
<variable argument list>)

PARAMETERS
Format A standard print format string.
Variable printf parameter list.
RETURN VALUE
None.

Functional Description:

This function provides formatted output to an open stream.

222

ACPI Component Architecture User Guide and Programmer Reference

9.9.2 AcpiOsVprintf

| Formatted stream output.

void
AcpiOsVprintf (
const char *Format,
va list Args)
PARAMETERS
Format A standard printf format string.
Args A variable parameter list.

RETURN VALUE

None

Functional Description:

This function provides formatted output to an open stream viathe va_list argument format.

9.9.3 AcpiOsRedirectOutput

| Redirect the debug output.

void
AcpiOsRedirectOutput (
void *Destination)
PARAMETERS
Destination An open file handle or pointer. Debug output will be

redirected to this handle/pointer. The format of this
parameter is OS-specific.

RETURN VALUE

None

Functional Description:

This function redirects the output of AcpiOsPrintf and AcpiOsV printf to the specified destination.
Usually used to redirect output to afile.

223

(inte!
ACPI Component Architecture User Guide and Programmer Reference

9.10 Miscellaneous

9.10.1 AcpiOsGetTimer

| Get current value of the system timer

UINT64
AcpiOsGetTimer (
void)

PARAMETERS

None.

RETURN VALUE

TimerValue The current value of the system timer in 100-nanosecond
units.

Functional Description:

This function returns the current value of a fine-granularity 64-bit system timer. Thisinterfaceis
used to implement the Timer ASL/AML function.

9.10.2 AcpiOsSignal

| Break to the debugger or display a breakpoint message.

ACPI_STATUS
AcpiOsSignal (
UINT32 Function,
void *Info)
PARAMETERS
Function Signal to be sent to the host operating system — one of these

manifest constants:
ACPI_SIGNAL_FATAL
ACPI_SIGNAL BREAKPOINT

RETURN VALUE

Status Exception code that indicates success or reason for failure.

224

9.10.3

ACPI Component Architecture User Guide and Programmer Reference

Functional Description:

This function is used to pass various signals and notifications to the host operating system. The
following signals are supported:

ACPI SIGNAL FATAL

Thissignal corresponds to the AML Fatal opcode. It is sent to the host OS only when this opcode is
encountered in the AML stream. The host OS may or may not return control from this signal.

The definition of the Info structure for this signal is as follows:

t ypedef struct Acpi FatalInfo

Ul NT32
Ul NT32
Ul NT32

Type;
Code;
Ar gunent ;

} ACPI _SI GNAL_FATAL_I NFO

ACPI SIGNAL BREAKPOINT

Thissignal corresponds to the AML Breakpoint opcode. The OSL implements a “Breakpoint”
operation as appropriate for the host OS. If in debug mode, this interface may cause a break into the

host kernel debugger.

The definition of the Info structure for thissignal is as follows:

char

*Br eakpoi nt Message;

AcpiOsGetLine

| Get ainput line of data.

ACPI_STATUS
AcpiOsGetLine (
char
UINT32
UINT32

PARAMETERS
Buffer
BufferLength
*BytesRead

RETURN VALUE

Status

*Buffer,
BufferL ength,
*BytesRead)

Where to return the input line.
Length of the Buffer (max datato return)

Where the actual byte count is returned.

Exception code that indicates success or reason for failure.

225

(inte!
ACPI Component Architecture User Guide and Programmer Reference

EXCEPTIONS
AE_OK The line was successfully obtained.

AE_BUFFER_OVERFLOW The line was too large for the input buffer.

Functional Description:

Get one line of input from the debugger command line. The purpose of this function isto support
the ACPI Debugger, and it is therefore optional depending on whether ACPI debugger support is

desired.

226

(inte! _ .
ACPI Component Architecture User Guide and Programmer Reference
10 ACPICA Deployment Guide

10.1 Using the ACPICA Core Subsystem Interfaces

10.1.1 Initialization Sequence

In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPICA subsystem. Instead, the subsystem isinitialized in stages, at the times
that are appropriate for the host OS. The following example shows the sequence of initialization
calls that must be made; it is up to the host interface (OS Services Layer) to make these calls when
they are appropriate.

1. Initialize al ACPI Code:
Status = AcpilnitializeSubsystem ();

2. Load the ACPI tables from the firmware and build the internal namespace:

Status = Acpi LoadTables ();

3. Completeinitiaization and put the system into ACPI mode:

Status = Acpi Enabl eSubsystem ();

10.1.2 ACPICA Initialization Examples
10.1.2.1 Full ACPICA Initialization

ACPI _STATUS
InitializeFull Acpi (void)

{
ACPI _STATUS St at us;

/* Initialize the ACPI CA subsystem */

Status = AcpilnitializeSubsystem ();
if (ACPI _FAILURE (Status))

{

return (Status);

}
/* Initialize the ACPICA Tabl e Manager and get all ACPlI tables */

Status = AcpilnitializeTables (NULL, 16, FALSE);
if (ACPI _FAILURE (Status))
{

return (Status);

}

227

ACPI Component Architecture User Guide and Programmer Reference

/* Create the ACPI nanespace from ACPlI tables */

Status = Acpi LoadTabl es ();
if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Note: Local handlers should be installed here */
/* Initialize the ACPI hardware */

St at us = Acpi Enabl eSubsyst em (ACPlI _FULL_I NI TI ALl ZATI ON) ;
if (ACPI _FAILURE (Status))

{

return (Status);

}

/* Conplete the ACPI nanmespace object initialization */

Status = AcpilnitializeOjects (ACPI _FULL_I NI TI ALI ZATI ON) ;

if (ACPI_FAILURE (Status))
{

return (Status);

}

return (AE_CX);

10.1.2.2 ACPICA Initialization With Early ACPI Table Access

#define ACPI_MAX_INIT_TABLES 16

static ACPI _TABLE_DESC Tabl eArray[ACPI _VAX_I NI T_TABLES] ;
ACPI _STATUS
InitializeAcpi Tabl es (void)
{
ACPI _STATUS St at us;

/* Initialize the ACPICA Tabl e Manager and get all ACPlI tables */

Status = AcpilnitializeTables (Tabl eArray, ACPI _MAX_I NI T_TABLES, TRUE);

return (Status);

ACPI _STATUS
InitializeAcpi (void)
{
ACPI _STATUS St at us;

228

ACPI Component Architecture User Guide and Programmer Reference

/* Initialize the ACPI CA subsystem */

Status = AcpilnitializeSubsystem ();
if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Copy the root table list to dynam c nmenory */

Status = Acpi Real | ocat eRoot Tabl e ();
if (ACPI _FAILURE (Status))

{

return (Status);

}

/* Create the ACPI namespace from ACPl tables */

Status = Acpi LoadTabl es ();
if (ACPI _FAILURE (Status))

{

return (Status);

}

/* Note: Local handlers should be installed here */
/* Initialize the ACPI hardware */

Status = Acpi Enabl eSubsystem (ACPI _FULL_| NI TI ALI ZATI ON) ;
if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Conpl ete the ACPI namespace object initialization */

Status = AcpilnitializeOjects (ACPI _FULL_I NI TI ALI ZATI ON) ;
if (ACPI _FAILURE (Status))

{

return (Status);

}

return (AE_CX);

10.1.3 Shutdown Sequence

The ACPICA Core Subsystem does not absolutely require a shutdown before the system terminates.

It does not hold any cached data that must be flushed before shutdown. However, if the ACPICA

subsystem is to be unloaded at any time during system operation, the subsystem should be shutdown
so that resources that are held internally can be released back to the host OS. These resources

include memory segments, an interrupt handler, and the ACPI hardware itself. To shutdown the

ACPICA Core Subsystem, the following calls should be made;

229

ACPI Component Architecture User Guide and Programmer Reference

1. Unload the namespace and free all resources:

Status = Acpi Terminate ();

10.1.4 Traversing the ACPI Namespace (Low Level)

This example demonstrates traversal of the APCI namespace using the low-level Acpi* primitives.
The codeisin fact the implementation of the higher-level AcpiWalkNamespace interface, and

therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.

ACPI _STATUS
Acpi Wl kNarmespace (
ACPI _OBJECT_TYPE Type,
ACPI _HANDLE Start Handl e,
Ul NT32 MaxDept h,
WALK_CALLBACK User Functi on,
voi d *Cont ext ,
voi d **Ret ur nval ue)
{
ACPI _HANDLE Obj Handl e = 0;
ACPI _HANDLE Scope;
ACPI _HANDLE NewScope;
voi d *User Ret urnVal ;
Ul NT32 Level = 1;

/* Paraneter validation */
if ((Type > ACPI _TYPE_NAX) ||
(! MaxDept h)
(! User Function))
{

}

/* Special case for the namespace root object */

return_ACPl _STATUS (AE_BAD PARANETER);

if (StartObject == ACPI _ROOT_OBJECT)

Start Obj ect = Gbl _Root Ohj ect;

/* Null child neans "get first object" */

Par ent Handl e = Start oj ect;

Chi | dHandl e = 0;

Chi | dType = ACPI _TYPE_ANY;

Level =1;

/*

* Traverse the tree of objects until we bubble back up to where we

* started. When Level is zero, the loop is done because we have

* bubbl ed up to (and passed) the original parent handle (StartHandle)
*

/

while (Level > 0)

/* CGet the next typed object in this scope. Null returned if not found */

Status = AE_OK

230

intel.

ACPI Component Architecture User Guide and Programmer Reference

if (ACPI _SUCCESS (Acpi Get Next Obj ect (ACPI _TYPE_ANY, ParentHandl e, Chil dHandl e,
&Chi | dHandl e)))

{
/* Found an object, Get the type if we are not searching for ANY */
if (Type != ACPI _TYPE_ANY)
Acpi Get Type (Chil dHandl e, &Chil dType);
}
if (ChildType == Type)
{
/* Found a matchi ng object, invoke the user callback function */
Status = User Function (ChildHandl e, Level, Context, ReturnValue);
switch (Status)
{
case AE X
case AE_DEPTH:
br eak; /* Just keep going */
case AE_TERM NATE:
return_ACPlI _STATUS (AE_X); /* Exit now, with OK status */
br eak;
defaul t:
return_ACPlI _STATUS (Status); /* Al others are valid exceptions */
br eak;
}
}
/*
* Depth first search: Attenpt to go down another
* level in the nanespace if we are allowed to. Don't go any further if we
* have reached the caller specified nmaxi mumdepth or if the user function
* has specified that the maxi mum depth has been reached.
*/
if ((Level < MaxDepth) && (Status != AE_DEPTH))
i f (ACPI _SUCCESS (Acpi Get Next bj ect (ACPI _TYPE_ANY, Chil dHandl e,
0, NULL)))
{
/* There is at least one child of this object, visit the object */
Level ++;
Par ent Handl e = Chi | dHandl e;
Chi | dHandl e = 0;
}
}
}
el se
{
/*
* No nore children in this object (Acpi Get Nextoject failed),
* go back upwards in the nanmespace tree to the object's parent.
*/
Level --;
Chi | dHandl e = Par ent Handl e;
Acpi Get Parent (ParentHandl e, &ParentHandl e);
}

}

return_ACPl _STATUS (AE_OK); /* Conplete walk, not termi nated by user function */

231

intel)

ACPI Component Architecture User Guide and Programmer Reference

10.1.5

Traversing the ACPI Namespace (High Level)

This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi* interfaces.
It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for al device objects in the namespace under the system bus (where most, if not
all devicesusually reside.) The callback function always returns NULL, meaning that the walk is not
terminated until the entire namespace under the system bus has been traversed.

Part 1: Thisisthe top-level procedure that invokes AcpiWalkNamespace.
Di spl aySyst enDevi ces (void)
{ ACPI _HANDLE SysBusHandl e;

Acpi NaneToHandl e (0, NS_SYSTEM BUS, &SysBusHandl e);

printf ("Display of all devices in the namespace:\n");

Acpi Wl kNanespace (ACPI _TYPE_DEVI CE, SysBusHandl e, | NT_MAX,

Di spl ayOneDevi ce, NULL, NULL);
}

Part 2: Thisisthe callback routine that is repeatedly invoked from AcpiWalkNamespace.

void *
Di spl ayOneDevi ce (
ACPI _HANDLE Obj Handl e,
Ul NT32 Level,
voi d *Cont ext)
{
ACPI _STATUS St at us;
ACPI _DEVI CE_I| NFO I nf o;
ACPI _BUFFER Pat h;
char Buf f er [256] ;

Pat h. Length = sizeof (Buffer);
Pat h. Poi nter = Buffer;

/* Get the full path of this device and print it */

St at us = Acpi Handl eToPat hname (Cbj Handl e, &Path);
i f (ACPI _SUCCESS (Status))

printf ("%\n", Path.Pointer));

/* CGet the device info for this device and print it */

Status = Acpi Get Devi cel nfo (Ooj Handl e, &l nfo);
if (ACPI _SUCCESS (Status))

printf (" H D: %8X, ADR %8X, Status: 9%&\n",
I nfo. Hardwar el d, |nfo.Address, Info.CurrentStatus));
}

return NULL;

232

10.2.2

10.2.3

10.2.4

10.2.5

ACPI Component Architecture User Guide and Programmer Reference

Implementing the OS Services Layer

Parameter Validation

In all implementations of the OS Services Layer, the interfaces should adhere to the descriptionsin
the document as far as the actual interface parameters as well as the returned exception codes. This
means that the parameter validation is not optional and that the Core Subsystem layer depends on
correct exception codes returned from the OSL.

Memory Management

Implementation of the memory allocation functions should be straightforward. If the host operating
system has severa kernel-level memory pools that can be used for allocation, it may be useful to
know some of the dynamic memory requirements of the ACPICA Core Subsystem.

During initialization, the ACPI tables are either mapped from BIOS memory or copied into local
memory segments. Some of these tables (especially the DSDT) can be fairly large, up to about 64K.
The namespace is built from multiple small memory segments, each of afixed (but configurable)
length. The default namespace table length is 16 entries times about 32 bytes each for atotal of 512
bytes per table and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size of
an internal object is about 32 bytes, and thisis the primary run-time memory request size.

Several internal caches are used within the core subsystem to minimize the number of requests to
the memory manager.

Scheduling Services

Theintent of the Acpi OsQueueForExecution interface is to schedule another thread. It makes no
difference whether thisis anew thread created at the time this call is made, or simply athread that is
allocated out of a pool of system threads. Only the ACPICA Debugger creates a permanent thread.

Mutual Exclusion and Synchronization

In asingle thread environment, the spinlock, mutex, and semaphore interfaces can simply return
AE_OK. Inamultiple thread environment, these interfaces must be implemented with real blocking
spinlocks, mutexes, and semaphores since the mutual exclusion support in the core subsystem relies
completely upon the proper implementation of this mechanism and these interfaces.

Interrupt Handling

In order to support the OS-independent interrupt handler that is implemented within the Core
Subsystem, the OSL must provide alocal interrupt handler whose interface conforms to the
requirements of the host operating system. Thislocal interrupt handler is awrapper for the OS-
independent handler; it is the actual handler that isinstalled for the given interrupt level. The task of
this wrapper is to handle incoming interrupts and dispatch them to the OS-independent handler via
the OS-independent handler interface. When the handler returns, the wrapper performs any
necessary cleanup and exits the interrupt.

233

ACPI Component Architecture User Guide and Programmer Reference

10.2.6 Stream 1I/O

The AcpiOsPrintf and Acpi OsVprintf functions can usually be implemented using a kernel-level
debug print facility. Kernel printf functions usually output datato a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called from
within an interrupt handler so that Fixed Events and General-Purpose events can be traced.

10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)

The intent of the hardware /O interfacesisto alow these calls to be trandated into calls or macros
provided by the host OS for this purpose. However, if the host does not provide a hardware
abstraction service, these functions can be implemented simply and directly via /O machine
instructions.

234

11.1

ACPI Component Architecture User Guide and Programmer Reference

Tools and Utilities

IASL Compi

ler

TheiASL compiler is afully-featured trandator for the ACPI Source Language (ASL). As part of
the Intel ACPI Component Architecture, the Intel ASL compiler implements trandation for the
ACPI Source Language (ASL) to the ACPI Machine Language (AML).

iASL also includes the ACPICA disassembler, and will disassemble any ACPI table, including both
tables that contain AML (DSDT, SSDT, OEMXx) and tables that contain data only (all other ACPI

tables such as FADT,

MADT, ECDT, etc.)

The compiler is fully documented in the iASL Compiler User Reference.

Intel ACPI Conponent Architecture

ASL Optim zing Conpiler version 20110413-32 [April 13 2011]
Copyright (c) 2000 - 2011 Intel Corporation

Supports ACPlI Specification Revision 4.0a

Usage: iasl [Options] [Files]
d obal :
-@&file> Specify command file

-l <dir>

General Cutput:
- p<prefix>
-va
- Vi
-Vvo
-vr
-Vs
-w<l| 2| 3>

AML Qut put Files:
-s<al c>
-i<alc>
-t<alc| s>

AM. Code Generati
-o0a
- of
-oi
-on
-cr
-r <Revi si on>

Specify additional include directory

Specify path/filenane prefix for all output files
Di sable all errors and warnings (summary only)
Less verbose errors and warnings for use with | DEs
Enabl e optini zati on conments

Di sabl e remar ks

Di sabl e si gnon

Set warning reporting |evel

Create AML in assenbler or C source file (*.asmor *.c)
Create assenbler or Cinclude file (*.inc or *.h)
Create AML in assenbler, C, or ASL hex table (*.hex)

on:

Di sabl e all optimzations (conpatibility node)
Di sabl e constant fol ding

Di sabl e i nteger optimzation to Zero/ One/ Ones
Di sabl e named reference string optimzation

Di sabl e Resource Descriptor error checking
Override tabl e header Revision (1-255)

ASL Listing Files:

-
-In
-lI's

ACPI Dat a Tabl es:
-T <Sig>| ALL|*
- vt

Create mixed listing file (ASL source and AM.) (*.Ist)
Create nanespace file (*.nsp)
Create conbi ned source file (expanded includes) (*.src)

Create table tenplate file(s) for <Sig>
Create verbose tenplates (full disassenbly)

235

ACPI Component Architecture User Guide and Programmer Reference

11.2

11.3

AML Di sassenbl er:

-d [file] Di sassenbl e or decode binary ACPI table to file (*.dsl)
-da [f1,f2] Di sassenble nmultiple tables from single nanespace
-dc [file] Di sassenble AML and i medi ately conpile it
(Qotain DSDT fromcurrent systemif no input file)
-e [f1,f2] I ncl ude ACPI table(s) for external symbol resolution
-2 Emit ACPI 2.0 conpatible ASL code
-g Get ACPlI tables and wite to files (*.dat)
Hel p:
-h Addi ti onal help and conpil er debug options
-hc Di spl ay operators allowed in constant expressions
- hr Di spl ay ACPI reserved net hod nanes
- ht Di splay currently supported ACPlI table nanes

AcpiExec — User Mode ACPI Execution/Simulation

This utility can be used to load any ACPI tables from file(s), execute control methods, single step
control methods, inspect the ACPI namespace, etc. When generated from source, it contains the
entire ACPICA Core Subsystem including the ACPICA Debugger. All hardware access viathe
AML issimulated. All ACPICA debugger commands are available (See the ACPICA Debugger
Reference later in this document.)

Intel ACPI Conponent Architecture
AML Execution/Debug Wility version 20110413-32 [April 13 2011]
Copyright (c) 2000 - 2011 Intel Corporation

Usage: acpiexec [options] AM.filel AMfile2 ...

Wher e:
-? Di splay this message
-b <CommandLi ne> Bat ch node command execution
-m [Met hod] Bat ch nmode net hod execution. Defaul t=MAIN
-da Di sabl e nmet hod abort on error
- di Di sabl e execution of STA/IN nethods during init
-do Di sabl e Operati on Regi on address simul ation
- dt Di sabl e all ocation tracking (performance)
- ef Enabl e display of final nmenory statistics
-em Enabl e Interpreter Serialized Mde
-es Enabl e Interpreter Sl ack Mde
-et Enabl e debug senmaphore tineout
-f <Vval ue> Operation Region initialization fill value
-V Verbose initialization output
-x <DebugLevel > Debug out put | evel

AcpiXtract — Extract ACPI Tables

This utility isused to extract binary ACPI tables from the ASCII output of the acpidump utility
(acpidump isa utility that is part of the PM Tools package.)

236

11.4

intel.

ACPI Component Architecture User Guide and Programmer Reference

Usage: acpixtract [option] <lInputFile>

Extract binary ACPlI tables fromtext acpi dunp out put
Defaul t invocation extracts all DSDTs and SSDTs
Ver si on 20110330

Opt i ons:

-a Extract all tables, not just DSDT/ SSDT
- Li st table sunmari es, do not extract

- s<Si gnat ur e> Extract all tables naned <Si gnature>

AcpiSrc — Convert ACPICA Source Code

This utility isused to convert the ACPICA into Linux code format. It can also be used to clean the
ACPICA code by removing extratrailing blanks, etc., and to generate source code statistics.

Intel ACPI Conponent Architecture
ACPlI Source Code Conversion Utility version 20110413-32 [April 13 2011]
Copyright (c) 2000 - 2011 Intel Corporation

Usage: acpisrc [-c|l|u] [-dsvy] <SourceDir> <DestinationDir>

Where: -c Cenerate cl eaned version of the source
-h Insert dual-license header into all nodul es
-1 Cenerate Linux version of the source
-u Cenerate Custom source translation
-d Leave debug statenments in code
-s Cenerate source statistics only
-v Ver bose node
-y Suppress file overwite pronpts

Example output — source code statistics for ACPICA:
ACPlI Source Code Conversion Utility version 20081031 [Cct 31 2008]

Source code statistics only
Acpi Src statistics:

233 Fil es processed
342 Tabs found
0 Mssing if/else braces
22 Non- ANSI comments found
159707 Total Lines
82496 Lines of code
29508 Li nes of non-conment whitespace
32210 Lines of conments
3013 Long lines found
2.8 Ratio of code to whitespace
2.6 Ratio of code to coments
51% code, 20% coments, 18% whitespace, 15% headers

237

intel)

ACPI Component Architecture User Guide and Programmer Reference

11.5

AcpiNames — Example Namespace Dump

This utility is provided to give an example of aminimal configuration of ACPICA. It will load a
DSDT from afile and simply dump the entire namespace.

The ACPICA components that are used are the Table Manager and Namespace Manager. It does not
include the AML interpreter.

Functionality is a subset of the AcpiExec utility, so the purpose of AcpiNamesisto show how to
configure ACPICA for a subset of the various available managers.

Example:

C:\ acpi nanes dsdt. anl

Intel ACPI Conponent Architecture
ACPlI Nanespace Dunp Wility version 20110413-32 [April 13 2011]
Copyright (c) 2000 - 2011 Intel Corporation

Loadi ng Acpi table fromfile dsdt.anl

ACPI: RSDP 00424F04 0002C (v02 | _TEST)

ACPI : XSDT 00347150 0002C (vO1 00000000 00000000)
ACPI: FACP 00424F28 00OF4 (v03 00000000 00000000)
ACPI: DSDT 003470E8 00059 (v02 |Intel Tenplate 00000001 | NTL 20110413)
ACPI : FACS 00425020 00040

ACPlI Nanespace:
_GPE Scope 00344E88 00

0

0 _PR_ Scope 00344EA8 00

0 _SB Device 00344EC8 00

0 _SlI_ Scope 00344EE8 00

0 _TZ Device 00344F08 00

0 _REV Integer 00344F28 00 = 0000000000000003

0 _Os_ string 00344F80 00 Len 14 "M crosoft Wndows NT"
0 _G_ Mitex 00344FD8 00 Obj ect 00344FF8

0 _OsSl Method 00345030 00 Args 1 Len 0000 Ami 00000000
0 DUWP Met hod 00347558 01 Args 1 Len 0004 Aml 00347113
0 MAIN Method 00347690 01 Args 7 Len 0023 Am 0034711E

238

12.1

12.2

12.2.1

12.3

ACPI Component Architecture User Guide and Programmer Reference

ACPICA Debugger Reference

Overview

The ACPICA AML Debugger isan optional subcomponent of the ACPICA Core Subsystem. It can
be operated standalone or in conjunction with (or as an extension of) a native kernel debugger. The
debugger provides the ability to load ACPI tables, dump internal data structures, execute control
methods, disassemble control methods, single step control methods, and set breakpoints within
control methods.

Supported Environments

The debugger can be executed in aring O (kernel) or ring 3 (application) environment. The
following combinations of debugger and front-end (user-interface) are supported:

e Ring 0 Debugger, Ring 0 Front-End: In this case, the front-end is a host kernel debugger,
and the Debugger operates as an extension to the host debugger.

e Ring 0 Debugger, Ring 3 Front-End. In this mode, the front-end isaring 3 application that
obtains the command lines from the user and sends them to the debugger executing in Ring
0. The actual mechanism used for this communication is dependent on the host operating
system.

e Ring 3 Debugger, Ring 3 Front-End. In this mode, the entire ACPICA subsystem (including
the debugger) residesin a Ring 3 application. A single thread can be used for the user
interface, debugger, and AML control method execution. An example of this mode isthe
AcpiExec utility.

The AcpiExec Utility

An example of the Ring3/Ring3 model of execution isthe user mode AcpiExec utility. This
application includes the entire ACPICA subsystem (including the Debugger) and allows the user to
load ACPI tables from files and execute methods contained in the tables.

Of course, hardware and memory access from Ring 3 isvery limited. The AcpiExec utility smulates
hardware access.

Debugger Architecture

The ACPI debugger consists of the following architectural elements:

e A command lineinterpreter that receives entire command lines from the host, parses them
into commands and parameters, and dispatches the request to the appropriate handler for the
command.

e A group of modules that implement the various debugger commands.

e A group of callback routines that are invoked by the interpreter/dispatcher during the
execution control methods. These callbacks enable the single stepping of control methods
and the display of arguments to each executed control method.

239

ACPI Component Architecture User Guide and Programmer Reference

When executing in a Ring 0 environment, the debugger initialization creates a separate thread for
the debugger CLI. This threads performs the following tasks until the debugger is shut down:

1. Wait for acommand line by calling the AcpiOsGetLine interface
2. Execute the command

All output from the debugger is viathe AcpiOsPrint and AcpiOsV printf interfaces.

The overall architecture of the ACPI Debugger is shown in the diagram below. Note how the
Debugger CLI uses the Acpi OsGetLine interface to obtain user command lines, and how output
from the entire debugger and ACPICA subsystem can be directed to the console, afile, or both via
the implementation of the AcpiOsPrint interface within the OSL layer. Also note how the debugger

and ACPICA subsystem can reside in a different protection ring than the user console support and
file 1/0O support.

Figure 9. ACPICA Debugger Architecture

Ring3 or Ring0 Ring3 or Ring0

OsdGetLine()
- Debugger Command
o Line Interpreter

A4

Console

OsdPrint()

Debugger Command Implementations

ACPI CA Core Subsystem

OS-Dependent Layer

12.4 Configuration and Installation

The basic idea behind the debugger thread isthat it receives a command line from somewhere and
then asynchronously executes it. The command line can come from aring 3 application (a debugger
front-end), or it can come from the resident kernel debugger (you would install a debugger
extension that forwards command lines to the debugger.)

With thisin mind, there are several key components of the debugger:

1. Dblnitialize — Initializes the debugger semaphores and creates the debugger thread,
DbExecuteThread

2. DbCommandDispatch — Thisisthe actual command execution code

240

ACPI Component Architecture User Guide and Programmer Reference

3. DbExecuteThread —Waits for acommand to become available (asindicated by the
MTX_DEBUG_CMD_READY mutex), executes the command, (via DbCommandDispatch),
then signals command completion viathe MTX_DEBUG_CMD_COMPLETE mutex.

4. DbUser Commands— An example command loop that must execute in its own thread (thisis
the caller thread, not athread that is part of the debugger). This loop obtains a command line
via AcpiOsGetLine, putsit into the LineBuf buffer, and signals the DbExecuteThread that a
command lineisavailable. It is not necessary to use this procedure, however, if command
lines become available from somewhere besides AcpiOsGetLine.

5. DbSingleStep — Called from the dispatcher just before an AML opcode is executed.
Implements its own command loop that obtains command lines from either the
MTX_DEBUG_CMD_READY mutex (multi-thread mode), or by calling AcpiOsGetLine
directly (single thread mode). Drops out of the loop when the control method is aborted or is
allowed to continue running (perhaps just to the next opcode...)

Thisisthe basic thread model and handshake with the outside world. To integrate the debugger into
a specific environment, it is your responsibility to get command lines to the DbExecuteThread via
the LineBuf and the MTX_DEBUG_CMD_READY mutex. Alternatively, you can just call the
DbCommandDispatch directly if you don’t need an asynchronous debugger thread. Additional
explanation follows.

The AcpiExec Ring3 application uses DbUserCommands to process command lines
(DbUserCommandsis actually called from aemain.c). However, if integrating with a kernel
debugger, you will probably want to implement your own mechanism instead of using the
DbUserCommands loop. | would imagine this would entail the following:

1. Install asmall extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Signal the DbExecuteThread that a command is available. (MTX_DEBUG_CMD_READY).
4. Wait for the command to complete (MTX_DEBUG_CMD_COMPLETE).

5. Returnto the kernel debugger.

If you don’t need the extra debugger thread, you can simply execute commandsin the caller’s
context:

1. Install asmall extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.
3. Cadll DbCommandDispatch to execute the command directly.
4. Return to the kernel debugger.

The behavior of the debugger can be configured as follows (via the config.h header):
#def i ne DEBUGGER_THREADI NG DEBUGGER_SI NGLE_THREADED
This sets the single thread mode of the debugger.
#def i ne DEBUGGER_THREADI NG DEBUGGER_MULTI _THREADED

This sets the multi-thread mode of the debugger.

241

ACPI Component Architecture User Guide and Programmer Reference

12.5

12.6

12.6.1

12.6.2

Basically, in multithread mode, we just wait for some other thread to fill the LineBuf with a
command and signal the semaphore. In single thread mode, we explicitly call AcpiOsGetLineto get
acommand line.

Command Overview

There are four classes of commands supported by the debugger:

1. The General-Purpose commands are available in al modes of the debugger. These
commands provide the basic functionality of loading tables, dumping internal data structures,
and starting the execution of control methods.

2. The Namespace Access commands are always available. These commands provide
information about the currently loaded ACPI namespace.

3. TheControl Method Execution Commands are available only during the single-step
execution of control methods. These commands allow the display and modification of method
arguments and local variables, control method disassemble, and the setting of method
breakpoints

4. TheFilel/O Commands are available only if afilesystem is available to the debugger.

General Purpose Commands

Allocations

| Memory allocation status

SYNTAX

- allocations
This command dumps the current status of the dynamic memory allocations, as maintained by the
ACPICA subsystem debug memory allocation tracking mechanism. Primarily used to detect

memory leaks, the mechanism tracks the allocation and freeing of each memory block, and
mai ntai ns statistics on the amount of memory allocated, the number of allocations, etc.

Dump

| Display objects and memory

SYNTAX
- dunp <Address>| <Nanepat h> [Byt e| Wor d| Dwor d| Qaor d]
A generic command to dump all internal ACPI objects and memory. The operand can be a

namespace name, a pointer to an ACPI object, or a pointer to random memory in the current address
space. The command determines the type of ACPI object and decodes it into the appropriate fields

242

intel)
b ACPI Component Architecture User Guide and Programmer Reference

12.6.3 Exit

| Terminate

SYNTAX
- exit

Terminate the ACPICA subsystem and exit the debugger.

12.6.4 Help

| Get help

SYNTAX

- help
Displays a help screen with the syntax of each command and a short description of each.

12.6.5 History (! And !!)

| Command line recall

SYNTAX
- history
- | <Conmmand Nunber >

last few commands. The “!” command can be used to select and re-execute a particular command
from the numbered command buffer, or the “!!” command can be used to simply re-execute the

immediately previous command.

12.6.6 Level

| Set debug output level

SYNTAX
- level [<DebugLevel >] [consol €]

Sets the global debug output level of the ACPICA subsystem for both output directed to afile and
output to the console.

243

(inte!
ACPI Component Architecture User Guide and Programmer Reference

12.6.7 Locks

| Display mutex info and status

SYNTAX
- |l ocks

This command displays information and current status of the various mutexes used for internal
synchronization.

12.6.8 Osi

| Display or modify the current list of supported interfacesfor the OSI method

SYNTAX
- osi [Install|Renbve <interface nane>]

This command displays or modifies the current contents of the global list of _OSl interfacesthat are
supported.

SUBCOMMANDS
- osi

The standalone command will display the entire global list of _OSl interfaces.
- osi install “My interface”

Installs an interface name into the global list.
- osi renove “Wndows 2000”

Removes an interface from the global list.

12.6.9 Quit

| Terminate

SYNTAX
- quit

Terminate the current execution mode. If executing (single stepping) a control method, the method
isimmediately aborted with an exception and the debugger returns to the normal command line
mode. If no control method is executing, the ACPICA subsystem is terminated and the debugger
exits.

244

ACPI Component Architecture User Guide and Programmer Reference

12.6.10 Stats

| Namespace statistics

SYNTAX
- stats [Allocations| Menory| M sc| Obj ects| Si zes| St ack]
Display namespace statistics that were gathered when the namespace was loaded. Thisincludes

information about the number of objects and their types, the amount of dynamic memory required,
and the number of search operations performed on the namespace database.

SUBCOMMANDS
Allocations: Display alist of current dynamic memory alocations
Memory: Dump internal memory lists (If ACPICA memory cache is configured)
Misc: Namespace search and mutex use statistics
Objects: Summary of namespace objects
Sizes: Memory allocation sizes for each of the internal objects

Stack: Display CPU stack usage

12.6.11 Tables

| Display ACPI tableinfo

SYNTAX
- tables

This command displays information about each of the loaded ACPI tables. It usesthe internal
Acpi TbPrintTableHeader function.

12.6.12 Unload

| Unload table

SYNTAX
- unl oad <Tabl eSi gnature> [Instance]

Unload an ACPI Table <Not implemented>

245

(intel,
ACPI Component Architecture User Guide and Programmer Reference

12.7 Namespace Access Commands

12.7.1 Businfo

| Display system businfor mation

SYNTAX

- businfo

This command displays information about all device objectsthat have a corresponding _ PRT
method. Information includesthe ADR, HID, UID, and _CID.

12.7.2 Disassemble

| Disassemble a contr ol method

SYNTAX
- di sassenbl e <Met hod>

This command will dissassemble the input method to the original ASL code.

12.7.3 Event

| Generate an ACPI Event

SYNTAX
- event <Val ue>

Generate an ACPI event to test event handling <NOT IMPLEMENTED>

12.7.4 Find

| Find namesin the Namespace

SYNTAX

- find <nane>

Find an ACPI name or names within the current ACPI namespace. All names that match the given

name are displayed as they are found in the namespace. Names are up to four characters, and
wildcards are supported. A ‘? in the name will match any character. Thus, the wildcarded name

“A???" will match all namesin the namespace that begin with the letter “A”.

246

intel)
b ACPI Component Architecture User Guide and Programmer Reference

12.7.5 Gpe

| Generate a GPE

SYNTAX
- gpe <Bl ock Address> <GPE nunber >

Generate a GPE at the GPE number within the GPE block specified at the Block Address. Use O for
the block address to generate a GPE within the permanent FADT-defined GPE blocks (GPEO and

GPEL).

12.7.6 Gpes

| Display GPE block infor mation

SYNTAX

- gpes
Display information on all GPE blocks, including the FADT-defined GPE blocks (GPEO and GPE1)
and all loaded GPE Block Devices.

12.7.7 Integrity

| Validate namespace

SYNTAX

- integrity
This command validates the integrity of the entire loaded namespace. It walks the entire namespace
and checks each namespace node for correctness.

12.7.8 Methods

| List all control methods

SYNTAX

- et hods

Displaysalist of al control methods (and their full pathnames) that are contained within the current
ACPI namespace. (Alias for the command “ Object Methods’.)

247

(inte!
ACPI Component Architecture User Guide and Programmer Reference

12.7.9

12.7.10

12.7.11

Namespace

| Display the loaded ACPI namespace

SYNTAX
- nanespace [<Address> | <Nanepat h>] [Dept h]
Dump all or a portion of the current ACPI namespace. If given with no parameter, this command

displays the entire namespace, one named object per line with information about each object. If
given the name of an object or a pointer to an object, it displays the subtree rooted by that object.

Notify

| Generate a Notify

SYNTAX
- notify <Nanepat h> <Val ue>

Generates a notify on the specified device. This means that the notify handler for the device is
invoked with the parameters specified.

Object

| Display typed objects

SYNTAX
- object <(nject Type>
Display objects within the namespace of the requested type.

The ObjectType parameter must be one of the following:

ANY

INTEGERS
STRINGS
BUFFERS
PACKAGES
FIELDS

DEVICES
EVENTS
METHODS
MUTEXES
REGIONS
POWERRESOURCES
PROCESSORS
THERMALZONES
BUFFERFIELDS
DDBHANDLES

248

intel
b ACPI Component Architecture User Guide and Programmer Reference

DEBUG
REGIONFIELDS
BANKFIELDS
INDEXFIELDS
REFERENCES
ALIAS

12.7.12 Owner

| Display namespace by owner 1D

SYNTAX
- owner <Omner | D> [Depth]

Display objects within the namespace owned by the requested Owner ID.

12.7.13 Predefined

| Display and check all predefined methods/obj ects

SYNTAX
- predefined

This command displays and validates all predefined methods and objects (names that start with
underscore and are predefined by the ACPI specification.)

The validation checks the input argument count (if object isa control method) against the count
defined in the ACPI spec.

12.7.14 Prefix

| Get or Set current prefix

SYNTAX
- prefix [<NanmePat h>]

Sets the pathname prefix that is prepended to namestrings entered into the debug and execute
commands. This command is the equivaent of the “CD” command.

12.7.15 References

| Find all referencesto an object within the namespace

SYNTAX

- references <Address>

249

(intel,
ACPI Component Architecture User Guide and Programmer Reference

Display all references to the object at the specified address.

12.7.16 Resources

| Display deviceresources

SYNTAX
- resources <Address>

Display resource lists (_ PRS, _CRS, etc.) for the Device object at the specified address.

12.7.17 SetN

| Set object value

SYNTAX
- set N <NanmedObj ect > <Val ue>

This command sets the value of a namespace object.

12.7.18 Sleep

| Simulate ACPI Sleep/Wake

SYNTAX
- sleep <SleepState>

This command simulates the sleep/wake sequence. SleepState should be an integer, 1-5. The
following ACPICA interfaces are executed:

AcpiEnterSleepStatePrep

AcpiEnterSleepState
Acpil eaveSleepState

12.7.19 Terminate

| Shutdown ACPICA subsystem

SYNTAX
- ternminate
Shutdown the ACPICA subsystem, but don't exit the debugger. This command is useful to find

memory leaks in the form of objects |eft over after the subsystem deletes the entire namespace and
all known internal objects. Any objects left over after shutdown are displayed and may be examined.

250

intel)
b ACPI Component Architecture User Guide and Programmer Reference

12.7.20 Type

| Display object type

SYNTAX
- type <bject>

This command displays the type of a namespace object.

12.8 Control Method Execution Commands

During single stepping of a control method, the following commands are available. The debugger
enters a dightly different command mode (as indicated by the ‘%’ prompt) when single stepping a
control method to indicate that these commands are now available

12.8.1 Arguments

| Display M ethod arguments

SYNTAX
- arguments
- args

Display all arguments to the currently executing control method

12.8.2 Breakpoint

| Set control method breakpoint

SYNTAX
- breakpoint <AML O fset >

Set a breakpoint at the AML offset given. When execution reaches this offset, execution is stopped
and the debugger is entered.

12.8.3 Call

| Run to next call

SYNTAX

- call

Step execution of the current control method until the next method invocation (call) is encountered.

251

(inte!
ACPI Component Architecture User Guide and Programmer Reference

12.8.4 Debug

| Single step a control method

SYNTAX
- debug <Nanepath> [Arg0 Argl .]

Begin execution of a control method in single step mode. Each AML opcode and its associated
operand(s) is disassembled and displayed before execution. A single carriage return (Enter) single
steps to the next AML opcode. The values of the arguments and the value of the return value (if
any) are displayed for each opcode. See the section below, “ Specifying Method Arguments’ for
details and syntax for Arg0...Argn.

12.8.5 Execute

| Executea control method

SYNTAX
- execute <Nanepath> [Arg0 Argl .]

Execute a control method. This command begins execution of the named method and letsit run to
completion without single stepping. The return result if any is displayed after execution completes.

12.8.5.1 Specifying Method Arguments

For both the Debug and Execute commands, up to seven arguments (ACPI maximum) for the
control method may be specified on the command line. The following data types are supported:

Integers

Strings

Buffers

Packages (nested packages are supported)

The data types and command line syntax are described below. Individual arguments should be
separated by spaces.

If a method requires one or more arguments and either no or too few arguments are specified on the
command line, the debugger will create default arguments for the missing arguments. The default
arguments are of type Integer.

Integers

Thisisthe simplest datatype and consists of ainteger hex value. The maximum data width is either
32 bits or 64 bits, depending on the version of the loaded DSDT. Version 1 or less uses 32-hit
integers. Version 2 or greater allows full 64-bit integers.

Strings

Strings are specified by surrounding the string with quotes.

252

12.8.6

12.8.7

12.8.8

ACPI Component Architecture User Guide and Programmer Reference

Buffers

Buffers are specified viaalist of hex byte values (separated by either commas or spaces). The list
must be surrounded by parentheses.

Packages

Packages are specified viaalist of package elements (Integers, Strings, Buffers, and Packages are
supported). The list must be surrounded by brackets “[]”.

Example

This example shows a control method invocation with 4 argumentsin this order: An integer, a
string, a buffer, and a nested package. The package object contains an integer, a string, a buffer, and
a nested package containing a single integer.

Execute TEST 1234 “abcd” (11 22 33 44) [5678 “efgh” (55 66 77 88) [9876]]

Go

| Run method to next breakpoint

SYNTAX

- go

Cease single step mode and let the control method run freely until either a breakpoint is reached or
the method terminates.

Information

| Info about a control method

SYNTAX

- information

Into

| Step into call

SYNTAX
- into

Step into a control method invocation instead of over the call. The default single step behavior isto
step over control method calls, meaning that the call is executed and single stepping resumes after
the call returns. Use this command to single step the execution of a called control method.

253

(inte!
ACPI Component Architecture User Guide and Programmer Reference

12.8.9 List

| Disassemble AML code

SYNTAX
- list [<Opcode count >]

Disassemble the AML code of the current control method from the current AML offset for the
length given. Useful for finding interesting places to set breakpoints.

12.8.10 Locals

| Display method local variables

SYNTAX

- locals

Display the current values of all of the local variables for the current control method. When stepping
into a control method invocation, the locals of the newly invoked method are displayed during the

time that method is single stepped.

12.8.11 Results

| Display method result stack

SYNTAX

- results
Display the current contents of the internal “Result Stack” for the control method.

12.8.12 Set

| Set argumentsor locals

SYNTAX
- set Arg|Local <ID> <Vval ue>

Set the value of any of a method’ s arguments or local variables. 1D is 0-7 for method locals and 0-6
for method arguments.

254

intel)
b ACPI Component Architecture User Guide and Programmer Reference

12.8.13 Stop

| Stop method

SYNTAX
- stop

Terminate the currently executing control method

12.8.14 Thread

| Execute a control method with multiple threads

SYNTAX

t hread <nunber of threads> <nunber of | oops> <Pat hname>

Create the specified number of threads to execute the control method at <Pathname>. Each thread
will execute the method <number of loops> times. The command waits until all threads have

completed before returning.

12.8.15 Trace

| Set a method trace

SYNTAX
- trace <nethod nanme>

This command sets a trace command that will trace the input method if and when it is executed.
Uses the AcpiDebugTrace interface.

12.8.16 Tree

| Display calling tree

SYNTAX

- tree
Display the calling tree of the current method (Displays al nested control method invocations.)

255

(inte!
ACPI Component Architecture User Guide and Programmer Reference

12.9 File I/O Commands

12.9.1 Close

| Close debug output file

SYNTAX

- close

Close the debug output file, if oneis currently open. Using Exit or Quit to terminate the debugger
will automatically close any open file.

12.9.2 Load

| Load ACPI table

SYNTAX

- |l oad <Fil enane>

Load an ACPI table into the namespace from afile.

12.9.3 Open

| Open debug output file

SYNTAX

- open <Fil enane>

Open afile for debug output.

256

ACPI Component Architecture User Guide and Programmer Reference

This page intentionally left blank.

257

	Contents
	Figures
	Tables
	1	Introduction
	1.1	Document Structure
	1.2	Rationale and Justification
	1.3	Reference Documents
	1.4	Document History
	1.5	Overview of the ACPI Component Architecture

	2	Architecture Overview
	2.1	Overview of the ACPICA Subsystem
	2.1.1	ACPICA Core Subsystem
	2.1.2	Operating System Services Layer
	2.1.3	Relationships Between Host OS, ACPICA, and Host OSL
	2.1.3.1	General Architectural Model
	2.1.3.2	Host Operating System Interaction
	2.1.3.3	OS Services Layer Interaction
	2.1.3.4	ACPICA Core Subsystem Interaction

	2.2	Architecture of the ACPICA Core Subsystem
	2.2.1	ACPI Table Management
	2.2.2	Early ACPI Table Access
	2.2.3	AML Interpreter
	2.2.4	Namespace Management
	2.2.5	Resource Management
	2.2.6	ACPI Hardware Management
	2.2.7	Event Handling
	2.2.8	Requests from Host OS to ACPICA Subsystem

	2.3	Architecture of the OS Services Layer (OSL)
	2.3.1	Types of OSL Services
	2.3.2	Requests from ACPICA Subsystem to OS

	3	Design Details
	3.1	ACPI Namespace Fundamentals
	3.1.1	Named Objects
	3.1.2	Scopes
	3.1.2.1	Example Namespace Scopes, Names, and Objects

	3.1.3	Predefined Objects
	3.1.4	Logical Namespace Layout

	3.2	Execution Model
	3.2.1	Initialization
	3.2.2	Memory Allocation
	3.2.2.1	Caller Allocates All Buffers
	3.2.2.2	ACPI Allocates Return Buffers

	3.2.3	Parameter Validation
	3.2.4	Exception Handling
	3.2.5	Multitasking and Reentrancy
	3.2.6	Event Handling
	3.2.6.1	Fixed Events
	3.2.6.2	General Purpose Events
	3.2.6.3	Notify Events

	3.2.7	Address Spaces and Operation Regions
	3.2.7.1	Installation of Address Space Handlers
	3.2.7.2	ACPI-Defined Address Spaces

	3.3	Policies and Philosophies
	3.3.1	External Interfaces
	3.3.1.1	Exception Codes
	3.3.1.2	Memory Buffers

	3.3.2	Subsystem Initialization
	3.3.2.1	ACPI Table Validation
	3.3.2.2	Required ACPI Tables

	3.3.3	Major Design Decisions
	3.3.3.1	Performance versus Code/Data Size
	3.3.3.2	Object Management – No Garbage Collection

	4	Implementation Details
	4.1	Required Host OS Initialization Sequence
	4.1.1	Bootload and Low Level Kernel Initialization
	4.1.2	ACPICA Subsystem Initialization
	4.1.3	Other OS Initialization
	4.1.4	Device Enumeration, Configuration, and Initialization
	4.1.5	Final OS Initialization

	4.2	Required ACPICA Initialization Sequence
	4.2.1	Global Initialization - AcpiInitializeSubsystem
	4.2.2	ACPI Table and Namespace Initialization
	4.2.2.1	AcpiInitializeTables
	4.2.2.2	AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex
	4.2.2.3	AcpiLoadTables
	4.2.2.4	Internal ACPI Namespace Initialization

	4.2.3	Hardware Initialization - AcpiEnableSubsystem
	4.2.3.1	ACPI Hardware and Event Initialization

	4.2.4	Handler Installation
	4.2.4.1	Handler Types

	4.2.5	Object Initialization – AcpiIntializeObjects
	4.2.5.1	ACPI Device Initialization
	4.2.5.2	Other ACPI Object Initialization

	4.2.6	Other Operating System ACPI-related Initialization
	4.2.7	Just-in-time Operation Region Initialization
	4.2.7.1	SystemMemory Region Initialization
	4.2.7.2	PCI_Config Region Initialization

	4.2.8	System Shutdown - AcpiTerminate

	4.3	Multithreading Support
	4.3.1	Reentrancy
	4.3.2	Mutual Exclusion and Synchronization
	4.3.3	Control Method Execution
	4.3.3.1	Control Method Blocking
	4.3.3.2	Control Method Execution Rules
	4.3.3.3	A Simple Multithreading Model
	4.3.3.4	A More Complex Multithreading Model

	4.3.4	ACPI Global Lock Support
	4.3.4.1	Obtaining The Global Lock
	4.3.4.2	Releasing the Global Lock
	4.3.4.3	Global Lock Interrupt Handler

	4.3.5	Single Thread Environments

	4.4	General Purpose Event (GPE) Support
	4.4.1	Runtime and Wake GPEs
	4.4.1.1	Execution of _PRW Methods
	4.4.1.2	Implicit Notify Support

	4.4.2	Using the ACPICA GPE Support Code
	4.4.2.1	Host OS Initialization
	4.4.2.2	GPE Handlers
	4.4.2.3	GPE Handler Execution
	4.4.2.4	Load and LoadTable ASL/AML Operators
	4.4.2.5	GPE Block Devices

	4.5	Miscellaneous ACPICA Behavior
	4.5.1	Dynamically Loaded ACPI Tables

	5	Subsystem Features
	5.1	AML Interpreter Slack Mode
	5.2	AML Interpreter Math Mode (32-bit or 64-bit)
	5.3	Predefined Control Method Validation
	5.4	I/O Port Protection
	5.5	Debugging Support
	5.5.1	Error and Warning Messages
	5.5.2	Execution Debug Output (ACPI_DEBUG_PRINT Macro)
	5.5.3	Function Tracing (ACPI_FUNCTION_TRACE Macro)
	5.5.4	ACPICA Debugger

	5.6	Environmental Support Requirements
	5.6.1	Resource Requirements
	5.6.2	C Library Functions
	5.6.3	Source Code Organization
	5.6.4	System Include Files
	5.6.4.1	Customization to the Target Environment

	6	Data Types and Interface Parameters
	6.1	ACPICA Interface Parameters
	6.1.1	ACPI Names and Pathnames
	6.1.2	Pointers
	6.1.3	Buffers

	6.2	ACPICA Basic Data Types
	6.2.1	UINT64 and COMPILER_DEPENDENT_UINT64
	6.2.2	ACPI_PHYSICAL_ADDRESS
	6.2.3	ACPI_IO_ADDRESS
	6.2.4	ACPI_SIZE
	6.2.5	ACPI_STRING – ASCII String
	6.2.6	ACPI_BUFFER – Input and Output Memory Buffers
	6.2.6.1	Input Buffer
	6.2.6.2	Output Buffer

	6.2.7	ACPI_STATUS – Interface Exception Return Codes
	6.2.8	ACPI_HANDLE – Object Handle
	6.2.8.1	Predefined Handles

	6.2.9	ACPI_OBJECT_TYPE – Object Type Codes
	6.2.10	ACPI_OBJECT – Method Parameters and Return Objects
	6.2.10.1	Using the ACPI_OBJECT

	6.2.11	ACPI_OBJECT_LIST – List of Objects
	6.2.12	ACPI_EVENT_TYPE – Fixed Event Type Codes
	6.2.13	ACPI_TABLE_HEADER – Common ACPI Table Header

	6.3	ACPI Resource Data Types
	6.3.1	PCI IRQ Routing Tables
	6.3.2	Device Resources
	6.3.2.1	ACPI_RESOURCE_TYPE – Resource Data Types

	6.4	ACPICA Exception Codes

	7	Subsystem Configuration
	7.1	Configuration Files
	7.2	Component Selection
	7.2.1	ACPI_DISASSEMBLER
	7.2.2	ACPI_DEBUGGER

	7.3	Configurable Data Types
	7.3.1	ACPI_SPINLOCK
	7.3.2	ACPI_SEMAPHORE
	7.3.3	ACPI_MUTEX
	7.3.4	ACPI_CPU_FLAGS
	7.3.5	ACPI_THREAD_ID
	7.3.6	ACPI_CACHE_T
	7.3.7	ACPI_UINTPTR_T

	7.4	Subsystem Options
	7.4.1	ACPI_USE_SYSTEM_CLIBRARY
	7.4.2	ACPI_USE_STANDARD_HEADERS
	7.4.3	ACPI_DEBUG_OUTPUT
	7.4.4	ACPI_USE_LOCAL_CACHE
	7.4.5	ACPI_DBG_TRACK_ALLOCATIONS
	7.4.6	ACPI_MUTEX_TYPE
	7.4.7	ACPI_MUTEX_DEBUG
	7.4.8	ACPI_SIMPLE_RETURN_MACROS
	7.4.9	ACPI_USE_DO_WHILE_0

	7.5	Per-Compiler Configuration
	7.5.1	COMPILER_DEPENDENT_INT64
	7.5.2	COMPILER_DEPENDENT_UINT64
	7.5.3	ACPI_INLINE
	7.5.4	ACPI_USE_NATIVE_DIVIDE
	7.5.5	ACPI_DIV_64_BY_32 (Short 64-bit Divide)
	7.5.6	ACPI_SHIFT_RIGHT_64 (64-bit Shift)
	7.5.7	ACPI_EXPORT_SYMBOL
	7.5.8	ACPI_EXTERNAL_XFACE
	7.5.9	ACPI_INTERNAL_XFACE
	7.5.10	ACPI_INTERNAL_VAR_XFACE
	7.5.11	ACPI_SYSTEM_XFACE
	7.5.12	ACPI_PRINTF_LIKE
	7.5.13	ACPI_UNUSED_VAR

	7.6	Per-Machine Configuration
	7.6.1	ACPI_MACHINE_WIDTH
	7.6.2	ACPI_FLUSH_CPU_CACHE
	7.6.3	ACPI_OS_NAME
	7.6.4	ACPI_ACQUIRE_GLOBAL_LOCK
	7.6.5	ACPI_RELEASE_GLOBAL_LOCK

	7.7	Dynamic Configuration
	7.7.1	Interpreter Slack Mode
	7.7.2	ACPI Register Widths
	7.7.3	Serialized Control Methods
	7.7.4	Output from the AML Debug Object
	7.7.5	Copy the System DSDT to Local Memory
	7.7.6	Creation of_OSI Method

	7.8	Subsystem Configuration Constants
	7.8.1	ACPI_CHECKSUM_ABORT
	7.8.2	ACPI_MAX_LOOP_INTERATIONS
	7.8.3	ACPI_MAX_STATE_CACHE_DEPTH
	7.8.4	ACPI_MAX_PARSE_CACHE_DEPTH
	7.8.5	ACPI_MAX_OBJECT_CACHE_DEPTH
	7.8.6	ACPI_MAX_WALK_CACHE_DEPTH

	8	ACPICA Core Subsystem - External Interface Definition
	8.1	ACPICA Subsystem Initialization and Control
	8.1.1	AcpiInitializeSubsystem
	8.1.2	AcpiInstallInitializationHandler
	8.1.2.1	Interface to User Callback Function

	8.1.3	AcpiEnableSubsystem
	8.1.4	AcpiInitializeObjects
	8.1.5	AcpiSubsystemStatus
	8.1.6	AcpiTerminate
	8.1.7	AcpiInstallInterface
	8.1.7.1	Default Supported _OSI Strings
	8.1.7.2	Why ACPICA responds TRUE to _OSI (Windows)

	8.1.8	AcpiRemoveInterface
	8.1.9	AcpiInstallInterfaceHandler
	8.1.9.1	Interface to _OSI Interface Handlers

	8.2	ACPI Table Management
	8.2.1	AcpiInitializeTables
	8.2.2	AcpiReallocateRootTable
	8.2.3	AcpiFindRootPointer
	8.2.4	AcpiLoadTables
	8.2.5	AcpiGetTableHeader
	8.2.6	AcpiGetTable
	8.2.7	AcpiGetTableByIndex
	8.2.8	AcpiInstallTableHandler
	8.2.8.1	Interface to the Table Event Handler

	8.2.9	AcpiRemoveTableHandler

	8.3	ACPI Namespace Management
	8.3.1	AcpiEvaluateObject
	8.3.2	AcpiEvaluateObjectTyped
	8.3.3	AcpiGetObjectInfo
	8.3.4	AcpiGetNextObject
	8.3.5	AcpiGetParent
	8.3.6	AcpiGetType
	8.3.7	AcpiGetHandle
	8.3.8	AcpiGetName
	8.3.9	AcpiGetDevices
	8.3.10	AcpiAttachData
	8.3.11	AcpiDetachData
	8.3.12	AcpiGetData
	8.3.13	AcpiInstallMethod
	8.3.14	AcpiWalkNamespace
	8.3.14.1	Interface to User Callback Function

	8.4	ACPI Hardware Management
	8.4.1	AcpiEnable
	8.4.2	AcpiDisable
	8.4.3	AcpiReset
	8.4.4	AcpiReadBitRegister
	8.4.5	AcpiWriteBitRegister
	8.4.6	AcpiRead
	8.4.7	AcpiWrite
	8.4.8	AcpiAcquireGlobalLock
	8.4.9	AcpiReleaseGlobalLock
	8.4.10	AcpiGetTimerResolution
	8.4.11	AcpiGetTimerDuration
	8.4.12	AcpiGetTimer

	8.5	ACPI Sleep/Wake Support
	8.5.1	AcpiSetFirmwareWakingVector
	8.5.2	AcpiSetFirmwareWakingVector64
	8.5.3	AcpiGetSleepTypeData
	8.5.4	AcpiEnterSleepStatePrep
	8.5.5	AcpiEnterSleepState
	8.5.6	AcpiEnterSleepStateS4Bios
	8.5.7	AcpiLeaveSleepState

	8.6	ACPI Fixed Event Management
	8.6.1	AcpiEnableEvent
	8.6.2	AcpiDisableEvent
	8.6.3	AcpiClearEvent
	8.6.4	AcpiGetEventStatus
	8.6.5	AcpiInstallFixedEventHandler
	8.6.5.1	Interface to Fixed Event Handlers

	8.6.6	AcpiRemoveFixedEventHandler

	8.7	ACPI General Purpose Event Management
	8.7.1	AcpiUpdateAllGpes
	8.7.2	AcpiEnableGpe
	8.7.3	AcpiDisableGpe
	8.7.4	AcpiClearGpe
	8.7.5	AcpiSetGpe
	8.7.6	AcpiFinishGpe
	8.7.7	AcpiSetupGpeForWake
	8.7.8	AcpiSetGpeWakeMask
	8.7.9	AcpiGetGpeStatus
	8.7.10	AcpiGetGpeDevice
	8.7.11	AcpiDisableAllGpes
	8.7.12	AcpiEnableAllRuntimeGpes
	8.7.13	AcpiInstallGpeBlock
	8.7.14	AcpiRemoveGpeBlock
	8.7.15	AcpiInstallGpeHandler
	8.7.15.1	Interface to General Purpose Event Handlers

	8.7.16	AcpiRemoveGpeHandler

	Miscellaneous Handler Support
	8.8.1	AcpiInstallGlobalEventHandler
	8.8.1.1	Interface to the Global Event Handler

	8.8.2	AcpiInstallNotifyHandler
	8.8.2.1	Interface to Notification Event Handlers

	8.8.3	AcpiRemoveNotifyHandler
	8.8.4	AcpiInstallAddressSpaceHandler
	8.8.4.1	Interface to Address Space Setup Handlers
	8.8.4.2	Interface to Address Space Handlers
	8.8.4.3	Context for the Default PCI Address Space Handler

	8.8.5	AcpiRemoveAddressSpaceHandler
	8.8.6	AcpiInstallExceptionHandler
	8.8.6.1	Interface to Exception Handlers

	8.9	ACPI Resource Management
	8.9.1	AcpiGetCurrentResources
	8.9.2	AcpiGetPossibleResources
	8.9.3	AcpiSetCurrentResources
	8.9.4	AcpiGetIRQRoutingTable
	8.9.5	AcpiGetVendorResource
	8.9.6	AcpiResourceToAddress64
	8.9.7	AcpiWalkResources
	8.9.7.1	Interface to User Callback Function

	8.10	Memory Management
	8.10.1	ACPI_ALLOCATE
	8.10.2	ACPI_ALLOCATE_ZEROED
	8.10.3	ACPI_FREE

	8.11	Formatted Output
	8.11.1	AcpiInfo and ACPI_INFO
	8.11.2	AcpiWarning and ACPI_WARNING
	8.11.3	AcpiError and ACPI_ERROR
	8.11.4	AcpiException and ACPI_EXCEPTION
	8.11.5	AcpiDebugPrint and ACPI_DEBUG_PRINT
	8.11.6	AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

	8.12	Miscellaneous Utilities
	8.12.1	AcpiFormatException
	8.12.2	AcpiDebugTrace
	8.12.3	AcpiGetSystemInfo
	8.12.4	AcpiGetStatistics
	8.12.5	AcpiPurgeCachedObjects

	8.13	Global Variables
	8.13.1	AcpiDbgLevel & AcpiDbgLayer
	8.13.2	AcpiGbl_FADT
	8.13.3	AcpiCurrentGpeCount
	8.13.4	AcpiGbl_SystemAwakeAndRunning

	9	OS Services Layer - External Interface Definition
	9.1	Environmental and ACPI Tables
	9.1.1	AcpiOsInitialize
	9.1.2	AcpiOsTerminate
	9.1.3	AcpiOsGetRootPointer
	9.1.4	AcpiOsPredefinedOverride
	9.1.5	AcpiOsTableOverride

	9.2	Memory Management
	9.2.1	AcpiOsCreateCache
	9.2.2	AcpiOsDeleteCache
	9.2.3	AcpiOsPurgeCache
	9.2.4	AcpiOsAcquireObject
	9.2.5	AcpiOsReleaseObject
	9.2.6	AcpiOsMapMemory
	9.2.7	AcpiOsUnmapMemory
	9.2.8	AcpiOsGetPhysicalAddress
	9.2.9	AcpiOsAllocate
	9.2.10	AcpiOsFree
	9.2.11	AcpiOsReadable
	9.2.12	AcpiOsWritable

	9.3	Multithreading and Scheduling Services
	9.3.1	AcpiOsGetThreadId
	9.3.2	AcpiOsExecute
	9.3.3	AcpiOsSleep
	9.3.4	AcpiOsStall

	9.4	Mutual Exclusion and Synchronization
	9.4.1	AcpiOsCreateMutex
	9.4.2	AcpiOsDeleteMutex
	9.4.3	AcpiOsAcquireMutex
	9.4.4	AcpiOsReleaseMutex
	9.4.5	AcpiOsCreateSemaphore
	9.4.6	AcpiOsDeleteSemaphore
	9.4.7	AcpiOsWaitSemaphore
	9.4.8	AcpiOsSignalSemaphore
	9.4.9	AcpiOsCreateLock
	9.4.10	AcpiOsDeleteLock
	9.4.11	AcpiOsAcquireLock
	9.4.12	AcpiOsReleaseLock

	9.5	Interrupt Handling
	9.5.1	AcpiOsInstallInterruptHandler
	9.5.1.1	Interface to OS-independent Interrupt Handlers

	9.5.2	AcpiOsRemoveInterruptHandler

	9.6	Memory Access and Memory Mapped I/O
	9.6.1	AcpiOsReadMemory
	9.6.2	AcpiOsWriteMemory

	9.7	Port Input/Output
	9.7.1	AcpiOsReadPort
	9.7.2	AcpiOsWritePort

	9.8	PCI Configuration Space Access
	9.8.1	AcpiOsReadPciConfiguration
	9.8.2	AcpiOsWritePciConfiguration

	9.9	Formatted Output
	9.9.1	AcpiOsPrintf
	9.9.2	AcpiOsVprintf
	9.9.3	AcpiOsRedirectOutput

	9.10	Miscellaneous
	9.10.1	AcpiOsGetTimer
	9.10.2	AcpiOsSignal
	9.10.3	AcpiOsGetLine

	10	ACPICA Deployment Guide
	10.1	Using the ACPICA Core Subsystem Interfaces
	10.1.1	Initialization Sequence
	10.1.2	ACPICA Initialization Examples
	10.1.2.1	Full ACPICA Initialization
	10.1.2.2	ACPICA Initialization With Early ACPI Table Access

	10.1.3	Shutdown Sequence
	10.1.4	Traversing the ACPI Namespace (Low Level)
	10.1.5	Traversing the ACPI Namespace (High Level)

	10.2	Implementing the OS Services Layer
	10.2.1	Parameter Validation
	10.2.2	Memory Management
	10.2.3	Scheduling Services
	10.2.4	Mutual Exclusion and Synchronization
	10.2.5	Interrupt Handling
	10.2.6	Stream I/O
	10.2.7	Hardware Abstraction (I/O, Memory, PCI Configuration)

	11	Tools and Utilities
	11.1	iASL Compiler
	11.2	AcpiExec – User Mode ACPI Execution/Simulation
	11.3	AcpiXtract – Extract ACPI Tables
	11.4	AcpiSrc – Convert ACPICA Source Code
	11.5	AcpiNames – Example Namespace Dump

	12	ACPICA Debugger Reference
	12.1	Overview
	12.2	Supported Environments
	12.2.1	The AcpiExec Utility

	12.3	Debugger Architecture
	12.4	Configuration and Installation
	12.5	Command Overview
	12.6	General Purpose Commands
	12.6.1	Allocations
	12.6.2	Dump
	12.6.3	Exit
	12.6.4	Help
	12.6.5	History (! And !!)
	12.6.6	Level
	12.6.7	Locks
	12.6.8	Osi
	12.6.9	Quit
	12.6.10	Stats
	12.6.11	Tables
	12.6.12	Unload

	12.7	Namespace Access Commands
	12.7.1	BusInfo
	12.7.2	Disassemble
	12.7.3	Event
	12.7.4	Find
	12.7.5	Gpe
	12.7.6	Gpes
	12.7.7	Integrity
	12.7.8	Methods
	12.7.9	Namespace
	12.7.10	Notify
	12.7.11	Object
	12.7.12	Owner
	12.7.13	Predefined
	12.7.14	Prefix
	12.7.15	References
	12.7.16	Resources
	12.7.17	Set N
	12.7.18	Sleep
	12.7.19	Terminate
	12.7.20	Type

	12.8	Control Method Execution Commands
	12.8.1	Arguments
	12.8.2	Breakpoint
	12.8.3	Call
	12.8.4	Debug
	12.8.5	Execute
	12.8.5.1	Specifying Method Arguments

	12.8.6	Go
	12.8.7	Information
	12.8.8	Into
	12.8.9	List
	12.8.10	Locals
	12.8.11	Results
	12.8.12	Set
	12.8.13	Stop
	12.8.14	Thread
	12.8.15	Trace
	12.8.16	Tree

	12.9	File I/O Commands
	12.9.1	Close
	12.9.2	Load
	12.9.3	Open

